Citation:
Wang Xin, Tan Lili, Yang Yingwei. Controlled Drug Release Systems Based on Mesoporous Silica Capped by Gold Nanoparticles[J]. Acta Chimica Sinica,
;2016, 74(4): 303-311.
doi:
10.6023/A16010003
-
Nanotechnology, with many advantages to engineer new organized nanomaterials, has attracted much attention in recent decades. Smart drug delivery and controlled release system can enhance the effectiveness of chemotherapy at diseased body parts and reduce its side effects of drugs on normal tissues and cells. With high rigidity and surface area, tailored mesoporous structure, and good biocompatibility, mesoporous silica nanoparticles (MSNs) have been proven to be excellent nanocarriers and delivery vehicle. In the mean time, gold nanoparticles (AuNPs) possess a number of advantages of gold-based nanomaterials that make them appealing for controlled drug delivery applications. The novel nanovalve systems based on MSNs (acting as nanocontainers or reservoirs)-AuNPs (acting as gates or switches), combining the good characteristics of the two kinds of nanoparticles in one system, has captured research interests in the fields of chemistry, biomaterials, nanoscience and clinical medicine. This review article introduces important research progress on the single and multiple functions of controllable drug release systems based on MSN-AuNPs hybrids, which will be illustrated from stimulus and applications points of view. In the section of single responsive systems, we introduce the adaptability and responsiveness of the hybrid systems to external environmental stimuli, such as light (UV and NIR), pH, competitive binding, aptamers, and biological signals. In the section of multiple responsive systems, we focus on the design principle and release effect of dual responsive systems and reversible systems. In addition, the challenges and development direction of this type of nanovalve-based drug delivery systems are systematically discussed. Although the nanogate systems based on MSNs capped by AuNPs, employing many different functions, have made tremendous progress in recent years, collaborations between chemists, material scientists, engineers and medical doctors are in urgent need to further advance this research field and realize their final practical applications in the near future.
-
-
-
[1]
[1] Bangham, A. D.; Standish, M. M.; Watkins, J. C. Mol. Biol. 1965, 13, 238.
-
[2]
[2] Langer, R.; Brem, H.; Falterman, K.; Klein, M.; Folkman, J. Science 1976, 193, 70.
-
[3]
[3] Zhao, L.; Ding, J.; Xiao, C.; Cheng, X.; Gai, G.; Wang, L. Acta Chim. Sinica 2015, 73, 60. (赵丽, 丁建勋, 肖春生, 陈学思, 盖广清, 王丽艳, 化学学报, 2015, 73, 60.)
-
[4]
[4] Li, J.; Shi, X. Acta Chim. Sinica 2011, 69, 2439 (李建平, 石鑫, 化学学报, 2011, 69, 2439.)
-
[5]
[5] Zhang, Y.; Yang, B.; Xu, L.; Zhang, X.; Tao, L.; Wei, Y. Acta Chim. Sinica 2013, 71, 485 (张亚玲, 杨斌, 许亮鑫, 张小勇, 陶磊, 危岩, 化学学报, 2013, 71, 485.)
-
[6]
[6] Beck, J. S.; Vartuli, J. C.; Roth, W. J.; Leonowicz, M. E.; Kresge, C. T.; Schmitt, K. D.; Chu, C. T.-W.; Olson, D. H.; Sheppard, E. W. J. Am. Chem. Soc. 1992, 114, 10834.
-
[7]
[7] Kresge, C. T.; Leonowicz, M. E.; Roth, W. J.; Vartuli, J. C.; Beck, J. S. Nature 1992, 359, 710.
-
[8]
[8] Hernandez, R.; Tseng, H.-R.; Wong, J. W.; Stoddart, J. F.; Zink, J. I. J. Am. Chem. Soc. 2004, 126, 3370.
-
[9]
[9] Yang, Y.-W. Med. Chem. Commun. 2011, 2, 1033.
-
[10]
[10] Hu, Y.; Wang, J.; Zhi, Z.; Jiang, T.; Wang, S. J. Colloid. Interface Sci. 2011, 363, 410.
-
[11]
[11] Li, Q.-L.; Sun, Y.; Sun, Y.-L.; Wen, J.; Zhou, Y.; Bing, Q.-M.; Isaacs, L. D.; Jin, Y.; Gao, H.; Yang, Y.-W. Chem. Mater. 2014, 26, 6418.
-
[12]
[12] Colilla, M.; González, B.; Vallet-Regí, M. Biomater. Sci. 2013, 1, 114.
-
[13]
[13] Sun, Y.-L.; Zhou, Y.; Li, Q.-L.; Yang, Y.-W. Chem. Commun. 2013, 49, 9033.
