Citation: Li Tao, Lu Dan. Shape Characteristics of Complex Single Chain and Aggregation by Exponential Law[J]. Acta Chimica Sinica, ;2016, 74(8): 649-656. doi: 10.6023/A16050252 shu

Shape Characteristics of Complex Single Chain and Aggregation by Exponential Law

  • Corresponding author: Lu Dan, lud@jlu.edu.cn
  • Received Date: 20 May 2016

    Fund Project: the National Natural Science Foundation of China 21174049the National Natural Science Foundation of China 91333103the National Natural Science Foundation of China 21574053

Figures(11)

  • Being an important part of polymer science, the single chain conformation and aggregation structure in polymer solution has been widely studied by many experiential exponential laws. In the review, several kinds of commonly used exponential laws were summarized, and the use in the study of shape characteristics of complex single chain and aggregation was introduced. The aggregation structure and morphology of films can be controlled by precursor solution, so deep understanding to the intrinsic properties of precursor solution is particularly important. Combined with the electron microscope, spectra, etc., the exponential law can be used to further study the single chain, aggregation size and morphology, structure evolution, and the law of the movement process of structure units at all levels in polymer solution, this will lay a theoretical foundation for the molecular designing, functional development and application of polymer materials.
  • 加载中
    1. [1]

      Wu Q. Y.Polymer Condensed Matter Physics, Science Press, Beijing, 2012, pp. 32~44.

    2. [2]

      de Gennes P. E.Scaling Concepts in Polymer Physics, Cornell University Press, New York, 1985.

    3. [3]

      Wu Q. Y.China Plastics 2013, 27(1), 1.

    4. [4]

      Robinson G., Ross-Murphy S. B., Morris, E R. Carbohydr. Res. 1982, 107, 17.  doi: 10.1016/S0008-6215(00)80772-7

    5. [5]

      Teraoka I.Polymer Solutions: An Introduction to Physical Properties, John Wiley & Sons, Inc., New York, 2001, pp. 209~221.

    6. [6]

      Kato T., Okamoto T., Tokuya T., Takahashi A.Biopolymers, 1982, 21:1623.  doi: 10.1002/(ISSN)1097-0282

    7. [7]

      Picton L., Bataille G., Muller G.Carbohydr. Polym., 2000, 42:23.  doi: 10.1016/S0144-8617(99)00139-3

    8. [8]

      Picton L., Merle L., Muller G.Int. J. Polym. Anal. Ch., 1996, 2:103.  doi: 10.1080/10236669608233900

    9. [9]

      Beaucage G.Phys. Rev. E, 2004, 70:031401.

    10. [10]

      Gelade E. T. F., Goderis B., de Koster C. G..; Meijerink N., van Benthem R. A.T. M. Macromolecules, 2001, 34:3552.  doi: 10.1021/ma001266t

    11. [11]

      Scherrenberg R., Coussens B., Van Vliet P., Edouard G., Brackman J., De Brabander E.Macromolecules, 1998, 31:456.  doi: 10.1021/ma9618181

    12. [12]

      Huber K., Witte T., Hollmann J., Keuker-Baumann S. J.Am. Chem. Soc., 2007, 129:1089.  doi: 10.1021/ja063368q

    13. [13]

      Lages S., Michels R., Huber K.Macromolecules, 2010, 43:3027.  doi: 10.1021/ma9027239

    14. [14]

      Carpinti M., Ferri F., Giglio M., Paganini E., Perini U.Phys. Rev. A, 1990, 42:7347.  doi: 10.1103/PhysRevA.42.7347

    15. [15]

      Schärtl W.Light Scattering from Polymer Solutions and Nanoparticle Dispersions, Springer Laboratory, Berlin, 2007.

    16. [16]

      Raspaud E., Lairez D., Adam M., Carton J. P.Macromolecules, 1994, 27:2956.  doi: 10.1021/ma00089a011

    17. [17]

      Peng S. F., Wu C.Macromolecules, , 2001, 34:6795.  doi: 10.1021/ma010376c

    18. [18]

      Roe R. J.Methods of X-ray and Neutron Scattering in Polymer Science, Oxford, New York, 2000.

