Citation: Zhang Shaofei, Yang Jiandong, Liu Mingzhu, Lü Shaoyu, Gao Chunmei, Wu Can, Zhu Zhaoyan. Synthesis of Peptide Dendrimers and Their Application in the Drug Delivery System[J]. Acta Chimica Sinica, ;2016, 74(5): 401-409. doi: 10.6023/A16020096 shu

Synthesis of Peptide Dendrimers and Their Application in the Drug Delivery System

  • Corresponding author: Liu Mingzhu, 
  • Received Date: 22 February 2016

    Fund Project: the National Natural Science Foundation of China 51541304the National Natural Science Foundation of China 51273086Key Research Project of Longnan Teacher's College 2014LSZK01004Special Doctorial Program Fund from the Ministry of Education of China 20130211110017

Figures(12)

  • Dendrimers are a novel polymer material, which have received more and more attention due to the functional groups on their surface, hydrophobic cavity and adjustable sizes. Thus, dendrimers have been widely used in many fields. Peptide dendrimer is a sort of dendritic polymer, which contains peptide bonds in the structure. Owing to the globular structure similar to the protein, excellent water solubility, biocompatibility, biodegradability and low toxicity, peptide dendrimer could be used as drug delivery carrier. In addition, hydrophobic cavity can be used to solubilize hydrophobic drugs, in which the drugs can be released slowly. The present review highlights the current status of synthesis of peptide dendrimers, and it also summarizes and forecasts the interaction mechanism between drug molecules and peptide dendrimers, and the application of peptide dendrimers in drug delivery system.
  • 加载中
    1. [1]

      Tomalia, D.; Baker, H.; Dewald, J.; Hall, M.; Kallos, G.; Martin, S.; Roeck, J.; Ryder, J.; Smith, P. Polym. J. 1985, 17, 117.  doi: 10.1295/polymj.17.117

    2. [2]

      Newkome, G. R.; Yao, Z.; Baker, G. R.; Gupta, V. K. J. Org. Chem. 1985, 50, 2003.  doi: 10.1021/jo00211a052

    3. [3]

      Tian, W.; Ma, Y. Chem. Soc. Rev. 2013, 42, 707.

    4. [4]

      Nanjwade, B. K.; Bechra, H. M.; Derkar, G. K.; Manvi, F. V.; Nanjwade, V. K. Eur. J. Pharm. Sci. 2009, 38, 189.

    5. [5]

      Surendra, T.; Malay, K. D. J. Appl. Pharm. Sci. 2013, 3, 143.

    6. [6]

      Klajnert, B.; Bryszewskar, M. Acta Biochim. Pol. 2001, 48, 203.

    7. [7]

      Prashant, K.; Keerti, J.; Narendra, K. J. Prog. Polym. Sci. 2014, 39, 276.

    8. [8]

      Li, J.; Zeng, Y.; Zhang, X.; Yu, T.; Chen, J.; Li, Y. Acta Chim. Sinica 2014, 72, 1158.
       

    9. [9]

      Li, J.; Zeng, Y.; Zhang, X.; Yu, T.; Chen, J.; Li, Y. Acta Chim. Sinica 2015, 73, 827.
       

    10. [10]

      Elizabeth, R.; Gillies, J.; Fréchet, M. J. Drug Discov. Today 2005, 10, 38.

    11. [11]

      Marie, V.; Walter; Michael, M. Chem. Soc. Rev. 2012, 41, 4593.  doi: 10.1039/c2cs35062a

    12. [12]

      Elham, A.; Sedigheh, F. A.; Abolfazl, A.; Morteza, M.; Hamid, T. N.; Sang, W. J.; Younes, H.; Kazem, N.-K.; Roghiyeh, P.-A. Nanoscale Res. Lett. 2014, 9, 248.  doi: 10.1186/1556-276X-9-248

    13. [13]

      Laia, C.; Glòria, S.; Miquel, P.; Ernest, G.; Miriam, R.; Fernando, A. Chem. Rev. 2005, 105, 1670.

    14. [14]

      She, W. C.; Xu, X. H.; Wang, G.; Luo, K.; Gu, Z. W. Mater. China 2012, 31, 21.

