Citation:
Zhao Mi, Li Haohua, Shen Xiaoping. Facile Electrochemical Synthesis of CeO2@Ag@CdSe Nanotube Arrays with Enhanced Photoelectrochemical Performance[J]. Acta Chimica Sinica,
;2016, 74(10): 825-832.
doi:
10.6023/A16050256
-
In this work, for the first time, three-component CeO2@Ag@CdSe heterostructured nanotube arrays with remarkable photoelectrochemical (PEC) properties have been synthesized on the FTO conductive glass substrate by an electrodeposition method. One-dimensional vertically ordered CeO2 nanotube arrays were prepared on the FTO substrate by electrodeposition method with Ce(NO3)2·6H2O and C2H6SO as the raw materials. Ag nanoparticles were deposited on the surface of CeO2 nanotube arrays through a successive electrodeposition in a solution of AgNO3, and a composite system of CeO2@Ag was obtained. Then a thin CdSe layer was deposited and covered on the CeO2@Ag system to form three-component CeO2@Ag@CdSe heterostructured nanotube arrays. The as-synthesized products were characterized using X-ray diffraction (XRD), X-ray energy dispersive spectroscopy (EDS), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), ultraviolet-visible (UV-Vis) spectroscopy, Raman spectroscopy, X-ray photoelectron spectroscopy (XPS) and photoluminescence (PL) spectroscopy. The PEC properties of the obtained products were recorded with electrochemical workstation, and the results showed that the CdSe layer could greatly enhance light harvesting and significantly improve charge separation. Moreover, the modification with Ag nanoparticles can significantly strengthen the light-harvesting ability through the localized surface plasma resonance effect and provide an interior direct pathway to facilitate the separation and transport of photogenerated carriers. It has been demonstrated that the enhanced PEC properties of CeO2@Ag@CdSe heterostructures are direct consequence of the synergetic effects of enhanced visible light absorption and the effective separation and transportation of photogenerated carriers at interface of type-II heterostructure via the Ag nanoparticles. Therefore, the CeO2@Ag@CdSe heterostructured nanotubes generate a remarkable photocurrent density of 3.92 mA·cm-2 at a potential of -0.2 V (vs. Ag/AgCl), which is 4.9 and 17.9 times higher than that of two-component CeO2@CdSe (0.802 mA·cm-2) and CeO2@Ag (0.218 mA·cm-2) systems, respectively. It also gives an incident photon to current conversion efficiency (IPCE) as high as 72% at around 360 nm. Moreover, the photoelectrode shows high photostability during the test period over 16 min.
-
-
-
[1]
[1] Chen, H. M.; Chen, C. K.; Liu, R. S.; Zhang, L.; Zhang, J.; Wil-kinson, D. P. Chem. Soc. Rev. 2012, 41(17), 5654.
-
[2]
[2] Wang, G.; Lu, X.; Zhai, T.; Ling, Y.; Wang, H.; Tong, Y.; Li, Y. Nanoscale 2012, 4(10), 3123.
-
[3]
[3] Prieto-Centurion, D.; Eaton, T. R.; Roberts, C. A.; Fanson, P. T.; Notestein, J. M. Appl. Catal. B-Environ. 2015, 168, 68.
-
[4]
[4] Zhu, H.; Song, N.; Lian, T. J. Am. Chem. Soc. 2010, 132(42), 15038.
-
[5]
[5] Song, F.; Ding, Y.; Zhao, C. Acta Chim. Sinica 2014, 72, 133(in Chinese). (宋芳源, 丁勇, 赵崇超, 化学学报, 2014, 72(2), 133.)
-
[6]
[6] Wan, G.; Fu, Y.; Guo, J.; Xiang, Z. Acta Chim. Sinica 2015, 73, 557(in Chinese). (万刚, 付宇昂, 郭佳宁, 向中华, 化学学报, 2015, 73(6), 557.)
