Citation: Shao Rong, Yang Xinbo, Yin Shiwei, Wang Wenliang. Molecular Design of Benzothiadiazole Derivatives Electron Acceptors and Matching of Donor-Acceptor Materials[J]. Acta Chimica Sinica, ;2016, 74(8): 676-682. doi: 10.6023/A16050268 shu

Molecular Design of Benzothiadiazole Derivatives Electron Acceptors and Matching of Donor-Acceptor Materials

  • Corresponding author: Wang Wenliang, wlwang@snnu.edu.cn
  • Received Date: 30 May 2016

    Fund Project: the National Natural Science Foundation of China 21473108the National Natural Science Foundation of China 21173139Shaanxi Innovative Team of Key Science and Technology 2013KCT-17

Figures(7)

  • To better understand the relationships between the microstructure and the optoelectronic characteristics of the electron acceptor and to meet the needs of donor-acceptor materials with excellent optical properties for solar cell, a series of acceptor molecules with A'-π-A-π-A' type are designed. In these molecules, the core framework of benzothiadiazole is used as an acceptor (A), three kinds of conjugated heterocyclics (A') with different abilities of electron-withdrawing and steric effects are applied as the terminals, and various conjugated structures, such as the double bond, thiophene, benzothiophene and vinyl thiophene, are utilized as π-bridge, respectively. Their geometric configurations, the characteristics of frontier molecular orbital, optical properties, as well as the electronic reorganization energy are predicted by DFT-B3LYP and TD-DFT-CAM-B3LYP. Solvent effects from acetone and chlorobenzene on molecular properties are studied. Furthermore, the Donor-Acceptor (D-A) interfaces are respectively constructed by combining the excellent acceptors with the selected two donors. The DFT-D3 method is used to scan the binding energy of D-A complex, in order to determine the stacked displacement of the interface. The degree of interface recombination is evaluated by calculating electronic coupling (Vif) between HOMO of donors and LUMO of acceptors. The results show that modifying benzothiadiazole with a reasonable substituent is an effective way to adjust LUMO energy levels and lead to the noticeable variation of the energy gap. Combining planar electron acceptor materials (A'-π-A-π-A' type) with non-planar electron donor materials (D), to form the optical active layer is a practical approach for preventing interface recombination and achieving high open-circuit voltage (Voc). Considering ΔEL, Vif, light absorption efficiency, and solvation effect, D1-1aγ and D1-2aγ combinations are the most promising candidates of optical active layer materials in organic solar cell.
  • 加载中
    1. [1]

      Sariciftci, N. S.; Smilowitz, L.; Heeger, A. J.; Wudl, F. Science 1992, 258, 1474.  doi: 10.1126/science.258.5087.1474

    2. [2]

      Anthony, J. E.; Facchetti, A.; Heeney, M.; Marder, S. R.; Zhan, X. Adv. Mater. 2010, 22, 3876.  doi: 10.1002/adma.200903628

    3. [3]

      Meng, Q. B. Acta Chim. Sinica 2015, 73, 161.  doi: 10.6023/A1503E001
       

    4. [4]

      Carlotto, S. J. Phys. Chem. A 2014, 118, 4808.  doi: 10.1021/jp503040n

    5. [5]

      Armin, A.; Kassal, I.; Shaw, P. E.; Hambsch, M.; Stolterfoht, M.; Lyons, D. M.; Li, J.; Shi, Z.; Burn, P. L.; Meredith, P. J. Am. Chem. Soc. 2014, 136, 11465.  doi: 10.1021/ja505330x

    6. [6]

      Mishra, A.; Bäuerle, P. Angew. Chem. Int. Ed. 2012, 51, 2020.  doi: 10.1002/anie.201102326

    7. [7]

      Walker, B.; Liu, J.; Kim, C.; Welch, G. C.; Park, J. K.; Lin, J.; Zalar, P.; Proctor, C. M.; Seo, J. H.; Bazan, G. C.; Nguyen, T.-Q. Energy Environ. Sci. 2013, 6, 952.  doi: 10.1039/c3ee24351f

    8. [8]

      Wang, Z.; Uemura, Y.; Zhou, Y.; Miyadera, T.; Azumi, R.; Yoshida, Y.; Chikamatsu, M. ACS Appl. Mater. Interfaces 2015, 7, 10814.  doi: 10.1021/acsami.5b01723

    9. [9]

      Heremans, P.; Cheyns, D.; Rand, B. P. Acc. Chem. Res. 2009, 42, 1740.  doi: 10.1021/ar9000923

    10. [10]

      Reese, M. O.; Nardes, A. M.; Rupert, B. L.; Larsen, R. E.; Olson, D. C.; Lloyd, M. T.; Shaheen, S. E.; Ginley, D. S.; Rumbles, G.; Kopidakis, N. Adv. Funct. Mater. 2010, 20, 3476.  doi: 10.1002/adfm.v20:20

    11. [11]

      Fu, Y.; Wang, F.; Zhang, Y.; Fang, X.; Lai, W.; Huang, W. Acta Chim. Sinica 2014, 72, 158.  doi: 10.6023/A13111142
       

    12. [12]

