Citation: Li Xiulin, Wang Yang, Zhai Jin. A Bio-inspired Nanochannel with Au Nanoparticles[J]. Acta Chimica Sinica, ;2016, 74(7): 597-602. doi: 10.6023/A16020098 shu

A Bio-inspired Nanochannel with Au Nanoparticles

  • Corresponding author: Zhai Jin, zhaijin@buaa.edu.cn
  • Received Date: 24 February 2016

    Fund Project: the National Natural Science Foundation of China 21271016

Figures(9)

  • Ion channels that exist in the living systems play important roles in maintaining normal physiological processes, and they have attracted great attentions of scientists because of their unique property in many biological activities. Learning from nature become an important source of new materials development. Inspired by natural biological ion channels, artificial polyethylene terephthalate (PET) nanochannel was built by track-etched method and served as one kind of the biomimetic ion channels in this paper. By introducing the idea of asymmetric modification in the PET cylindrical nanochannels, we designed and fabricated an artificial nanochannel system with high and controllable rectification, which ion transport properties can be regulated by Au nanoparticles. PET cylindrical nanochannels are modified with 2-undecyl-1-disulfide ureidoethyl quaternary imidazolinium salt (SUDEI) by electrostatic adsorption, resulting in positively charged on one side of PET cylindrical nanochannels. Since the other side of nanochannels are negatively charged, this membrane exhibits rectified properties with asymmetric charge distribution and geometric structure. The movement of cation presents a priority direction, which is from SUDEI side to the other side, and the opposite direction is suppressed. The ion transportation properties of the nanochannels can be investigated by measuring the current-voltage characteristics, and the diode-like behavior is quantified by the current rectification ratios. By introducing the SUDEI, PET nanochannels have a non-linear ion transport properties, showing better gating performance. In addition, the rectification ratios of this system can be regulated by SUDEI modification time and Au nanoparticles. SUDEI contains active sulfur element, resulting in Au nanoparticles stably bounding to SUDEI with Au—S bond. Therefore, the addition of Au nanoparticles can further increase the nanogating ratio because it can reduce the effective diameter of the cylindrical nanochannels, making the system more asymmetrical. And the ion transport in this system exhibits excellent stability. This system provides a new design idea for further research on more complicated functionalization and smart nanochannel systems.
  • 加载中
    1. [1]

      Rothman, J. E.; Lenard, J. Science 1977, 195, 743.  doi: 10.1126/science.402030

    2. [2]

      Hou, X.; Guo, W.; Jiang, L. Chem. Soc. Rev. 2011, 40, 2385.  doi: 10.1039/c0cs00053a

    3. [3]

      Tang, C.; Wang, L.; Yun, Y.; Zhang, C.; Liu, B. Acta Chim. Sinica 2011, 69, 343 (in Chinese).
       

    4. [4]

      Zhang, L.-X.; Cai, S.-L.; Zheng, Y.-B.; Cao, X.-H.; Li, Y.-Q. Adv. Funct. Mater. 2011, 21, 2103.  doi: 10.1002/adfm.v21.11

    5. [5]

      Meer, G.; Voelker, D. R.; Feigenson, G. W. Nat. Rev. Mol. Cell Bio. 2008, 9, 112.  doi: 10.1038/nrm2330

    6. [6]

      Gouaux, E.; MacKinnon, R. Science 2005, 310, 1461.  doi: 10.1126/science.1113666

    7. [7]

      Eisenman, G.; Horn, R. J. Membrane Biol. 1983, 76, 197.  doi: 10.1007/BF01870364

    8. [8]

      Feng, L.; Li, S. H.; Li, Y. S.; Li, H. J.; Zhang, L. J.; Zhai, J.; Song, Y. L.; Liu, B. Q.; Jiang, L.; Zhu, D. B. Adv. Mater 2002, 14, 1857.  doi: 10.1002/adma.200290020

    9. [9]

      Hou, X.; Dong, H.; Zhu, D. B.; Jiang, L. Small 2010, 6, 361.  doi: 10.1002/smll.v6:3

    10. [10]

      Che, Y. P.; Zhai, J. Sci. Sin. Chim. 2015, 45, 262 (in Chinese).  doi: 10.1360/N032014-00258

    11. [11]

      Nasir, S.; Ali, M.; Ensinger, W. Nanotechnology 2012, 23, 225502.  doi: 10.1088/0957-4484/23/22/225502

    12. [12]

      Yameen, B.; Ali, M.; Neumann, R.; Ensinger, W.; Knoll, W.; Azzaroni, O. Small 2009, 5, 1287.  doi: 10.1002/smll.v5:11

    13. [13]

      Alcaraz, A.; Ramirez, P.; Garcia-Gimenez, E.; López, M. L.; Andrio, A.; Aguilella, V. M. J. Phys. Chem. B 2006, 110, 21205.  doi: 10.1021/jp063204w

    14. [14]