-
[7]
[7] Li, Y.; Qi, L. Acta Chim. Sinica 2015, 73(9), 869(in Chinese). (李扬, 齐利民, 化学学报, 2015, 73(9), 869.)
-
[8]
[8] Khan, M. M.; Ansari, S. A.; Ansari, M. O.; Min, B. K.; Lee, J.; Cho, M. H. J. Phys. Chem. C 2014, 118(18), 9477.
-
[9]
[9] Lu, X.; Zhai, T.; Cui, H.; Shi, J.; Xie, S.; Huang, Y.; Liang, C.; Tong, Y. J. Mater. Chem. 2011, 21(15), 5569.
-
[10]
[10] Li, W.; Xie, S.; Li, M.; Ouyang, X.; Cui, G.; Lu, X.; Tong, Y. J. Mater. Chem. A 2013, 1(13), 4190.
-
[11]
[11] Zhang, J.; Li, L.; Huang, X.; Li, G. J. Mater. Chem. 2012, 22(21), 10480.
-
[12]
[12] Khan, M. M.; Ansari, S. A.; Lee, J. H.; Ansari, M. O.; Lee, J.; Cho, M. H. J. Colloid Interface Sci. 2014, 431, 255.
-
[13]
[13] Zhang, N.; Liu, S.; Xu, Y. J. Nanoscale 2012, 4(7), 2227.
-
[14]
[14] Li, H.; Chen, C.; Huang, X.; Leng, Y.; Hou, M.; Xiao, X.; Bao, J.; You, J.; Zhang, W.; Wang, Y.; Song, J.; Wang, Y.; Liu, Q.; Hope, G. A. J. Power Sources 2014, 247, 915.
-
[15]
[15] Lv, J.; Wang, H.; Gao, H.; Xu, G.; Wang, D.; Chen, Z.; Zhang, X.; Zhang, Z.; Wu, Y. Surf. Coat. Tech. 2015, 261, 356.
-
[16]
[16] Srivastava, M.; Das, A. K.; Khanra, P.; Uddin, M. E.; Kim, N. H.; Lee, J. H. J. Mater. Chem. A 2013, 1(34), 9792.
-
[17]
[17] Al-Kuhaili, M. F.; Durrani, S. M. A.; Bakhtiari, I. A. Appl. Surf. Sci. 2008, 255(5), 3033.
-
[18]
[18] Li, W.; Xie, S.; Li, M.; Ouyang, X.; Cui, G.; Lu, X.; Tong, Y. J. Mater. Chem. A 2013, 1(13), 4190.
-
[19]
[19] Khan, M. M.; Ansari, S. A.; Lee, J.; Ansari, M. O.; Lee, J.; Cho, M. H. J. Colloid Interface Sci. 2014, 431, 255.
-
[20]
[20] Kuang, P.; Su, Y.; Xiao, K.; Liu, Z.; Li, N.; Wang, H.; Zhang, J. ACS Appl. Mater. Interfaces 2015, 7, 16387.
-
[21]
[21] Li, S. J.; Ping, Y.; Yan, J. M.;Wang, H. L.; Wu, M.; Jiang, Q. J. Mater. Chem. A 2015, 3(28), 14535.
-
[22]
[22] Saravanan, R.; Karthikeyan, N.; Gupta, V. K.; Thirumal, E.; Thangadurai, P.; Narayanan, V.; Stephen, A. Mat. Sci. Eng. C 2013, 33(4), 2235.
-
[23]
[23] Weber, W. H.; Hass, K. C.; McBride, J. R. Phys. Rev. B 1993, 48, 178.
-
[24]
[24] Lu, X.; Huang, X.; Xie, S.; Zheng, D.; Liu, Z.; Liang, C.; Tong, Y. Langmuir 2010, 26(10), 7569.
-
[25]
[25] Hou, Y.; Zuo, F.; Dagg, A.; Feng, P. Nano Lett. 2012, 12(12), 6464.