    15. [15]

      Gu, Z. W.; Luo, K.; She, W. C.; Wu, Y.; He, B. Scientia Sinica Chimica 2010, 40, 210.

    16. [16]

      Xu, X.; Yuan, H.; Chang, J.; He, B.; Gu, Z. Angew. Chem. Int. Ed. 2012, 124, 3185.

    17. [17]

      Wang, F.; Xu, L.; Chu, G.; Shi, J.; Guo, Q. Chin. J. Org. Chem. 2016, 36, 218.  doi: 10.6023/cjoc201505014

    18. [18]

      Merrifield, R. B. J. Am. Chem. Soc. 1964, 3, 1385.

    19. [19]

      Daniel, K. S.; Sahar, M.; Ulrik, B. Tetrahedron Lett. 2014, 55, 3942.  doi: 10.1016/j.tetlet.2014.04.127

    20. [20]

      Laia, C.; Glòria, S.; Beatriz, M.; Ricardo, P. T.; Miriam, R.; Miquel, P.; Fernando, A.; Ernest, G. J. Am. Chem. Soc. 2002, 124, 8878.

    21. [21]

      Kitamatsu, M.; Kitabatake, M.; Noutoshi, Y.; Ohtsuki, T. Biopolymers 2013, 100, 65.

    22. [22]

      Lin, X. F.; Wang, Y. G. J. Org. Chem. 2005, 25, 1157.

    23. [23]

      Denkewalter, R. G.; Kole, J.; Lukasavage, W. J. US 4289872, 1981 [Chem. Abstr. 1981, 102, 79324].

    24. [24]

      Feng, Y.; He, Y. M.; Zhao, L. W.; Huang, Y. Y.; Fan, Q. H. Org. Lett. 2007, 9, 2261.  doi: 10.1021/ol0705393

    25. [25]

      Joon, S. C.; Dong, K. J.; Chang, H. K.; Kwan, K.; Jong, S. P. J. Am. Chem. Soc. 2000, 122, 475.

    26. [26]

      Hu, J.; He, J.; Zhang, M.; Ni, P. Acta Polymerica Sinica 2013, (3), 300.

    27. [27]

      John, E. M.; Adam, D. M. Chem. Soc. Rev. 2007, 36, 1250.

    28. [28]

      Mehmet, A. T.; Baris, K.; Yusuf, Y. Prog. Polym. Sci. 2016, 52, 19.  doi: 10.1016/j.progpolymsci.2015.09.003

    29. [29]

      Dirk, T. S. R.; Wilma, E. G.; Remco, M.; Arwin, J. B.; Hans, J. F. J.; Roland, J. P.; Rob, M. J. L. Chem. Commun. 2005, 36, 4582.

    30. [30]

      Yim, C. B.; Boerman, O. C.; Visser, M.; Jong, M.; Dechesne, A. C.; Rijkers, D. T. S.; Liskamp, R. M. J. Bioconjugate Chem. 2009, 20, 1323.  doi: 10.1021/bc900052n

    31. [31]

      Pu, Y. J.; Yuan, H.; Yang, M.; He, B.; Gu, Z. W. Chin. Chem. Lett. 2013, 24, 917.  doi: 10.1016/j.cclet.2013.06.015

    32. [32]

      Li, N.; Li, N.; Yi, Q.; Luo, K.; Guo, C.; Pan, D.; Gu, Z. Biomaterials 2014, 35, 9533.

    33. [33]

      Pan, D.; She, W.; Guo, C.; Luo, K.; Yi, Q.; Gu, Z. Biomaterials 2014, 35, 10081.

    34. [34]

      Zhang, C.; Pan, D.; Luo, K.; Li, N.; Guo, C.; Zheng, X.; Gu, Z. 2014, 5, 5228.

    35. [35]

      Reddy, N.; Reddy, R.; Jiang, Q. Trends Biotechnol. 2015, 33, 362.  doi: 10.1016/j.tibtech.2015.03.008

    36. [36]

      Domeradzka, N.; Werten, M.; Wolf, F.; Vries, R. Curr. Opin. Biotechnol. 2016, 39, 61.