      Yameen, B.; Ali, M.; Neumann, R.; Ensinger, W.; Knoll, W.; Azzaroni, O. Nano Lett. 2009, 9, 2788.  doi: 10.1021/nl901403u

    15. [15]

      Ali, M.; Ramirez, P.; Mafe, S.; Neumann, R.; Ensinger, W. ACS Nano 2009, 3, 603.  doi: 10.1021/nn900039f

    16. [16]

      Zhang, M. H.; Hou, X.; Wang, J.; Tian, Y.; Xia, F.; Zhai, J.; Jiang, L. Adv. Mater. 2012, 24, 2424.  doi: 10.1002/adma.201104536

    17. [17]

      Ali, M.; Nasir, S.; Ramirez, P.; Ahmed, I.; Nguyen, Q. H.; Fruk, L.; Mafe, S.; Ensinger W. Adv. Funct. Mater. 2012, 22, 390.  doi: 10.1002/adfm.201102146

    18. [18]

      Zhang, Q.; Liu, Z.; Hou, X.; Fan, X.; Zhai, J.; Jiang, L. Chem. Commun. 2012, 48, 5901.  doi: 10.1039/c2cc32451b

    19. [19]

      Meng, Z. Y.; Jiang, C.; Li, X.; Zhai, J. ACS Appl. Mater. Interfaces 2014, 6, 3794.  doi: 10.1021/am5002822

    20. [20]

      Hou, X.; Guo, W.; Xia, F.; Nie, F. Q.; Dong, H.; Tian, Y.; Wen, L.; Wang, L.; Cao, L.; Yang, Y.; Xue, J.; Song, Y.; Wang, Y.; Liu, D.; Jiang, L. J. Am. Chem. Soc. 2009, 131, 7800.  doi: 10.1021/ja901574c

    21. [21]

      Han, C.; Su, H.; Sun, Z.; Wen, L.; Tian, D.; Xu, K.; Hu, J.; Wang, A.; Li, H.; Jiang, L. Chem. Eur. J. 2013, 19, 9388.  doi: 10.1002/chem.v19.28

    22. [22]

      Xu, Y.; Sui, X.; Guan, S.; Zhai, J.; Gao, L. Adv. Mater. 2015, 27, 1851.  doi: 10.1002/adma.v27.11

    23. [23]

      Xu, Y.; Zhang, M.; Tian, T.; Shang, Y.; Meng, Z.; Jiang, J.; Zhai, J.; Wang, Y. NPG Asia Mater. 2015, 7, 1.

    24. [24]

      Guo, W.; Jiang, L. Sci. Sin. Chim. 2011, 41, 1257 (in Chinese).郭维, 江雷, 中国科学:化学, 2011, 41, 1257.  doi: 10.1360/032011-186

    25. [25]

      Siwy, Z. S. Adv. Funct. Mater. 2006, 16, 735.  doi: 10.1002/(ISSN)1616-3028

    26. [26]

      Gao, L.; Li, P.; Zhang, Y.; Xiao, K.; Ma, J.; Xie, G.; Hou, G.; Zhang, Z.; Wen, L.; Jiang, L. Small 2014, 11, 543.

    27. [27]

      Gao, J.; Guo, W.; Feng, D.; Wang, H.; Zhao, D.; Jiang, L. J. Am. Chem. Soc. 2014, 136, 12265.  doi: 10.1021/ja503692z

    28. [28]

      Hou, X.; Liu, Y. J.; Dong, H.; Yang, F.; Li, L.; Jiang, L. Adv. Mater. 2010, 22, 2440.  doi: 10.1002/adma.v22:22

    29. [29]

      Hou, X.; Dong, H.; Zhu, D. B.; Jiang, L. Small 2010, 6, 361.  doi: 10.1002/smll.v6:3

    30. [30]

      Chakarvarti, S. K. Radiat. Meas. 2009, 44, 1085.  doi: 10.1016/j.radmeas.2009.10.028

    31. [31]

      Apel, P. Radiat. Meas. 2001, 34, 559.  doi: 10.1016/S1350-4487(01)00228-1

    32. [32]

      Siwy, Z.; Heins, E.; Harrell, C. C.; Kohli, P.; Martin, C. R. J. Am. Chem. Soc. 2004, 126, 10850.  doi: 10.1021/ja047675c

    33. [33]

      Tahir, M. N.; Ali, M.; Andre, R.; Müller, W. E. G.; Schröder, H.-C.; Tremel, W.; Ensinger, W. Chem. Commun. (Camb). 2013, 49, 2210.  doi: 10.1039/c3cc38605h

    34. [34]

      Kalman, E. B.; Vlassiouk, I.; Siwy, Z. S. Adv. Mater. 2008, 20, 293.  doi: 10.1002/(ISSN)1521-4095

  • 加载中
    1. [1]

