Citation: Zhi Kangkang, Dong Aijun, Yang Xin, Zhao Qianyu, Zhao Haitian, Zhang Hua, Wang Jing, Xu Pengfei. Preparation and Adsorption Properties Study of Glucose Magnetic Molecularly Imprinted Polymers with Dual Functional Monomers[J]. Acta Chimica Sinica, ;2015, 74(2): 199-207. doi: 10.6023/A15090636 shu

Preparation and Adsorption Properties Study of Glucose Magnetic Molecularly Imprinted Polymers with Dual Functional Monomers

  • Corresponding author: Yang Xin, yangxin@hit.edu.cn Wang Jing, w_jing2001@126.com
  • Received Date: 29 September 2015

    Fund Project: the Outstanding Academic Leaders of Harbin No. 2014RFXXJ113

Figures(15)

  • In this paper, dual functional monomers (concanavalin A and aminobenzeneboronic acid) method is applied to molecular imprinting technique, three synthetic methods of functional monomer were designed and their ability to adsorb glucose was evaluated. Step-by-step method (A1) was found to be a good synthetic method for selective adsorption, which could adsorb glucose powerfully. A kind of magnetic molecularly imprinted polymers (MMIPs) was synthesized by step-by-step method, in which superparamagnetic Fe3O4 nanoparticles were firstly synthesized by hydrothermal synthetic method and uniform SiO2-coated Fe3O4 (Fe3O4@SiO2) nanoparticles were prepared via Sol-gel method. The following Fe3O4@SiO2 reacted with (3-aminopropyl)triethoxysilane to produce Fe3O4@SiO2@NH2. The aminated nanoparticles combine with concanavalin A to form Fe3O4@SiO2@NH2@ConA in the presence of disuccinimidyl suberate. Subsequently, the single-functionalized nanoparticles binded with aminobenzeneboronic acid to form Fe3O4@SiO2@NH2@APBA-ConA in the presence of disuccinimidyl suberate. Eventually, the MMIPs for glucose selective recognition, with core-shell structure, were synthesized by surface molecular imprinting method, using glucose (Glu) as template molecule, concanavalin A (ConA) and aminobenzeneboronic acid (APBA) as dual functional monomers, N,N'-methylenebisacrylamide as the crosslinking agent, ammonium peroxydisulfate as the initiator, superparamagnetic nanoparticles as magnetic carrier. The MMIPs were characterized by X-ray diffraction (XRD), energy dispersive spectrometer (EDS), scanning electron microscopy (SEM), Fourier transform infrared spectra (FT-IR), vibrating sample magnetometer (VSM) and thermogravimetric analysis (TGA). The SEM showed the nanoparticles were highly dispersive and uniform. The EDS, FT-IR and TGA revealed the success of step-by-step method. The VSM demonstrated the saturation magnetization values of Fe3O4 and MMIPs were 96.661 emu/g and 45.064 emu/g, respectively. The study on kinetics of MMIPs showed that the adsorption reaction could be considered as a second order reaction. The thermodynamics research revealed that the adsorption of MMIPs was fitted to Langmuir isotherms. The study on selective adsorption displayed that MMIPs had maximum imprinting factor of 2.93 and best selectivity. The class specific study of MMIPs showed that it could be applied to extraction and separation of glucosides.
  • 加载中
    1. [1]

    2. [2]

      Guo, T.; Deng, Q.; Fang, G.; Liu, C.; Huang, X.; Wang, S. Biosens. Bioelectron. 2015, 74, 498. 

    3. [3]

      Qiu, C.; Yang, W.; Zhou, Z.; Yan, Y.; Xu, W. J. Appl. Polym. Sci. 2015, 132, 41.

    4. [4]

      Gupta, V. K.; Yola, M. L.; Eren, T.; Atar, N. Sens. Actuators, B 2015, 218, 215. 

    5. [5]

      Eren, T.; Atar, N.; Yola, M. L.; Karimi-Maleh, H. Food Chem. 2015, 185, 430. 

    6. [6]

      Miura, C.; Li, H.; Matsunaga, H.; Haginaka, J.J. Pharm. Biomed. Anal. 2015, 114, 139. 

    7. [7]

      Huynh, T. P.; Kutner, W.Biosens. Bioelectron. 2015, 74, 856. 

    8. [8]

       

    9. [9]

      Ramstroem, O.; Andersson, L. I.; Mosbach, K. J. Org. Chem. 1993, 58, 7562. 

    10. [10]

    11. [11]

    12. [12]

      Ahmadi, M. A.; Shadizadeh, S. J. Dispersion Sci. Technol. 2015, 83, 441.

    13. [13]

      Acevedo, B.; Barriocanal, C.; Lupul, I.; Gryglewicz, G. Fuel 2015, 151, 83.

    14. [14]

      Ahmadi, M. A.; Shadizadeh, S. J. Dispersion Sci. Technol. 2015, 36, 441. 

    15. [15]

      Yang, C.; Tan, R. Q. Mater. Sci. 2010, 45, 5347. 

    16. [16]

    17. [17]

    18. [18]

      Lu, Y.-W.; Chen, C.-W. Anal. Chem. 2013, 85, 8268.