      Dou, C.; Chen, D.; Iqbal, J.; Yuan, Y.; Zhang, H.; Wang, Y. Langmuir 2011, 27, 6323.  doi: 10.1021/la200382b

    13. [13]

      Woo, C. H.; Holcombe, T. W.; Unruh, D. A.; Sellinger, A. Chem. Mater. 2010, 22, 1673.  doi: 10.1021/cm903067a

    14. [14]

      Wolfer, P.; Schwenn, P. E.; Pandey, A. K.; Fang, Y.; Stingelin, N.; Burn, P. L.; Meredith, P. J. Mater. Chem. A. 2013, 1, 5989.  doi: 10.1039/c3ta10554g

    15. [15]

      Bloking, J. T.; Han, X.; Higgs, A. T.; Kastrop, J. P.; Pandey, L.; Norton, J. E.; Risko, C.; Chen, C. E.; Bredas, J.-E.; McGehee, M. D.; Sellinger, A. Chem. Mater. 2011, 23, 5484.  doi: 10.1021/cm203111k

    16. [16]

      Barone, V.; Cossi, M. J. Phys. Chem. A 1998, 102, 1995.  doi: 10.1021/jp9716997

    17. [17]

      Schlenker, C. W.; Thompson, M. E. Chem. Commun. 2011, 47, 3702.  doi: 10.1039/c0cc04020g

    18. [18]

      Newton, M. D.; Sutin, N. Ann. Rev. Phys. Chem. 1984, 35, 437.  doi: 10.1146/annurev.pc.35.100184.002253

    19. [19]

      Barbara, P. F.; Meyer, T. J.; Ratner, M. A. J. Phys. Chem. 1996, 100, 13148.  doi: 10.1021/jp9605663

    20. [20]

      Lemaur, V.; Steel, M.; Beljonne, D.; Brédas, J.-L.; Cornil, J. J. Am. Chem. Soc. 2005, 127, 6077.  doi: 10.1021/ja042390l

    21. [21]

      Hsu, C. P. Acc. Chem. Res. 2009, 42, 509.  doi: 10.1021/ar800153f

    22. [22]

      Yang, Y. M.; Yin, S. W.; Li, L. L.; Yang, J. Y. Acta Chim. Sinica 2011, 69, 1991.
       

    23. [23]

      Grimme, S. WIREs Comput. Mol. Sci. 2011, 1, 211.  doi: 10.1002/wcms.30

    24. [24]

      Liu, H.; Brémond, É.; Prlj, A.; Gonthier, J. F.; Corminboeuf, C. J. Phys. Chem. Lett. 2014, 5, 2320.  doi: 10.1021/jz501078s

    25. [25]

      Guan, L.; Wang, W. L.; Shao, R.; Liu, F. Y.; Yin, S. W. J. Mol. Model. 2015, 21, 126-1.  doi: 10.1007/s00894-015-2677-2

    26. [26]

      Zhan, X.; Facchetti, A.; Barlow, S.; Marks, T. J.; Ratner, M. A.; Wasielewski, M. R.; Marder, S. R. Adv. Mater. 2011, 23, 268.  doi: 10.1002/adma.v23.2

    27. [27]

      Shao, R.; Wang, W. L.; Yang, X. B.; Yin, X. W. Sci. China-Chem. 2016, 46, 699.

    28. [28]

      Liu, X.; Su, S. J.; Cao, Y. Polymer Bulletin 2014, 12, 68.

    29. [29]

      Nalwa, H. S. Handbook of Advanced Electronic and Photonic Materials and Device, Academic San Diego, CA, 2001.

    30. [30]

      Fitzner, R.; Reinold, E.; Mishra, A. Adv. Funct. Mater. 2011, 21, 897.  doi: 10.1002/adfm.201001639

    31. [31]

      Lin, L. Y.; Chen, Y. H.; Huang, Z. Y.; Lin, H. W.; Chou, S. H.; Lin, F.; Chen, C. W.; Liu, Y. H.; Wong, K. T. J. Am. Chem. Soc. 2011, 133, 15822.  doi: 10.1021/ja205126t

  • 加载中
    1. [1]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    2. [2]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    3. [3]

      Jiali CHENGuoxiang ZHAOYayu YANWanting XIAQiaohong LIJian ZHANG . Machine learning exploring the adsorption of electronic gases on zeolite molecular sieves. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 155-164. doi: 10.11862/CJIC.20240408

    4. [4]

      Jingwen Wang Minghao Wu Xing Zuo Yaofeng Yuan Yahao Wang Xiaoshun Zhou Jianfeng Yan . Advances in the Application of Electrochemical Regulation in Investigating the Electron Transport Properties of Single-Molecule Junctions. University Chemistry, 2025, 40(3): 291-301. doi: 10.12461/PKU.DXHX202406023

    5. [5]

      Jichao XUMing HUXichang CHENChunhui WANGLeichen WANGLingyi ZHOUXing HEXiamin CHENGSu JING . Construction and hydrogen peroxide-activated chemodynamic activity of ferrocene?benzoselenadiazole conjugate. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1495-1504. doi: 10.11862/CJIC.20250144