-
[14]
[14] Gibson, L. T. Chem. Soc. Rev. 2014, 43, 5173.
-
[15]
[15] Rimola, A.; Costa, D.; Sodupe, M.; Lambert, J.-F.; Ugliengo, P. Chem. Rev. 2013, 113, 4216.
-
[16]
[16] Zhou, Z.; Zheng, Y.; Wang, Q. Inorg. Chem. 2014, 53, 1530.
-
[17]
[17] Song, W.; Li, J.; Li, Q.; Ding, W.; Yang, X. Anal. Biochem. 2015, 471, 17.
-
[18]
[18] Zhang, Q.; Neoh, K. G.; Xu, L.; Lu, S.; Kang, E. T.; Mahendran, R.; Chiong, E. Langmuir 2014, 30, 6151.
-
[19]
[19] Lee, D. Y.; Hong, J. W.; Park, C.; Lee, H.; Lee, J. E.; Hyeon, T.; Paik, S. R. ACS Nano 2014, 8, 8887.
-
[20]
[20] Huh, S.; Chen, H.-T.; Wiench, J. W.; Pruski, M.; Lin, S.-Y. J. Am. Chem. Soc. 2004, 126, 1010.
-
[21]
[21] Crudden, C. M.; Sateesh, M.; Lewis, R. J. Am. Chem. Soc. 2005, 127, 10045.
-
[22]
[22] Yokoi, T.; Kubota, Y.; Tatsumi, T. Appl. Catal. A-Gen. 2012, 421, 14.
-
[23]
[23] Lin, Y.; Ren, J.; Qu, X. Acc. Chem. Res. 2014, 47, 1097.
-
[24]
[24] Vallet-Regi, M.; Rámila, A.; Del Real, R. P.; Pérez-Pariente, J. Chem. Mater. 2001, 13, 308.
-
[25]
[25] Zhang, Q.; Liu, F.; Nguyen, K. T.; Ma, X.; Wang, X.; Xing, B.; Zhao, Y. Adv. Funct. Mater. 2012, 22, 5144.
-
[26]
[26] Yang, Y.-W.; Sun, Y.-L.; Song, N. Acc. Chem. Res. 2014, 47, 1950.
-
[27]
[27] Song, N.; Yang, Y.-W. Chem. Soc. Rev. 2015, 44, 3474.
-
[28]
[28] Gan, Q.; Lu, X.; Dong, W.; Yuan, Y.; Qian, J.; Li, Y.; Shi, J.; Liu, C. J. Mater. Chem. 2012, 22, 15960.
-
[29]
[29] Aznar, E.; Marcos, M. D.; Martínez-Máñez, R.; Sancenón, F.; Soto. J.; Amorós, P.; Guillem, C. J. Am. Chem. Soc. 2009, 131, 6833.
-
[30]
[30] Muhammad, F.; Guo, M.; Qi, W.; Sun, F.; Wang, A.; Guo, Y.; Zhu, G. J. Am. Chem. Soc. 2011, 133, 8778.
-
[31]
[31] Schlossbauer, A.; Kecht, J.; Bein, T. Angew. Chem., Int. Ed. 2009, 48, 3092.
-
[32]
[32] You, Y.-Z.; Kalebaila, K. K.; Brock, S. L.; Oupický, D. Chem. Mater. 2008, 20, 3354.
-
[33]
[33] Wu, C.; Chen, C.; Lai, J.; Chen, J.; Mu, X.; Zheng, J.; Zhao, Y. Chem. Commun. 2008, 2662.
-
[34]
[34] Lai, J.; Mu, X.; Xu, Y.; Wu, X.; Wu, C.; Li, C.; Chen, J.; Zhao, Y. Chem. Commun. 2010, 46, 7370.
-
[35]
[35] Leung, K. C.-F.; Nguyen, T. D.; Stoddart, J. F.; Zink, J. I. Chem. Mater. 2006, 18, 5919.
-
[36]
[36] Nguyen, T. D.; Liu, Y.; Saha, S.; Leung, K. C.-F.; Stoddart, J. F.; Zink, J. I. J. Am. Chem. Soc. 2007, 129, 626.
-
[37]
[37] Xing, L.; Zheng, H.; Cao, Y.; Che, S. Adv. Mater. 2012, 24, 6433.
-
[38]
[38] Wu, X.; Wang, Z.; Zhu, D.; Zong, S.; Yang, L.; Zhong, Y.; Cui, Y. ACS Appl. Mater. Interfaces 2013, 5, 10895.
-
[39]
[39] Qian, R.; Ding, L.; Ju, H. J. Am. Chem. Soc. 2013, 135, 13282.