    37. [37]

      Li, C. Y.; Wang, H. J.; Cao, J. M.; Zhang, J.; Yu, X. Q. Eur. J. Med. Chem. 2014, 87, 414.

    38. [38]

      Buhleier, E.; Wehner, W.; Vögtle, F. Synthesis 1978, 2, 155.

    39. [39]

      Lin, Y.; Weng, L.; Qi, Q. The Scientific World J. 2015, 2015, 5.

    40. [40]

      Hawker, C. J.; Frechet, J. M. J. Am. Chem. Soc. 1990, 112, 7638.  doi: 10.1021/ja00177a027

    41. [41]

      Scott, M. G.; Jean, M. J. F. Chem. Rev. 2001, 101, 3819.  doi: 10.1021/cr990116h

    42. [42]

      Zhu, R.; Jiang, W.; Pu, Y.; Luo, K.; Wu, Y.; He, B.; Gu, Z. J. Mater. Chem. 2011, 21, 5466.

    43. [43]

      Pierre, M.; Gilles, Q.; Ling, P. Tetrahedron Lett. 2015, 56, 4043.  doi: 10.1016/j.tetlet.2015.05.036

    44. [44]

      Olga, F.; Alexander, G.; Vladimir, R. J. Am. Chem. Soc. 2003, 125, 4885.

    45. [45]

      Dykes, M. G.; Brierley, J. L.; Smith, K. D.; McGrail, P. T.; Seeley, G. J. Chem. Eur. J, 2001, 7, 4731.

    46. [46]

      Al-Jamal, K. T.; Al-Jamal, W.; Wang, J. T.; Rubio, N.; Buddle, J.; Gathercole, D.; Zloh, M.; Kostarelos, K. ACS Nano 2013, 7, 1905.  doi: 10.1021/nn305860k

    47. [47]

      Li, Y.; Han, S.; Toshiyuki, U. Sen-i Gakkaishi 2015, 71, 13.

    48. [48]

      Yuan, H.; Luo, K.; Lai, Y.; Pu, Y.; He, B.; Wang, G.; Wu, Y.; Gu, Z. Mol. Pharm. 2010, 7, 957.

    49. [49]

      Pu, Y.; Chang, S.; Yuan, H.; Wang, G.; He, B.; Gu, Z. Biomaterials 2013, 34, 3659.

    50. [50]

      Glòria, S.; Laia, C.; Ernest, G. M. R.; Fernando, A. Pept. Sci. 2004, 76, 284.

    51. [51]

      Torres, Á.; Albericio, F.; Royo, M. Eur. J. Org. Chem. 2013, 36, 8280.

    52. [52]

      Emanuele, A.; Attwood, D. Adv. Drug Delivery Rev. 2005, 57, 2147.  doi: 10.1016/j.addr.2005.09.012

    53. [53]

      He, X.; Alves, S. C.; Oliveira, N.; Rodrigues, J.; Zhu, J.; BÁnyai, I.; TomÁs, H.; Shi, X. Colloids Surf. B: Biointerfaces 2015, 125, 83.

    54. [54]

      Gillies, E.; Fréchet, J. Drug Discov. Today 2005, 10, 35.  doi: 10.1016/S1359-6446(04)03276-3

    55. [55]

      Boas, U.; Karlsson, A.; Waal, B. F. M.; Meijer, E. W. J. Org. Chem. 2001, 66, 2136.  doi: 10.1021/jo001573x

    56. [56]

      Aulenta, F.; Hayes, W. S. Eur. Polym. J. 2003, 39, 1741.  doi: 10.1016/S0014-3057(03)00100-9

    57. [57]

      Tyssen, D.; Henderson, S. A.; Johnson, A. PLoS One 2010, 5, 5.

    58. [58]

      Fox, M. E.; Guillaudeu, S.; Fréchet, J. M. J.; Jerger, K.; Macaraeg, N.; Szoka, F. C. Mol. Pharm. 2009, 6, 1563.