-
[26]
[26] Chandrasekharan, N.; Kamat, P. V. J. Phys. Chem. B 2000, 104(46), 10851.
-
[27]
[27] Miao, J.; Yang, H. B.; Khoo, S. Y.; Liu, B. Nanoscale 2013, 5(22), 11118.
-
[28]
[28] Zhang, X.; Li, Y.; Zhao, J.; Wang, S.; Li, Y.; Dai, H.; Sun, X. J. Power Sources 2014, 269, 466.
-
[29]
[29] Pu, Y. C.; Ling, Y.; Chang, K. D.; Liu, C. M.; Zhang, J. Z.; Hsu, Y. J.; Li, Y. J. Phys. Chem. C 2014, 118(27), 15086.
-
[30]
[30] Ling, Y.; Wang, G.; Wang, H.; Yang, Y.; Li, Y. ChemSusChem 2014, 7(3), 848.
-
[31]
[31] Zhang, J.; Wang, L.; Liu, X.; Li, X. A.; Huang, W. J. Mater. Chem. A 2015, 3(2), 535.
-
[32]
[32] Lu, X. H.; Xie, S. L.; Zhai, T.; Zhao, Y. F.; Zhang, P.; Zhang, Y. L.; Tong, Y. X. RSC Adv. 2011, 1(7), 1207.
-
[1]
-
-
-
[1]
Pengcheng Yan , Peng Wang , Jing Huang , Zhao Mo , Li Xu , Yun Chen , Yu Zhang , Zhichong Qi , Hui Xu , Henan Li . Engineering Multiple Optimization Strategy on Bismuth Oxyhalide Photoactive Materials for Efficient Photoelectrochemical Applications. Acta Physico-Chimica Sinica, 2025, 41(2): 2309047-0. doi: 10.3866/PKU.WHXB202309047
-
[2]
Yujia LI , Tianyu WANG , Fuxue WANG , Chongchen WANG . Direct Z-scheme MIL-100(Fe)/BiOBr heterojunctions: Construction and photo-Fenton degradation for sulfamethoxazole. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 481-495. doi: 10.11862/CJIC.20230314
-
[3]
Yingqi BAI , Hua ZHAO , Huipeng LI , Xinran REN , Jun LI . Perovskite LaCoO3/g-C3N4 heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 480-490. doi: 10.11862/CJIC.20240259
-
[4]
Tong WANG , Qinyue ZHONG , Qiong HUANG , Weimin GUO , Xinmei LIU . Mn-doped carbon quantum dots/Fe-doped ZnO flower-like microspheres heterojunction: Construction and photocatalytic performance. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1589-1600. doi: 10.11862/CJIC.20250011
-
[5]
Yuhang Zhang , Weiwei Zhao , Hongwei Liu , Junpeng Lü . Progress on Self-Powered Photodetectors Based on Low-Dimensional Materials. Acta Physico-Chimica Sinica, 2025, 41(3): 2310004-0. doi: 10.3866/PKU.WHXB202310004
-
[6]
Qin Li , Huihui Zhang , Huajun Gu , Yuanyuan Cui , Ruihua Gao , Wei-Lin Dai . In situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2025, 41(4): 2402016-0. doi: 10.3866/PKU.WHXB202402016
-
[7]
Kun Rong , Cuilian Wen , Jiansen Wen , Xiong Li , Qiugang Liao , Siqing Yan , Chao Xu , Xiaoliang Zhang , Baisheng Sa , Zhimei Sun . Hierarchical MoS2/Ti3C2Tx heterostructure with excellent photothermal conversion performance for solar-driven vapor generation. Acta Physico-Chimica Sinica, 2025, 41(6): 100053-0. doi: 10.1016/j.actphy.2025.100053
-
[8]
Jiawei Hu , Kai Xia , Ao Yang , Zhihao Zhang , Wen Xiao , Chao Liu , Qinfang Zhang . Interfacial Engineering of Ultrathin 2D/2D NiPS3/C3N5 Heterojunctions for Boosting Photocatalytic H2 Evolution. Acta Physico-Chimica Sinica, 2024, 40(5): 2305043-0. doi: 10.3866/PKU.WHXB202305043