      Hongpeng HeMengmeng ZhangMengjiao HaoWei DuHaibing Xia . Synthesis of Different Aspect-Ratios of Fixed Width Gold Nanorods. Acta Physico-Chimica Sinica, 2024, 40(5): 2304043-0. doi: 10.3866/PKU.WHXB202304043

    2. [2]

      Jun HuangPengfei NieYongchao LuJiayang LiYiwen WangJianyun Liu . 丝光沸石负载自支撑氮掺杂多孔碳纳米纤维电容器及高效选择性去除硬度离子. Acta Physico-Chimica Sinica, 2025, 41(7): 100066-0. doi: 10.1016/j.actphy.2025.100066

    3. [3]

      Yang XiaKangyan ZhangHeng YangLijuan ShiQun Yi . Improving Photocatalytic H2O2 Production over iCOF/Bi2O3 S-Scheme Heterojunction in Pure Water via Dual Channel Pathways. Acta Physico-Chimica Sinica, 2024, 40(11): 2407012-0. doi: 10.3866/PKU.WHXB202407012

    4. [4]

      Ke QIAOYanlin LIShengli HUANGGuoyu YANG . Advancements in asymmetric catalysis employing chiral iridium (ruthenium) complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2091-2104. doi: 10.11862/CJIC.20240265

    5. [5]

      Qianwen HanTenglong ZhuQiuqiu LüMahong YuQin Zhong . Performance and Electrochemical Asymmetry Optimization of Hydrogen Electrode Supported Reversible Solid Oxide Cell. Acta Physico-Chimica Sinica, 2025, 41(1): 100005-0. doi: 10.3866/PKU.WHXB202309037

    6. [6]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    7. [7]

      Feifei YangWei ZhouChaoran YangTianyu ZhangYanqiang Huang . Enhanced Methanol Selectivity in CO2 Hydrogenation by Decoration of K on MoS2 Catalyst. Acta Physico-Chimica Sinica, 2024, 40(7): 2308017-0. doi: 10.3866/PKU.WHXB202308017

    8. [8]

      Zhuo WANGXiaotong LIZhipeng HUJunqiao PAN . Three-dimensional porous carbon decorated with nano bismuth particles: Preparation and sodium storage properties. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 267-274. doi: 10.11862/CJIC.20240223

    9. [9]

      Shuhong XiangLv YangYingsheng XuGuoxin CaoHongjian Zhou . Selective electrosorption of Cs(Ⅰ) from high-salinity radioactive wastewater using CNT-interspersed potassium zinc ferrocyanide electrodes. Acta Physico-Chimica Sinica, 2025, 41(9): 100097-0. doi: 10.1016/j.actphy.2025.100097

    10. [10]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    11. [11]

      Xiufang Wang Donglin Zhao Kehua Zhang Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025

    12. [12]

      Xiaotian ZHUFangding HUANGWenchang ZHUJianqing ZHAO . Layered oxide cathode for sodium-ion batteries: Surface and interface modification and suppressed gas generation effect. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 254-266. doi: 10.11862/CJIC.20240260

    13. [13]

      Yameen AhmedXiangxiang FengYuanji GaoYang DingCaoyu LongMustafa HaiderHengyue LiZhuan LiShicheng HuangMakhsud I. SaidaminovJunliang Yang . Interface Modification by Ionic Liquid for Efficient and Stable FAPbI3 Perovskite Solar Cells. Acta Physico-Chimica Sinica, 2024, 40(6): 2303057-0. doi: 10.3866/PKU.WHXB202303057

    14. [14]

      Xuan Zhou Yi Fan Zhuoqi Jiang Zhipeng Li Guowen Yuan Laiying Zhang Xu Hou . Liquid Gating Mechanism and Basic Properties Characterization: a New Experimental Design for Interface and Surface Properties in the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 113-120. doi: 10.12461/PKU.DXHX202407111

    15. [15]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

    16. [16]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    17. [17]

      Zhuoya WANGLe HEZhiquan LINYingxi WANGLing LI . Multifunctional nanozyme Prussian blue modified copper peroxide: Synthesis and photothermal enhanced catalytic therapy of self-provided hydrogen peroxide. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2445-2454. doi: 10.11862/CJIC.20240194

    18. [18]

      Wei SunYongjing WangKun XiangSaishuai BaiHaitao WangJing ZouArramelJizhou Jiang . CoP Decorated on Ti3C2Tx MXene Nanocomposites as Robust Electrocatalyst for Hydrogen Evolution Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308015-0. doi: 10.3866/PKU.WHXB202308015

    19. [19]

      Yi Fan Zhuoqi Jiang Zhipeng Li Xuan Zhou Jingan Lin Laiying Zhang Xu Hou . 偶极诱导液体门控可视化物质检测——化学“101计划”表界面性质应用实验新设计. University Chemistry, 2025, 40(8): 265-271. doi: 10.12461/PKU.DXHX202410061

    20. [20]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

Metrics
  • PDF Downloads(0)
  • Abstract views(1023)
  • HTML views(192)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return