    59. [59]

      Craik, D. J.; Fairlie, D.; Liras, P. S.; Price, D. Chem. Biol. Drug Des. 2013, 81, 136.  doi: 10.1111/cbdd.2012.81.issue-1

    60. [60]

      Zhang, X.; Zhang, Z.; Xu, X.; Li, Y.; Li, Y.; Jian, Y.; Gu, Z. Angew. Chem. Int. Ed. 2015, 54, 4289.  doi: 10.1002/anie.201500683

    61. [61]

      Zhang, C.; Pan, D.; Luo, K.; She, W.; Guo, C.; Yang, Y.; Gu, Z. Adv. Healthcare Mater. 2014, 3, 1299.  doi: 10.1002/adhm.v3.8

    62. [62]

      Kaminskas, L. M.; Kelly, B. D.; McLeod, V. M.; Sberna, G.; Owen, D. J.; Boyd, B. J.; Porter, C. J. H. J. Control. Release 2011, 152, 338.

    63. [63]

      Kaminskas, L. M.; Kelly, B. D.; McLeod, V. M.; Boyd, B. J.; Krippne, G. Y.; Williams, E. D.; Porter, C. J. H. Mol. Pharmaceutics 2009, 6, 1190.  doi: 10.1021/mp900049a

    64. [64]

      Kaminskas, L. M.; Kelly, B. D.; McLeod, V. M.; Sberna, G.; Boyd, B. J.; Owen, D. J.; Porter, C. J. H. Mol. Pharmaceutics 2011, 8, 338.  doi: 10.1021/mp1001872

    65. [65]

      Jain, K.; Gupta, U.; Jain, N. K. Eur. J. Pharm. Biopharm. 2014, 87, 503.

    66. [66]

      Bhadra, D.; Bhadra, S.; Jain, N. K. Pharm. Res. 2006, 23, 628.

    67. [67]

      Agrawal, P.; Gupta, U.; Jain, N. K. Biomaterials 2007, 28, 3349.  doi: 10.1016/j.biomaterials.2007.04.004

  • 加载中
    1. [1]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    2. [2]

      Haoxiang Zhang Zhihan Zhao Yongchen Jin Zhiqiang Niu Jinlei Tian . Synthesis of an Efficient Absorbent Gel: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(11): 251-258. doi: 10.12461/PKU.DXHX202401084

    3. [3]

      Wenjian Zhang Mengxin Fan Wenwen Fei Wei Bai . Cultivation of Critical Thinking Ability: Based on RAFT Polymerization-Induced Self-Assembly. University Chemistry, 2025, 40(4): 108-112. doi: 10.12461/PKU.DXHX202406099

    4. [4]

      Rui Xu Wei Li Tianyi Li . Exploration of Teaching Reform in the Course of “Principles of Chemical Engineering” in the Polymer Materials and Engineering Major. University Chemistry, 2025, 40(4): 54-58. doi: 10.12461/PKU.DXHX202404081

    5. [5]

      Wen-Bing Hu . Systematic Introduction of Polymer Chain Structures. University Chemistry, 2025, 40(4): 15-19. doi: 10.3866/PKU.DXHX202401014

    6. [6]

      Yan Wang Haolong Li Chengji Zhao Zheng Chen Quan Lin Yupeng Guo Jianxin Mu Kun Liu Zhong-Yuan Lu Junqi Sun . Construction Practice of the National First-Class Undergraduate Major in Polymer Materials and Engineering at Jilin University. University Chemistry, 2025, 40(4): 46-53. doi: 10.12461/PKU.DXHX202403083

    7. [7]

      Xuejun Lai Anqiang Zhang Tao Wang Shuizhu Wu Guangzhao Zhang . Construction and Practice of the First-Class Undergraduate Education Program for Polymer Materials and Engineering Major Students with “Solid Foundation, Strong Capability and High Potential”. University Chemistry, 2025, 40(4): 119-125. doi: 10.12461/PKU.DXHX202407012

    8. [8]

      Kai Yang Gehua Bi Yong Zhang Delin Jin Ziwei Xu Qian Wang Lingbao Xing . Comprehensive Polymer Chemistry Experiment Design: Preparation and Characterization of Rigid Polyurethane Foam Materials. University Chemistry, 2024, 39(4): 206-212. doi: 10.3866/PKU.DXHX202308045

    9. [9]