    19. [19]

      Higgins J. S., Benoit H. C.Polymers and Neutron Scattering, Oxford, New York, 1994.

    20. [20]

      Perahia D., Traiphol R., Bunz U. H.F. J. Chem. Phys., 2002, 117:1827.  doi: 10.1063/1.1486215

    21. [21]

      Wang H., Zhou W., Ho D. L., Winey K. I., Fischer J. E., Glinka C. J., Hobbie E. K.Nano Lett., 2004, 4:1789.  doi: 10.1021/nl048969z

    22. [22]

      Knaapila M., Garamus V. M., Almásy L., Pang J. S., Forster M., Gutacker A., Scherf U., Monkman A. P.J. Phys. Chem. B, 2008, 112:16415.  doi: 10.1021/jp806763d

    23. [23]

      Rong L. X., Wei L. H., Dong B. Z., Hong X. G., Li F. M., Li Z. C.Chin. Phys., 2003, 12:771.  doi: 10.1088/1009-1963/12/7/313

    24. [24]

      Auguin, D.;Gostan, T.;Delsuc, M.-A.; Roumestand, C.C.R.Chimie 2004, 7, 265.  doi: 10.1016/j.crci.2003.10.017

    25. [25]

      Crutchfield, C.A.; Harris, D.J.J.Magn.Reson.2007, 185, 179.  doi: 10.1016/j.jmr.2006.12.004

    26. [26]

      Auge S., Schmit P.-O., Crutchfield C. A., Islam M. T., Harris D. J., Durand E., Clemancey M., Quoineaud A. A., Lancelin J. M., Prigent Y., Taulelle F., Delsuc M. A.J. Phys. Chem. B, 2009, 113:1914.  doi: 10.1021/jp8094424

    27. [27]

      Chari K., Antalek B., Minter J.Phys. Rev. Lett., 1995, 74:3624.  doi: 10.1103/PhysRevLett.74.3624

    28. [28]

      Wu Q. Y.Polymer Physics, Higher Education Press, Beijing, 2011, pp. 17~24.

    29. [29]

      Roubroeks J. P., Mastromauro D. I., Andersson R., Christensen B. E., Åman P.Biomacromolecules, 2000, 1:584.  doi: 10.1021/bm000017+

    30. [30]

      Sato T., Norisuye T., Fujita H.Macromolecules, 1984, 7:6.

    31. [31]

      Li W., Cui S. W., Wang Q.Biomacromolecules, 2006, 7:446.  doi: 10.1021/bm050625v

    32. [32]

      Tao Y. Z., Zhang L. N., Yan F., Wu X. J.Biomacromolecules, 2007, 8:2321.  doi: 10.1021/bm070335+

    33. [33]

      Huang Z. P., Huang Y. N., Li X. B., Zhang L. N.Carbohydr. Polym., 2009, 78:596.  doi: 10.1016/j.carbpol.2009.05.027

    34. [34]

      Li S., Huang Y., Wang S., Xu X. J., Zhang L. N.J. Phys. Chem. B, 2014, 118:668.  doi: 10.1021/jp4087199

    35. [35]

      Voit B. I., Albena L.Chem. Rev., 2009, 109:5924.  doi: 10.1021/cr900068q

    36. [36]

      Mori H., Müller A. H. E., Simon P. F.W. In Macromolecular Engineering: Precise Synthesis, Materials Properties, Applications, Vol. 2, Eds.: Matyjaszewski K., Gnanou Y., Leibler L., Wiley-VCH, Weinheim, Germany, 2007 p.973.

