Citation: Tong Zhenkun, Fang Shan, Zheng Hao, Zhang Xiaogang. Zn2GeO4 Nanorods@Graphene Composite as Anode Materials for Li-ion Batteries[J]. Acta Chimica Sinica, ;2016, 74(2): 185-190. doi: 10.6023/A15100658 shu

Zn2GeO4 Nanorods@Graphene Composite as Anode Materials for Li-ion Batteries

  • Corresponding author: Zhang Xiaogang, azhangxg@nuaa.edu.cn
  • Received Date: 14 October 2015

    Fund Project: the National Natural Science Foundation of China Nos. 21173120, 51372116the Fundamental Research Funds for the Central Universities of NUAA NP2014403, NJ20140004the Natural Science Foundation of Jiangsu Province BK2011030the National Basic Research Program of China (973 Program) No. 2014CB239701

Figures(5)

  • Commercial graphite anode material for lithium-ion batteries (LIB) with a theoretical specific capacity of 372 mAh·g-1 is unable to satisfy the requirements of increasing mobility and high energy demands. Therefore, it is necessary to develop alternative anode material with high specific capacity. In recent years, a large amount of research has been worked out in the area of high capacity anode materials, for example, silicon (Si) and germanium (Ge). However, the large volume changes of Si and Ge during the charge and discharge process result in the cracking and pulverization of active material and delamination from the current collector, leading to a rapid decay during the cycling. As a semiconductor, Zn2GeO4 possesses a high capacity of 1443 mAh·g-1 which is 90.19% as high as Ge. Nevertheless, the weight rate of germanium element in Zn2GeO4 is only 27.15%, which can effectively cut down the cost of anode material. In this work, Zn2GeO4 nanorods were synthesized through a hydrothermal method by using GeO2 and Zn(CH3COO)2·2H2O and combined with RGO to form a 3D composite. In a typical synthesis, 1.10 g Zn(CH3COO)2·2H2O and 0.52 g GeO2 was added into 15 mL deionized (DI) water and the pH of the mixture was adjusted to 7~8 by using NaOH aqueous solution. Then, the hydrothermal treatment was performed at 140℃ for 24 h in an oven to obtain Zn2GeO4 nanorods. Finally, the Zn2GeO4 nanorods were filtrated with GO to form a uniform membrane and reduced by hydrazine hydrate. The Zn2GeO4 nanorods and Zn2GeO4@RGO composite were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), Raman spectroscopy, etc. SEM and TEM testified that Zn2GeO4 nanorods were firmly adhered on the surface of graphene sheets, which can effectively avoid the stacking of graphene sheets. The graphene sheets connected with each other to form an electric conductive network, which can improve the electrical conductivity of the composite. Furthermore, the electrodes are fabricated without conductive additive that can improve the weight ratio of the active material in the whole electrodes. The excellent electrochemical performance showed that the 3D architecture electrode which worked as a stable framework to accommodate the volume change of active material during Li+insertion/extraction. It delivers a specific capacity of 1189.5 mAh·g-1 at 500 mA·g-1 after 190 discharge/charge cycles. When at different current densities of 0.8, 1.6, 3.2 A·g-1, the capacities were found to be about 880, 700, 450 mAh·g-1, respectively. Even at a high current density of 6.4 A·g-1, the capacity can maintain about 250 mAh·g-1. These results indicate that the composite possesses outstanding cycling stability and excellent rate performance.
  • 加载中
    1. [1]

      Tarascon, J. M.; Armand, M. Nature 2001, 414, 359.

    2. [2]

      Szczech, J. R.; Jin, S. Energy Environ. Sci. 2011, 4, 56.

    3. [3]

      Hu, L. B.; Wu, H.; La Mantia, F.; Yang, Y. A.; Cui, Y. ACS Nano 2010, 4, 5843. 

    4. [4]

      Goodenough, J. B.; Kim, Y. Chem. Mater. 2010, 22, 587.

    5. [5]

      Armand, M.; Tarascon, J. M. Nature 2008, 451, 652. 

    6. [6]

      Cheng, Y. W.; Lin, C. K.; Chu, Y. C.; Abouimrane, A.; Chen, Z. H.; Ren, Y.; Liu, C. P.; Tzeng, Y. H.; Auciello, O. Adv. Mater. 2014, 26, 3724.

    7. [7]

      Fang, S.; Shen, L. F.; Tong, Z. K.; Zheng, H.; Zhang, F.; Zhang, X. G. Nanoscale 2015, 7, 7409. 

    8. [8]

      Fang, S.; Shen, L. F.; Zheng, H.; Zhang, X. G. J. Mater. Chem. A 2015, 3, 149.