      Laiying Zhang Yinghuan Wu Yazi Yu Yecheng Xu Haojie Zhang Weitai Wu . Innovation and Practice of Polymer Chemistry Experiment Teaching for Non-Polymer Major Students of Chemistry: Taking the Synthesis, Solution Property, Optical Performance and Application of Thermo-Sensitive Polymers as an Example. University Chemistry, 2024, 39(4): 213-220. doi: 10.3866/PKU.DXHX202310126

    10. [10]

      Zhenhua Wang Haoyang Feng Xiaoyang Shao Wenru Fan . Vitamins in Solid Propellants: Controlled Synthesis of Neutral Macromolecular Bonding Agents. University Chemistry, 2025, 40(4): 1-9. doi: 10.3866/PKU.DXHX202401007

    11. [11]

      Yuhui Yang Jintian Luo Biao Zuo . A Teaching Approach to Polymer Surface and Interface in Undergraduate Polymer Physics Courses. University Chemistry, 2025, 40(4): 126-130. doi: 10.12461/PKU.DXHX202408056

    12. [12]

      Bei Liu Heng Li Mei Yang Yijiang Liu . Teaching Reform and Exploration in Polymer Chemistry with an “Experiment-Intensified” Approach for Masters in Materials and Chemical Engineering. University Chemistry, 2025, 40(4): 10-14. doi: 10.3866/PKU.DXHX202401010

    13. [13]

      Jingwen Wang Minghao Wu Xing Zuo Yaofeng Yuan Yahao Wang Xiaoshun Zhou Jianfeng Yan . Advances in the Application of Electrochemical Regulation in Investigating the Electron Transport Properties of Single-Molecule Junctions. University Chemistry, 2025, 40(3): 291-301. doi: 10.12461/PKU.DXHX202406023

    14. [14]

      Wenbing Hu Jin Zhu . Flipped Classroom Approach in Teaching Professional English Reading and Writing to Polymer Graduates. University Chemistry, 2024, 39(6): 128-131. doi: 10.3866/PKU.DXHX202310015

    15. [15]

      Pingsheng He Haiyang Yang Pingping Zhu . Philosophical Reflections in Polymer Physics Course: Emphasizing Reverse Thinking. University Chemistry, 2025, 40(4): 27-32. doi: 10.3866/PKU.DXHX202403029

    16. [16]

      Chunyang Bao Ruoxuan Miao Yuhan Ding Qingfu Ban Yusheng Qin Jie Liu Zhirong Xin . The Comprehensive Experiment Design of Preparation of Depolymerizable Thermosetting Polymers. University Chemistry, 2025, 40(4): 59-65. doi: 10.12461/PKU.DXHX202405087

    17. [17]

      Hujun Qian Rui Shi Guanglu Wu Xuanbo Zhu . A Preliminary Study on the Development of a Virtual Simulation Platform for Polymer Physics Teaching and Its Teaching Practice. University Chemistry, 2025, 40(4): 147-153. doi: 10.12461/PKU.DXHX202409009

    18. [18]

      Xiaoxuan Yu Wukun Liu . Practice of Ideological and Political Education in Medicinal Chemistry for Pharmacy Administration Major: A Case Study on the Discovery of Cisplatin’s Anticancer Function. University Chemistry, 2025, 40(4): 408-414. doi: 10.12461/PKU.DXHX202405200

    19. [19]

      Pingping Zhu Qiang Zhou Yu Huang Haiyang Yang Pingsheng He Shiyan Xiao . Design and Practice of Ideological and Political Cases in the Course of Polymer Physics Experiments: Molecular Weight Determination of Polymers by Dilute Solution Viscosity Method as an Example. University Chemistry, 2025, 40(4): 94-99. doi: 10.12461/PKU.DXHX202405170

    20. [20]

      Yi Li . Exploring the New Teaching Mode of the General Education of Polymer Science by Integrating Aesthetics, Ideological and Political Ideas: Teaching Practice of the General Education Course “Appreciation of Aesthetics in the Polymer World”. University Chemistry, 2025, 40(4): 20-26. doi: 10.12461/PKU.DXHX202402031

Metrics
  • PDF Downloads(0)
  • Abstract views(2772)
  • HTML views(443)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return