    6. [6]

      Jiandong LiuXin LiDaxiong WuHuaping WangJunda HuangJianmin Ma . Anion-Acceptor Electrolyte Additive Strategy for Optimizing Electrolyte Solvation Characteristics and Electrode Electrolyte Interphases for Li||NCM811 Battery. Acta Physico-Chimica Sinica, 2024, 40(6): 2306039-0. doi: 10.3866/PKU.WHXB202306039

    7. [7]

      Yanglin JiangMingqing ChenMin LiangYige YaoYan ZhangPeng WangJianping Zhang . Experimental and Theoretical Investigations of Solvent Polarity Effect on ESIPT Mechanism in 4′-N,N-diethylamino-3-hydroxybenzoflavone. Acta Physico-Chimica Sinica, 2025, 41(2): 2309027-0. doi: 10.3866/PKU.WHXB202309027

    8. [8]

      Chongjing LiuYujian XiaPengjun ZhangShiqiang WeiDengfeng CaoBeibei ShengYongheng ChuShuangming ChenLi SongXiaosong Liu . Understanding Solid-Gas and Solid-Liquid Interfaces through Near Ambient Pressure X-Ray Photoelectron Spectroscopy. Acta Physico-Chimica Sinica, 2025, 41(2): 2309036-0. doi: 10.3866/PKU.WHXB202309036

    9. [9]

      Zhaoyu WenNa HanYanguang Li . Recent Progress towards the Production of H2O2 by Electrochemical Two-Electron Oxygen Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(2): 2304001-0. doi: 10.3866/PKU.WHXB202304001

    10. [10]

      Jizhou LiuChenbin AiChenrui HuBei ChengJianjun Zhang . Accelerated Interfacial Electron Transfer in Perovskite Solar Cell by Ammonium Hexachlorostannate Modification and fs-TAS Investigation. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-0. doi: 10.3866/PKU.WHXB202402006

    11. [11]

      Tengjiao Wang Tian Cheng Rongjun Liu Zeyi Wang Yuxuan Qiao An Wang Peng Li . Conductive Hydrogel-based Flexible Electronic System: Innovative Experimental Design in Flexible Electronics. University Chemistry, 2024, 39(4): 286-295. doi: 10.3866/PKU.DXHX202309094

    12. [12]

      Qi WuChanghua WangYingying LiXintong Zhang . Enhanced photocatalytic synthesis of H2O2 by triplet electron transfer at g-C3N4@BN van der Waals heterojunction interface. Acta Physico-Chimica Sinica, 2025, 41(9): 100107-0. doi: 10.1016/j.actphy.2025.100107

    13. [13]

      Zihao Guo Shichen Ma Kin Shing Chan . 烯烃环化反应中6电子试剂的等瓣相似性和等电子关系. University Chemistry, 2025, 40(6): 160-166. doi: 10.12461/PKU.DXHX202408038

    14. [14]

      Yawen GuoDawei LiYang GaoCuihong Li . Recent Progress on Stability of Organic Solar Cells Based on Non-Fullerene Acceptors. Acta Physico-Chimica Sinica, 2024, 40(6): 2306050-0. doi: 10.3866/PKU.WHXB202306050

    15. [15]

      Jiageng Li Putrama . 数值积分耦合非线性最小二乘法一步确定反应动力学参数. University Chemistry, 2025, 40(6): 364-370. doi: 10.12461/PKU.DXHX202407098

    16. [16]

      Yuping Wei Yiting Wang Jialiang Jiang Jinxuan Deng Hong Zhang Xiaofei Ma Junjie Li . Interdisciplinary Teaching Practice——Flexible Wearable Electronic Skin for Low-Temperature Environments. University Chemistry, 2024, 39(10): 261-270. doi: 10.12461/PKU.DXHX202404007

    17. [17]

      Yanan Jiang Yuchen Ma . Brief Discussion on the Electronic Exchange Interaction in Quantum Chemistry Computations. University Chemistry, 2025, 40(3): 10-15. doi: 10.12461/PKU.DXHX202402058

    18. [18]

      Yaqin Zheng Lian Zhuo Meng Li Chunying Rong . Enhancing Understanding of the Electronic Effect of Substituents on Benzene Rings Using Quantum Chemistry Calculations. University Chemistry, 2025, 40(3): 193-198. doi: 10.12461/PKU.DXHX202406119

    19. [19]

      Jianchun Wang Ruyu Xie . The Fantastical Dance of Miss Electron: Contra-Thermodynamic Electrocatalytic Reactions. University Chemistry, 2025, 40(4): 331-339. doi: 10.12461/PKU.DXHX202406082

    20. [20]

      Shi-Yu LuWenzhao DouJun ZhangLing WangChunjie WuHuan YiRong WangMeng Jin . Amorphous-Crystalline Interfaces Coupling of CrS/CoS2 Few-Layer Heterojunction with Optimized Crystallinity Boosted for Water-Splitting and Methanol-Assisted Energy-Saving Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(8): 2308024-0. doi: 10.3866/PKU.WHXB202308024

Metrics
  • PDF Downloads(0)
  • Abstract views(1700)
  • HTML views(510)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return