-
[40]
[40] Sahk, K.; Agasti, S. S.; Kim, C.; Li, X. N.; Rotello, V. M. Chem. Rev. 2012, 112, 2739.
-
[41]
[41] Dreaden, E. C.; Alkilany, A. M.; Huang, X.; Murphy, C. J.; EI-Sayed, M. A. Chem. Soc. Rev. 2012, 41, 2740.
-
[42]
[42] Chen, M.; Goodman, D. W. Chem. Soc. Rev. 2008, 37, 1860.
-
[43]
[43] Li, H. Ph. D. Dissertation, Jilin University, Changchun, 2015. (李慧, 博士论文, 吉林大学, 长春, 2015.)
-
[44]
[44] Mieszawska, A. J.; Mulder, W. J. M.; Fayad, Z. A.; Cormode, D. P. Mol. Pharm. 2013, 10, 831.
-
[45]
[45] Payne, E. K.; Shuford, K. L.; Park, S.; Schatz, G. C.; Mirkin, C. A. J. Phys. Chem. B 2006, 110, 2150.
-
[46]
[46] Hu, M.; Petrova, H.; Chen, J.; McLellan, J. M.; Siekkinen, A. R.; Marquez, M.; Li, X.; Xia, Y.; Hartland, G. V. J. Phys. Chem. B 2006, 110, 1520.
-
[47]
[47] Fleischer, M.; Zhang, D.; Braun, K.; Jäger, S.; Ehlich, R.; Häffner, M.; Stanciu, C.; Hörber, J. K. H.; Meixner, A. J.; Kern, D. P. Nanotechnology 2010, 21, 065301.
-
[48]
[48] Kneipp, J.; Kneipp, H.; Rice, W. L.; Kneipp, K. Anal. Chem. 2005, 77, 2381.
-
[49]
[49] Heo, D. N.; Yang, D. H.; Moon, H.-J.; Lee, J. B.; Bae, M. S.; Lee, S. C.; Lee, W. J.; Sun, I.-C.; Kwon, I. K. Biomaterials 2012, 33, 856.
-
[50]
[50] Xu, J. Ph. D. Dissertation, Sichuan University, Chengdu, 2007. (徐俊强, 博士论文, 四川大学, 成都, 2007.)
-
[51]
[51] Sun, Y.-L.; Yang, B.-J.; Zhang, S. X.-A.; Yang, Y.-W. Chem. Eur. J. 2012, 18, 9212.
-
[52]
[52] Brust, M.; Walker, M.; Bethell, D.; Schiffrin, D. J.; Whyman, R. J. Chem. Soc., Chem. Commun. 1994, 801.
-
[53]
[53] Turkevich, J.; Stevenson, P. C.; Hillier, J. Discuss. Faraday Soc. 1951, 11, 55.
-
[54]
[54] Frens, G. Nat. Phys. Sci. 1973, 241, 20.
-
[55]
[55] Li, H.; Chen, D.-X.; Sun, Y.-L.; Zheng, B. Y.; Tan, L.-L.; Weiss, P. S.; Yang, Y.-W. J. Am. Chem. Soc. 2013, 135, 1570.
-
[56]
[56] Raghuram, R. K.; Flavia, F.; Gennaro, D.; Ludovic, D.; Wafa, A.; Bhavik, A. P.; Gareth, W. V. C.; Ian, A. G.; Dipak, S.;. Mikhalovsky, S. V.; Cragg, P. J. Supramol. Chem. 2016, DOI: 10. 1080/10610278.2015.1111375.
-
[57]
[57] Hostetler, M. J.; Wingate, J. E.; Zhong, C.-J.; Harris, J. E.; Vachet, R. W.; Clark, M. R.; Londono, J. D.; Green, S. J.; Stokes, J. J.; Wignall, G. D.; Glish, G. L.; Porter, M. D.; Evans, N. D.; Murray, R. W. Langmuir 1998, 14, 17.
-
[58]
[58] Panda, T.; Deepa, K. J. Nanosci. Nanotech. 2011, 11, 10279.
-
[59]
[59] Ghosh, P. S.; Kim, C.-K.; Han, G.; Forbes, N. S.; Rotello, V. M. ACS Nano 2008, 2, 2213.
-
[60]
[60] Mulder, W. J. M.; Strijkers, G. J.; Van Tilborg, G. A. F.; Cormode, D. P.; Fayad, Z. A.; Nicolay, K. Acc. Chem. Res. 2009, 42, 904.