    37. [37]

      Turner S. R., Voit B. I., Mourey T. H.Macromolecules, 1993, 26:4617.  doi: 10.1021/ma00069a031

    38. [38]

      Mourey T. H., Turner S. R., Rubinstein M., Fréchet J. M. J., Hawker C. J., Wooley K. L.Macromolecules, 1992, 25:2401.  doi: 10.1021/ma00035a017

    39. [39]

      Tomalia D. A., Hedstrand D. M., Wilson L. R.In Encyclopedia of Polymers Science, 2nd ed., Wiley, New York, 1990.

    40. [40]

      Isaacson J., Lubensky T. C.J. Phys. Lett., 1980, 41:469.  doi: 10.1051/jphyslet:019800041019046900

    41. [41]

      Daoud M., Joanny J. F.J. Phys. (Les Ulis, Fr.), , 1981, 42:1359.  doi: 10.1051/jphys:0198100420100135900

    42. [42]

      Flory P. J.Principles of Polymer Chemistry, Cornell University, Press, Ithaca, New York, 1953.

    43. [43]

      Luca E. D., Richards R. W., Grillo I., King S. M.J. Polym. Sci. Polom. Phys., 2003, 41:1352.  doi: 10.1002/(ISSN)1099-0488

    44. [44]

      Ioan C. E., Aberle T., Burchard W.Macromolecules, 2000, 33:5730.  doi: 10.1021/ma000282n

    45. [45]

      Hanselmann R., Burchard W., Lemmes R., Schwengers D.Macromol. Chem. Phys., 1995, 196:2259.  doi: 10.1002/macp.1995.021960715

    46. [46]

      Huang L., Zhang L. L., Huang X. N., Li T., Liu B., Lu D. J.Phys. Chem. B., 2014, 118:791.  doi: 10.1021/jp406598x

    47. [47]

      Knaapila M., Almásy L., Garamus V. M., Ramosd M. L., Justino L. L. G., Galbrecht F., Preis E., Scherf U., Burrowsd H. D., Monkmanm A. P.Polymer, 2008, 49:2033.  doi: 10.1016/j.polymer.2008.02.046

    48. [48]

      Papi M., Arcovito G., de, Spirito. M..; Amiconi G.., Bellelli A., Boumis G.Appl. Phys. Lett., 2005, 86:183901.  doi: 10.1063/1.1915526

    49. [49]

      Li Y.C, Chen K.B, Chen H. L., Hsu C. S., Tsao C. S., Chen J. H., Chen S. A.Langmuir, 2006, 22:11009.  doi: 10.1021/la0612769

    50. [50]

      Bauer B. J., Hobbie E. K., Becker M. L.Macromolecules, 2006, 39:2637.  doi: 10.1021/ma0527303

    51. [51]

      Callejas-Fernández J., Ramos J., Forcada J., Moncho-Jordá A. J.Colloid Interface Sci., 2015, 450:310.  doi: 10.1016/j.jcis.2015.03.031

    52. [52]

      Kanai S., Muthukumar M. J.Chem. Phys., 2007, 127:25.

    53. [53]

      Dai S., Tam K. C., Jenkins R. D.Macromolecules, 2000, 33:404.  doi: 10.1021/ma990887n

    54. [54]

      Witten T. A., Sander L. M.Phys. Rev. Lett., 1981, 47:1400.  doi: 10.1103/PhysRevLett.47.1400

    55. [55]

      Witten T. A., Sander L. M.Phys. Rev. B, 1983, 27:5686.  doi: 10.1103/PhysRevB.27.5686

    56. [56]

      Meakin P.Phys. Rev. Lett., 1983, 51:1119.  doi: 10.1103/PhysRevLett.51.1119

    57. [57]

      Meakin P.Phys. Rev. A, 1990, 41:2005.  doi: 10.1103/PhysRevA.41.2005

    58. [58]

      Meakin P.Adv. Colloid Interface Sci., 1988, 28:249.

    59. [59]

      Brown W. D., Ball R. C.J. Phys. A, 1985, 18:517.  doi: 10.1088/0305-4470/18/9/006

    60. [60]

      Vicsek T.Fractal Growth Phenomena, World Scientific, London, 1992.