    9. [9]

       

    10. [10]

      Yoo, H.; Lee, J. I.; Kim, H.; Lee, J. P.; Cho, J.; Park, S. Nano Lett. 2011, 11, 4324. 

    11. [11]

      Chen, Y.; Yan, C.; Schmidt, O. G. Adv. Energy Mater. 2013, 3, 1269. 

    12. [12]

       

    13. [13]

      Graetz, J.; Ahn, C. C.; Yazami, R.; Fultz, B. J. Electrochem. Soc. 2004, 151, A698.

    14. [14]

      Chan, C. K.; Zhang, X. F.; Cui, Y. Nano Lett. 2008, 8, 307. 

    15. [15]

      Cui, G. L.; Gu, L.; Zhi, L. J.; Kaskhedikar, N.; van Aken, P. A.; Mullen, K.; Maier, J. Adv. Mater. 2008, 20, 3079.

    16. [16]

      Seng, K. H.; Park, M. H.; Guo, Z. P.; Liu, H. K.; Cho, J. Angew. Chem. Int. Ed. 2012, 51, 5657. 

    17. [17]

      Beaulieu, L. Y.; Eberman, K. W.; Turner, R. L.; Krause, L. J.; Dahn, J. R. Electrochem. Solid-State Lett. 2001, 4, A137.

    18. [18]

      Key, B.; Bhattacharyya, R.; Morcrette, M.; Seznec, V.; Tarascon, J. M.; Grey, C. P. J. Am. Chem. Soc. 2009, 131, 9239. 

    19. [19]

      Liu, X. H.; Liu, Y.; Kushima, A.; Zhang, S. L.; Zhu, T.; Li, J.; Huang, J. Y. Adv. Energy Mater. 2012, 2, 722. 

    20. [20]

      Yi, R.; Feng, J.; Lv, D.; Gordin, M. L.; Chen, S.; Choi, D.; Wang, D. Nano Energy 2013, 2, 498.

    21. [21]

      Feng, Y.; Li, X. D.; Shao, Z. P.; Wang, H. T. J. Mater. Chem. A 2015, 3, 15274. 

    22. [22]

      Chen, W. M.; Lu, L. Y.; Maloney, S.; Yang, Y.; Wang, W. Y. Phys. Chem. Chem. Phys. 2015, 17, 5109. 

    23. [23]

      Li, W. W.; Wang, X. F.; Liu, B.; Xu, J.; Liang, B.; Luo, T.; Luo, S. J.; Chen, D.; Shen, G. Z. Nanoscale 2013, 5, 10291. 

    24. [24]

      Geim, A. K. Angew. Chem. Int. Ed. 2011, 50, 6966. 

    25. [25]

      Wang, B.; Li, X. L.; Zhang, X. F.; Luo, B.; Jin, M. H.; Liang, M. H.; Dayeh, S. A.; Picraux, S. T.; Zhi, L. J. ACS Nano 2013, 7, 1437. 

    26. [26]

      Zou, F.; Hu, X. L.; Sun, Y. M.; Luo, W.; Xia, F. F.; Qie, L.; Jiang, Y.; Huang, Y. H. Chem. Eur. J. 2013, 19, 6027. 

    27. [27]

      Zou, F.; Hu, X. L.; Qie, L.; Jiang, Y.; Xiong, X. Q.; Qiao, Y.; Huang, Y. H. Nanoscale 2014, 6, 924. 

    28. [28]

      Li, W.; Yin, Y. X.; Xin, S.; Song, W. G.; Guo, Y. G. Energy Environ. Sci. 2012, 5, 8007. 

    29. [29]

      Rong, A.; Gao, X. P.; Li, G. R.; Yan, T. Y.; Zhu, H. Y.; Qu, J. Q.; Song, D. Y. J. Phys. Chem. B 2006, 110, 14754. 

    30. [30]

      Chen, Z.; Yan, Y.; Xin, S.; Li, W.; Qu, J.; Guo, Y. G.; Song, W. G. J. Mater. Chem. A 2013, 1, 11404. 

    31. [31]

      Ge, X.; Wang, X.; Wang, Z.; Yao, S.; Feng, J.; Liu, D. P.; Song, S. Y.; Zhang, H. J. Chem. Eur. J. 2015, 21, 14768. 

    32. [32]

      Li, W. W.; Wang, X. F.; Liu, B.; Luo, S. J.; Liu, Z.; Hou, X. J.; Xiang, Q. Y.; Chen, D.; Shen, G. Z. Chem. Eur. J. 2013, 19, 8650. 

    33. [33]

       

    34. [34]

       

    35. [35]

      Sharma, Y.; Sharma, N.; Rao, G. V. S.; Chowdari, B. V. R. Adv. Funct. Mater. 2007, 17, 2855. 