-
[9]
Ke Li , Chuang Liu , Jingping Li , Guohong Wang , Kai Wang . Architecting Inorganic/Organic S-Scheme Heterojunction of Bi4Ti3O12 Coupling with g-C3N4 for Photocatalytic H2O2 Production from Pure Water. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-0. doi: 10.3866/PKU.WHXB202403009
-
[10]
Huirong BAO , Jun YANG , Xiaomiao FENG . Preparation and electrochemical properties of NiCoP/polypyrrole/carbon cloth by electrodeposition. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1083-1093. doi: 10.11862/CJIC.20250008
-
[11]
Xiufang Wang , Donglin Zhao , Kehua Zhang , Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025
-
[12]
Qingtang ZHANG , Xiaoyu WU , Zheng WANG , Xiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115
-
[13]
Jing SU , Bingrong LI , Yiyan BAI , Wenjuan JI , Haiying YANG , Zhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414
-
[14]
Wentao Xu , Xuyan Mo , Yang Zhou , Zuxian Weng , Kunling Mo , Yanhua Wu , Xinlin Jiang , Dan Li , Tangqi Lan , Huan Wen , Fuqin Zheng , Youjun Fan , Wei Chen . Bimetal Leaching Induced Reconstruction of Water Oxidation Electrocatalyst for Enhanced Activity and Stability. Acta Physico-Chimica Sinica, 2024, 40(8): 2308003-0. doi: 10.3866/PKU.WHXB202308003
-
[15]
Yang Meiqing , Lu Wang , Haozi Lu , Yaocheng Yang , Song Liu . Recent Advances of Functional Nanomaterials for Screen-Printed Photoelectrochemical Biosensors. Acta Physico-Chimica Sinica, 2025, 41(2): 2310046-0. doi: 10.3866/PKU.WHXB202310046
-
[16]
Yuanyuan JIANG , Fangfang TU , Yuhong ZHANG , Shi CHEN , Jiayuan XIANG , Xinhui XIA . Preparation and electrochemical properties of high-stability cathode prelithiation additive. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1101-1111. doi: 10.11862/CJIC.20240441
-
[17]
Yuanchao LI , Weifeng HUANG , Pengchao LIANG , Zifang ZHAO , Baoyan XING , Dongliang YAN , Li YANG , Songlin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252
-
[18]
Jingwen Wang , Minghao Wu , Xing Zuo , Yaofeng Yuan , Yahao Wang , Xiaoshun Zhou , Jianfeng Yan . Advances in the Application of Electrochemical Regulation in Investigating the Electron Transport Properties of Single-Molecule Junctions. University Chemistry, 2025, 40(3): 291-301. doi: 10.12461/PKU.DXHX202406023
-
[19]
Fangxuan Liu , Ziyan Liu , Guowei Zhou , Tingting Gao , Wenyu Liu , Bin Sun . 中空结构光催化剂. Acta Physico-Chimica Sinica, 2025, 41(7): 100071-0. doi: 10.1016/j.actphy.2025.100071
-
[20]
Yajuan Xing , Hui Xue , Jing Sun , Niankun Guo , Tianshan Song , Jiawen Sun , Yi-Ru Hao , Qin Wang . Cu3P-Induced Charge-Oriented Transfer and Surface Reconstruction of Ni2P to Achieve Efficient Oxygen Evolution Activity. Acta Physico-Chimica Sinica, 2024, 40(3): 2304046-0. doi: 10.3866/PKU.WHXB202304046
-
[1]
Metrics
- PDF Downloads(2)
- Abstract views(792)
- HTML views(100)