    61. [61]

      Chen W. N., Zhao Y., Jiang Y., Yan D. D., Han C. C.ChemPhysChem, 2004, 5:1745.  doi: 10.1002/(ISSN)1439-7641

    62. [62]

      Liu X. B., Luo S. K., Ye J., Wu C.Macromolecules, 2012, 45:4830.  doi: 10.1021/ma300629d

    63. [63]

      Hagiwara T., Kumagai H., Nakamura K.Biosci. Biotech. Biochem., 1996, 60:1757.  doi: 10.1271/bbb.60.1757

    64. [64]

      Lin W., Zhou Y. S., Zhao Y., Zhu Q. S., Wu C.Macromolecules, 2002, 35:7407.  doi: 10.1021/ma020372n

    65. [65]

      Liao W., Zhang Y. J., Guan Y., Zhu X. X.Langmuir, 2012, 28:10873.  doi: 10.1021/la3016386

    66. [66]

      Burns J. L., Yan Y. D., Jameson G. J., Biggs S.Langmuir, 1997, 13:6413.  doi: 10.1021/la970303f

    67. [67]

      Li, N.;Li, Y.B.; Wang, X.G.Macromolecules 2011, 44, 8598.  doi: 10.1021/ma200992n

  • 加载中
    1. [1]

      Wen-Bing Hu . Systematic Introduction of Polymer Chain Structures. University Chemistry, 2025, 40(4): 15-19. doi: 10.3866/PKU.DXHX202401014

    2. [2]

      Laiying Zhang Yinghuan Wu Yazi Yu Yecheng Xu Haojie Zhang Weitai Wu . Innovation and Practice of Polymer Chemistry Experiment Teaching for Non-Polymer Major Students of Chemistry: Taking the Synthesis, Solution Property, Optical Performance and Application of Thermo-Sensitive Polymers as an Example. University Chemistry, 2024, 39(4): 213-220. doi: 10.3866/PKU.DXHX202310126

    3. [3]

      Pingping Zhu Yongjun Xie Yuanping Yi Yu Huang Qiang Zhou Shiyan Xiao Haiyang Yang Pingsheng He . Excavation and Extraction of Ideological and Political Elements for the Virtual Simulation Experiments at Molecular Level: Taking the Project “the Simulation and Computation of Conformation, Morphology and Dimensions of Polymer Chains” as an Example. University Chemistry, 2024, 39(2): 83-88. doi: 10.3866/PKU.DXHX202309063

    4. [4]

      Pingping Zhu Qiang Zhou Yu Huang Haiyang Yang Pingsheng He Shiyan Xiao . Design and Practice of Ideological and Political Cases in the Course of Polymer Physics Experiments: Molecular Weight Determination of Polymers by Dilute Solution Viscosity Method as an Example. University Chemistry, 2025, 40(4): 94-99. doi: 10.12461/PKU.DXHX202405170

    5. [5]

      Yang Wang Yunpeng Fu Xiaoji Liu Guotao Zhang Guobin Li Wanqiang Liu Jinglun Wang . Structural Analysis of Nitrile Solutions Based on Infrared Spectroscopy Probes. University Chemistry, 2025, 40(4): 367-374. doi: 10.12461/PKU.DXHX202406113

    6. [6]

      Yuhui Yang Jintian Luo Biao Zuo . A Teaching Approach to Polymer Surface and Interface in Undergraduate Polymer Physics Courses. University Chemistry, 2025, 40(4): 126-130. doi: 10.12461/PKU.DXHX202408056

    7. [7]

      Haiping Wang . A Streamlined Method for Drawing Lewis Structures Using the Valence State of Outer Atoms. University Chemistry, 2024, 39(8): 383-388. doi: 10.12461/PKU.DXHX202401073

    8. [8]

      Wenyan Dan Weijie Li Xiaogang Wang . The Technical Analysis of Visual Software ShelXle for Refinement of Small Molecular Crystal Structure. University Chemistry, 2024, 39(3): 63-69. doi: 10.3866/PKU.DXHX202302060

    9. [9]