    19. [19]

    20. [20]

    21. [21]

      Huang, W.-X.; Yang, X.; Zhao, S. Analyst 2013, 138, 6653.

  • 加载中
    1. [1]

      Bin SUNHeyan JIANG . Glucose-modified bis-Schiff bases: Synthesis and bio-activities in Alzheimer′s disease therapy. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1338-1350. doi: 10.11862/CJIC.20240428

    2. [2]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    3. [3]

      Yuxia Luo Xiaoyu Xie Fangfang Chen . 药物递送魔法师——分子印迹聚合物. University Chemistry, 2025, 40(8): 202-210. doi: 10.12461/PKU.DXHX202409129

    4. [4]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    5. [5]

      Jiarong Feng Yejie Duan Chu Chu Dezhen Xie Qiu'e Cao Peng Liu . Preparation and Application of a Streptomycin Molecularly Imprinted Electrochemical Sensor: A Suggested Comprehensive Analytical Chemical Experiment. University Chemistry, 2024, 39(8): 295-305. doi: 10.3866/PKU.DXHX202401016

    6. [6]

      Yue ZhangBao LiLixin Wu . GO-Assisted Supramolecular Framework Membrane for High-Performance Separation of Nanosized Oil-in-Water Emulsions. Acta Physico-Chimica Sinica, 2024, 40(5): 2305038-0. doi: 10.3866/PKU.WHXB202305038

    7. [7]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

    8. [8]

      Cen Zhou Biqiong Hong Yiting Chen . Application of Electrochemical Techniques in Supramolecular Chemistry. University Chemistry, 2025, 40(3): 308-317. doi: 10.12461/PKU.DXHX202406086

    9. [9]

      Laiying Zhang Yinghuan Wu Yazi Yu Yecheng Xu Haojie Zhang Weitai Wu . Innovation and Practice of Polymer Chemistry Experiment Teaching for Non-Polymer Major Students of Chemistry: Taking the Synthesis, Solution Property, Optical Performance and Application of Thermo-Sensitive Polymers as an Example. University Chemistry, 2024, 39(4): 213-220. doi: 10.3866/PKU.DXHX202310126

    10. [10]

      Nana Wang Gaosheng Zhang Huosheng Li Tangfu Xiao . Discussion on the Teaching Reform of Environmental Functional Materials within the Context of “Double First-Class” Initiative: Emphasizing the Integration of Industry, Academia, Research, and Application. University Chemistry, 2024, 39(6): 137-144. doi: 10.3866/PKU.DXHX202312010

    11. [11]

      Qiaoqiao BAIAnqi ZHOUXiaowei LITang LIUSong LIU . Construction of pressure-temperature dual-functional flexible sensors and applications in biomedicine. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2259-2274. doi: 10.11862/CJIC.20240128

    12. [12]

      Jia Yao Xiaogang Peng . Theory of Macroscopic Molecular Systems: Theoretical Framework of the Physical Chemistry Course in the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 27-37. doi: 10.12461/PKU.DXHX202408117

    13. [13]

      Zhiwen HUANGQi LIUJianping LANG . W/Cu/S cluster-based supramolecular macrocycles and their third-order nonlinear optical responses. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 79-87. doi: 10.11862/CJIC.20240184

    14. [14]

      CCS Chemistry | 超分子活化底物自由基促进高效选择性光催化氧化

      . CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.

    15. [15]

      Cunming Yu Dongliang Tian Jing Chen Qinglin Yang Kesong Liu Lei Jiang . Chemistry “101 Program” Synthetic Chemistry Experiment Course Construction: Synthesis and Properties of Bioinspired Superhydrophobic Functional Materials. University Chemistry, 2024, 39(10): 101-106. doi: 10.12461/PKU.DXHX202408008

    16. [16]

      Ruonan LiShijie LiangYunhua XuCuifen ZhangZheng TangBaiqiao LiuWeiwei Li . Chlorine-Substituted Double-Cable Conjugated Polymers with Near-Infrared Absorption for Low Energy Loss Single-Component Organic Solar Cells. Acta Physico-Chimica Sinica, 2024, 40(8): 2307037-0. doi: 10.3866/PKU.WHXB202307037

    17. [17]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    18. [18]

      Qianli MaTianbing SongTianle HeXirong ZhangHuanming Xiong . Sulfur-doped carbon dots: a novel bifunctional electrolyte additive for high-performance aqueous zinc-ion batteries. Acta Physico-Chimica Sinica, 2025, 41(9): 100106-0. doi: 10.1016/j.actphy.2025.100106

    19. [19]

      Rui Li Jiayu Zhang Anyang Li . Two Levels of Understanding of Chemical Bonds: a Case of the Bonding Model of Hypervalent Molecules. University Chemistry, 2024, 39(2): 392-398. doi: 10.3866/PKU.DXHX202308051

    20. [20]

      Tingyu Zhu Hui Zhang Wenwei Zhang . Exploration and Practice of Ideological and Political Education in the Course of Experiments on Chemical Functional Molecules: Synthesis and Catalytic Performance Study of Chiral Mn(III)Cl-Salen Complex. University Chemistry, 2024, 39(4): 75-80. doi: 10.3866/PKU.DXHX202311011

Metrics
  • PDF Downloads(0)
  • Abstract views(1591)
  • HTML views(299)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return