-
[61]
[61] Tang, D.; Lin, Y.; Zhou, Q.; Lin, Y.; Li, P.; Niessner, R.; Knopp, D.; Anal. Chem. 2014, 86, 11451.
-
[62]
[62] Vivero-Escoto, J. L.; Slowing, I. I.; Wu, C.-W.; Lin, S.-Y. J. Am. Chem. Soc. 2009, 131, 3462.
-
[63]
[63] Luo, G.; Chen, W.; Jia, H.; Sun, Y.; Cheng, H.; Zhuo, R.; Zhang, X. Nano. Res. 2015, 8, 1893.
-
[64]
[64] Chen, L.; Di, J.; Cao, C.; Zhao, Y.; Ma, Y.; Luo, J.; Wen, Y.; Song, W.; Song, Y.; Jiang, L. Chem. Commun. 2011, 47, 2850.
-
[65]
[65] Wen, Y; Xu, L.; Wang, W.; Wang, D.; Du, H.; Zhang, X. Nanoscale 2012, 4, 4473.
-
[66]
[66] Nadrah. P.; Planinšek, O.; Gaberšček, M. J. Mater. Sci. 2014, 49, 481.
-
[67]
[67] Ott, A.; Yu, X.; Hartmann, R.; Rejman, J.; Schütz, A.; Ochs, M.; Parak, W. J.; Carregal-Romero, S. Chem. Mater. 2015, 27, 1929.
-
[68]
[68] Li, H.; Tan, L.-L.; Jia, P.; Li, Q.-L.; Sun, Y.-L.; Zhang, J.; Ning, Y.-Q.; Yu, J.; Yang, Y.-W. Chem. Sci. 2014, 5, 2804.
-
[69]
[69] Li, Q.-L.; Xu, S.-H.; Zhou, H.; Wang, X.; Dong, B.; Gao, H.; Tang, J.; Yang, Y.-W. ACS Appl. Mater. Interfaces 2015, 7, 28656.
-
[70]
[70] Liu, R.; Zhang, Y.; Zhao, X.; Agarwal, A.; Mueller, L. J.; Feng, P. J. Am. Chem. Soc. 2010, 132, 1500.
-
[71]
[71] Zhu, C.-L.; Lu, C.-H.; Song, X.-Y.; Yang, H,-H.; Wang, X.-R. J. Am. Chem. Soc. 2011, 133, 1278.
-
[72]
[72] Chen, L.; Wen, Y.; Su, B.; Di, J.; Song, Y.; Jiang, L.; J. Mater. Chem. 2011, 21, 13811.
-
[73]
[73] Wen, Y.; Xu, L; Li, C.; Du, H.; Chen, L.; Su, B.; Zhang, Z.; Zhang, X.; Song, Y. Chem. Commun. 2012, 48, 8410.
-
[74]
[74] Zhang, R.; Li, L.; Feng, J.; Tong, L.; Wang, Q.; Tang, B. ACS Appl. Mater. Interfaces 2014, 6, 9932.
-
[75]
[75] Gui, W.; Wang, W.; Jiao, X.; Chen, L.; Wen, Y.; Zhang, X. ChemPhysChem 2015, 16, 607.
-
[1]
-
-
-
[1]
Yu Dai , Xueting Sun , Haoyu Wu , Naizhu Li , Guoe Cheng , Xiaojin Zhang , Fan Xia . Determination of the Michaelis Constant for Gold Nanozyme-Catalyzed Decomposition of Hydrogen Peroxide. University Chemistry, 2025, 40(5): 351-356. doi: 10.12461/PKU.DXHX202407052
-
[2]
Yongming Guo , Jie Li , Chaoyong Liu . Green Improvement and Educational Design in the Synthesis and Characterization of Silver Nanoparticles. University Chemistry, 2024, 39(3): 258-265. doi: 10.3866/PKU.DXHX202309057
-
[3]
Lina Liu , Xiaolan Wei , Jianqiang Hu . Exploration of Subject-Oriented Undergraduate Comprehensive Chemistry Experimental Teaching Based on the “STS Concept”: Taking the Experiment of Gold Nanoparticles as an Example. University Chemistry, 2024, 39(10): 337-343. doi: 10.12461/PKU.DXHX202405112
-
[4]
Gaopeng Liu , Lina Li , Bin Wang , Ningjie Shan , Jintao Dong , Mengxia Ji , Wenshuai Zhu , Paul K. Chu , Jiexiang Xia , Huaming Li . Construction of Bi Nanoparticles Loaded BiOCl Nanosheets Ohmic Junction for Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(7): 2306041-0. doi: 10.3866/PKU.WHXB202306041
-
[5]
Yuanpei ZHANG , Jiahong WANG , Jinming HUANG , Zhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077
-
[6]
Zehao Zhang , Zheng Wang , Haibo Li . Preparation of 2D V2O3@Pourous Carbon Nanosheets Derived from V2CFx MXene for Capacitive Desalination. Acta Physico-Chimica Sinica, 2024, 40(8): 2308020-0. doi: 10.3866/PKU.WHXB202308020
-
[7]
Jie XIE , Hongnan XU , Jianfeng LIAO , Ruoyu CHEN , Lin SUN , Zhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216