      Pei Li Yuenan Zheng Zhankai Liu An-Hui Lu . Boron-Containing MFI Zeolite: Microstructure Control and Its Performance of Propane Oxidative Dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(4): 100034-. doi: 10.3866/PKU.WHXB202406012

    10. [10]

      Wenbing Hu Jin Zhu . Flipped Classroom Approach in Teaching Professional English Reading and Writing to Polymer Graduates. University Chemistry, 2024, 39(6): 128-131. doi: 10.3866/PKU.DXHX202310015

    11. [11]

      Pingsheng He Haiyang Yang Pingping Zhu . Philosophical Reflections in Polymer Physics Course: Emphasizing Reverse Thinking. University Chemistry, 2025, 40(4): 27-32. doi: 10.3866/PKU.DXHX202403029

    12. [12]

      Rui Xu Wei Li Tianyi Li . Exploration of Teaching Reform in the Course of “Principles of Chemical Engineering” in the Polymer Materials and Engineering Major. University Chemistry, 2025, 40(4): 54-58. doi: 10.12461/PKU.DXHX202404081

    13. [13]

      Chunyang Bao Ruoxuan Miao Yuhan Ding Qingfu Ban Yusheng Qin Jie Liu Zhirong Xin . The Comprehensive Experiment Design of Preparation of Depolymerizable Thermosetting Polymers. University Chemistry, 2025, 40(4): 59-65. doi: 10.12461/PKU.DXHX202405087

    14. [14]

      Hujun Qian Rui Shi Guanglu Wu Xuanbo Zhu . A Preliminary Study on the Development of a Virtual Simulation Platform for Polymer Physics Teaching and Its Teaching Practice. University Chemistry, 2025, 40(4): 147-153. doi: 10.12461/PKU.DXHX202409009

    15. [15]

      Yi Li . Exploring the New Teaching Mode of the General Education of Polymer Science by Integrating Aesthetics, Ideological and Political Ideas: Teaching Practice of the General Education Course “Appreciation of Aesthetics in the Polymer World”. University Chemistry, 2025, 40(4): 20-26. doi: 10.12461/PKU.DXHX202402031

    16. [16]

      Kai Yang Gehua Bi Yong Zhang Delin Jin Ziwei Xu Qian Wang Lingbao Xing . Comprehensive Polymer Chemistry Experiment Design: Preparation and Characterization of Rigid Polyurethane Foam Materials. University Chemistry, 2024, 39(4): 206-212. doi: 10.3866/PKU.DXHX202308045

    17. [17]

      Chengyi Xiao Xiaoli Sun Chen Zhang Weiwei Li . An In-Depth Analysis of the Scientific Connotations, Testing Methods, and Applications of Free Volume in Polymer Physics. University Chemistry, 2025, 40(4): 33-45. doi: 10.12461/PKU.DXHX202403069

    18. [18]

      Lilong Gao Yuhao Zhai Dongdong Zhang Linjun Huang Kunyan Sui . Exploration of Thiol-Ene Click Polymerization in Polymer Chemistry Experiment Teaching. University Chemistry, 2025, 40(4): 87-93. doi: 10.12461/PKU.DXHX202405143

    19. [19]

      Wenliang Wang Weina Wang Sufan Wang Tian Sheng Tao Zhou Nan Wei . “Schrödinger Equation – Approximate Models – Core Concepts – Simple Applications”: Constructing a Logical Framework and Knowledge Graph of Atom and Molecule Structures. University Chemistry, 2024, 39(8): 338-343. doi: 10.3866/PKU.DXHX202312084

    20. [20]

      Yaping Li Sai An Aiqing Cao Shilong Li Ming Lei . The Application of Molecular Simulation Software in Structural Chemistry Education: First-Principles Calculation of NiFe Layered Double Hydroxide. University Chemistry, 2025, 40(3): 160-170. doi: 10.12461/PKU.DXHX202405185

Metrics
  • PDF Downloads(0)
  • Abstract views(1482)
  • HTML views(291)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return