    36. [36]

      Liu, J. P.; Li, Y. Y.; Ding, R. M.; Jiang, J.; Hu, Y. Y.; Ji, X. X.; Chi, Q. B.; Zhu, Z. H.; Huang, X. T. J. Phys. Chem. C 2009, 113, 5336. 

    37. [37]

      Wang, R.; Wu, S. P.; Lv, Y. C.; Lin, Z. Q. Langmuir 2014, 30, 8215. 

    38. [38]

      Wang, X. L.; Han, W. Q.; Chen, H. Y.; Bai, J. M.; Tyson, T. A.; Yu, X. Q.; Wang, X. J.; Yang, X. Q. J. Am. Chem. Soc. 2011, 133, 20692. 

    39. [39]

      Liu, J. P.; Li, Y. Y.; Huang, X. T.; Li, G. Y.; Li, Z. K. Adv. Funct. Mater. 2008, 18, 1448. 

    40. [40]

      Feng, J. K.; Xia, H.; Lai, M. O.; Lu, L. J. Phys. Chem. C 2009, 113, 20514. 

    41. [41]

      Park, M. H.; Cho, Y.; Kim, K.; Kim, J.; Liu, M. L.; Cho, J. Angew. Chem. Int. Ed. 2011, 50, 9647. 

    42. [42]

      Xue, X. Y.; Chen, Z. H.; Xing, L. L.; Yuan, S.; Chen, Y. J. Chem. Commun. 2011, 47, 5205. 

    43. [43]

      Seo, M. H.; Park, M.; Lee, K. T.; Kim, K.; Kim, J.; Cho, J. Energy Environ. Sci. 2011, 4, 425.

  • 加载中
    1. [1]

      Xueyu Lin Ruiqi Wang Wujie Dong Fuqiang Huang . 高性能双金属氧化物负极的理性设计及储锂特性. Acta Physico-Chimica Sinica, 2025, 41(3): 2311005-. doi: 10.3866/PKU.WHXB202311005

    2. [2]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    3. [3]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    4. [4]

      Yuting ZHANGZunyi LIUNing LIDongqiang ZHANGShiling ZHAOYu ZHAO . Nickel vanadate anode material with high specific surface area through improved co-precipitation method: Preparation and electrochemical properties. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2163-2174. doi: 10.11862/CJIC.20240204

    5. [5]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    6. [6]

      Zhuo WANGXiaotong LIZhipeng HUJunqiao PAN . Three-dimensional porous carbon decorated with nano bismuth particles: Preparation and sodium storage properties. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 267-274. doi: 10.11862/CJIC.20240223

    7. [7]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    8. [8]

      Yifeng Xu Jiquan Liu Bin Cui Yan Li Gang Xie Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009

    9. [9]

      Siyu Zhang Kunhong Gu Bing'an Lu Junwei Han Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028

    10. [10]

      Aoyu Huang Jun Xu Yu Huang Gui Chu Mao Wang Lili Wang Yongqi Sun Zhen Jiang Xiaobo Zhu . Tailoring Electrode-Electrolyte Interfaces via a Simple Slurry Additive for Stable High-Voltage Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100037-. doi: 10.3866/PKU.WHXB202408007

    11. [11]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    12. [12]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    13. [13]

      Jingyu Cai Xiaoyu Miao Yulai Zhao Longqiang Xiao . Exploratory Teaching Experiment Design of FeOOH-RGO Aerogel for Photocatalytic Benzene to Phenol. University Chemistry, 2024, 39(4): 169-177. doi: 10.3866/PKU.DXHX202311028

    14. [14]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    15. [15]

      Jiaxuan Zuo Kun Zhang Jing Wang Xifei Li . 锂离子电池Ni-Co-Mn基正极材料前驱体的形核调控及机制. Acta Physico-Chimica Sinica, 2025, 41(1): 2404042-. doi: 10.3866/PKU.WHXB202404042

    16. [16]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

    17. [17]

      Yunting Shang Yue Dai Jianxin Zhang Nan Zhu Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050

    18. [18]

      Yu Guo Zhiwei Huang Yuqing Hu Junzhe Li Jie Xu . 钠离子电池中铁基异质结构负极材料的最新研究进展. Acta Physico-Chimica Sinica, 2025, 41(3): 2311015-. doi: 10.3866/PKU.WHXB202311015

    19. [19]

      Pengyang FANShan FANQinjin DAIXiaoying ZHENGWei DONGMengxue WANGXiaoxiao HUANGYong ZHANG . Preparation and performance of rich 1T-MoS2 nanosheets for high-performance aqueous zinc ion battery cathode materials. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 675-682. doi: 10.11862/CJIC.20240339

    20. [20]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

Metrics
  • PDF Downloads(0)
  • Abstract views(2357)
  • HTML views(225)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return