-
[8]
Huihui LIU , Baichuan ZHAO , Chuanhui WANG , Zhi WANG , Congyun ZHANG . Green synthesis of MIL-101/Au composite particles and their sensitivity to Raman detection of thiram. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2021-2030. doi: 10.11862/CJIC.20240059
-
[9]
Di ZHANG , Tianxiang XIE , Xu HE , Wanyu WEI , Qi FAN , Jie QIAO , Gang JIN , Ningbo LI . Construction and antitumor activity of pH/GSH dual-responsive magnetic nanodrug. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 786-796. doi: 10.11862/CJIC.20240329
-
[10]
Guangming YIN , Huaiyao WANG , Jianhua ZHENG , Xinyue DONG , Jian LI , Yi'nan SUN , Yiming GAO , Bingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086
-
[11]
Jian Li , Yu Zhang , Rongrong Yan , Kaiyuan Sun , Xiaoqing Liu , Zishang Liang , Yinan Jiao , Hui Bu , Xin Chen , Jinjin Zhao , Jianlin Shi . Highly Efficient, Targeted, and Traceable Perovskite Nanocrystals for Photoelectrocatalytic Oncotherapy. Acta Physico-Chimica Sinica, 2025, 41(5): 100042-0. doi: 10.1016/j.actphy.2024.100042
-
[12]
Yinyin Qian , Rui Xu . Utilizing VESTA Software in the Context of Material Chemistry: Analyzing Twin Crystal Nanostructures in Indium Antimonide. University Chemistry, 2024, 39(3): 103-107. doi: 10.3866/PKU.DXHX202307051
-
[13]
Hong RAO , Yang HU , Yicong MA , Chunxin LÜ , Wei ZHONG , Lihua DU . Synthesis and in vitro anticancer activity of phenanthroline-functionalized nitrogen heterocyclic carbene homo- and heterobimetallic silver/gold complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2429-2437. doi: 10.11862/CJIC.20240275
-
[14]
Hong LI , Xiaoying DING , Cihang LIU , Jinghan ZHANG , Yanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370
-
[15]
Ruiqin Feng , Ye Fan , Yun Fang , Yongmei Xia . Strategy for Regulating Surface Protrusion of Gold Nanoflowers and Their Surface-Enhanced Raman Scattering. Acta Physico-Chimica Sinica, 2024, 40(4): 2304020-0. doi: 10.3866/PKU.WHXB202304020
-
[16]
Hongpeng He , Mengmeng Zhang , Mengjiao Hao , Wei Du , Haibing Xia . Synthesis of Different Aspect-Ratios of Fixed Width Gold Nanorods. Acta Physico-Chimica Sinica, 2024, 40(5): 2304043-0. doi: 10.3866/PKU.WHXB202304043
-
[17]
Mengyang LI , Hao XU , Zhonghao NIU , Chunhua GONG , Weihui ZHONG , Jingli XIE . Highly effective catalytic synthesis of β-amino alcohols by using viologen-polyoxometalate hybrid materials. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1294-1300. doi: 10.11862/CJIC.20250080
-
[18]
Zeyu Liu , Wenze Huang , Yang Xiao , Jundong Zhang , Weijin Kong , Peng Wu , Chenzi Zhao , Aibing Chen , Qiang Zhang . Nanocomposite Current Collectors for Anode-Free All-Solid-State Lithium Batteries. Acta Physico-Chimica Sinica, 2024, 40(3): 2305040-0. doi: 10.3866/PKU.WHXB202305040
-
[19]
Kexin Yan , Zhaoqi Ye , Lingtao Kong , He Li , Xue Yang , Yahong Zhang , Hongbin Zhang , Yi Tang . Seed-Induced Synthesis of Disc-Cluster Zeolite L Mesocrystals with Ultrashort c-Axis: Morphology Control, Decoupled Mechanism, and Enhanced Adsorption. Acta Physico-Chimica Sinica, 2024, 40(9): 2308019-0. doi: 10.3866/PKU.WHXB202308019
-
[20]
Yue Wu , Jun Li , Bo Zhang , Yan Yang , Haibo Li , Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(660)
- HTML views(82)