Citation: Sun Jingbo, Zhang Gonghe, Jia Xiaoyu, Xue Pengchong, Jia Junhui, Lu Ran. Synthesis, Mechanochromism and Acid Response of the Fluorescence Dyes Based on Quinoxalines Modified with Tetraphenylethylenes[J]. Acta Chimica Sinica, ;2015, 74(2): 165-171. doi: 10.6023/A15090628 shu

Synthesis, Mechanochromism and Acid Response of the Fluorescence Dyes Based on Quinoxalines Modified with Tetraphenylethylenes

  • Corresponding author: Lu Ran, luran@mail.jlu.edu.cn
  • Received Date: 25 September 2015

    Fund Project: the Open Project of State Key Laboratory of Supramolecular Structure and Materials No. SKLSSM2015014the National Natural Science Foundation of China No. 21374041

Figures(6)

  • Three new D-π-A type quinoxalines modified with tetraphenylethylenes BTPQ, DBTPQ and BTBQ were synthesized via Suzuki coupling reactions between (4-(1,2,2-triphenylvinyl)phenyl)boronic acid and bromo aromatic hydrocarbons. It was found that BTPQ and DBTPQ, in which tetraphenylethylenes were substituted on 5,8-positions of quinoxalines gave the absortion bands at 316 nm and 303 nm, respectively, originated from π-π* transition. For BTBQ, in which tetraphenylethylene units were located at 2,3-positions of quinoxaline, the π-π* transition absorption blue-shifted to 287 nm on account of the poor planarity and low conjugation. Meanwhile, the intermolecular charge transfer (ICT) emission could be detected for BTPQ and DBTPQ, whose emission bands red-shifted significantly and emission intensities decreased with increasing the solvent polarities. It should be noted that the three compounds exhibited aggregation-induced emission (AIE) behaviors. For instance, when the water faction in the THF solution increased to 90%, the emission intensity at ca. 400 nm for BTBQ, was ca. 54 times higher than that in THF. Additionally, trifluoroacetic acid (TFA) could lead to the changes of color and emitting color of BTBQ in solution as well as in solid state due to the formation of protonated quinoxaline. We found that the grey solid of BTBQ could turn into red one upon exposed to gaseous TFA, accompanying with the quench of the emission. Other kinds of acids of HCl, HNO3 and acetic acid also could lead to the fluorescence quenching of solid BTBQ to some extent. Therefore, BTBQ could be used as sensory material to detect acid vapors by naked eyes. However, the protonation would be prohibited in BTPQ and DBTPQ on account of the steric effect of tetraphenylethylene units linked to 5,8-positions of quinoxaline, so BTPQ and DBTPQ could not detect acid. Interestingly, the solid emitting colors of BTPQ as well as DBTPQ were quite different before and after grinding, exhibiting mechanochromic properties. The as-prepared crystal of BTPQ emitting blue light under UV irradiation could be changed into amorphous powder with bluish green emission. The XRD patterns suggested that the mechanochromism was originated from the transition between the crystalline and amorphous states. Such mechanochromism was reversible under the treatment of grinding and heating/fuming with DCM.
  • 加载中
    1. [1]

    2. [2]

      Luo, J.; Xie, Z.; Lam, J. W. Y.; Cheng, L.; Chen, H.; Qiu, C.; Kwok, H. S.; Zhan, X.; Liu, Y.; Zhu, D.; Tang, B. Z. Chem. Commun. 2001, 1740.

    3. [3]

      Hong, Y.; Lam, J. W. Y.; Tang, B. Z. Chem. Soc. Rev. 2011, 40, 5361; (b) Zhao, Z. J.; Lam, J. W. Y.; Tang, B. Z. Soft Matter 2013, 9, 4564. 

    4. [4]

    5. [5]

      Misra, R.; Jadhav, T.; Dhokale, B.; Mobin, S. M. Chem. Commun. 2014, 50, 9076; (b) Luo, X.; Li, J.; Li, C.; Heng, L.; Dong, Y.; Liu, Z.; Bo, Z.; Tang, B. Adv Mater. 2011, 23, 3261; (c) Wang, J.; Mei, J.; Hu, R.; Sun, J.; Qin, A.; Tang, B. J. Am. Chem. Soc. 2012, 134, 9956; (d) Li, H.; Chi, Z.; Xu, B.; Zhang, X.; Li, X.; Liu, S.; Zhang, Y.; Xu, J. J. Mater. Chem. 2011, 21, 3760; (e) Zhou, X.; Li, H.; Chi, Z.; Zhang, X.; Zhang, J.; Xu, B.; Zhang, Y.; Liu, S.; Xu, J. New J. Chem. 2012, 36, 685. 

    6. [6]

       

    7. [7]

      Gong, Y.; Tan, Y.; Liu, J.; Lu, P.; Feng, C.; Yuan, W.; Lu, Y.; Sun, J.; He, G.; Zhang, Y. Chem. Commun. 2013, 49, 4009.

    8. [8]

      An, B. K.; Kwon, S. K.; Jung, S. D.; Park, S. Y. J. Am. Chem. Soc. 2002, 124, 14410; (b) Yuan, W. Z.; Tan, Y.; Gong, Y.; Lu, P.; Lam, J. W. Y.; Shen, X.; Feng, C.; Sung, H. H. Y.; Lu, Y.; Williams, I. D.; Sun, J.; Zhang, Y.; Tang, B. Adv. Mater. 2013, 25, 2837; (c) Gong, Y.; Liu, J.; Zhang, Y.; He, G.; Lu, Y.; Fan, W. B.; Yuan, W. Z.; Sun, J. Z.; Zhang, Y. J. Mater. Chem. C 2014, 2, 7552. 

    9. [9]

      Sagara, Y.; Mutai, T.; Yoshikawa, I.; Araki, K. J. Am. Chem. Soc. 2007, 129, 1520; (b) Yamane, S.; Sagara, Y.; Mutai, T.; Araki, K.; Kato, T. J. Mater. Chem. C 2013, 1, 2648. 

    10. [10]

      Shen, X. Y.; Yuan, W. Z.; Liu, Y.; Zhao, Q.; Lu, P.; Ma, Y.; Williams, I. D.; Qin, A.; Sun, J. Z.; Tang, B. Z. J. Phys. Chem. C 2012, 116, 10541; (b) Shen, X. Y.; Wang, Y. J.; Zhao, E.; Yuan, W. Z.; Liu, Y.; Lu, P.; Qin, A.; Ma, Y.; Sun, J. Z.; Tang, B. Z. J. Phys. Chem. C 2013, 117, 7334; (c) Kim, F. S.; Guo, X.; Watson, M. D.; Jenekhe, S. A. Adv. Mater. 2010, 22, 478; (e) Lin, T. C.; He, G.; Zheng, S. Q. J. Mater. Chem. 2006, 16, 2490. 

    11. [11]

      Ooyama, Y.; Ito, G.; Fukuoka, H.; Nagano, T.; Kagawa, Y.; Imae, I.; Komaguchi, K.; Harima, Y. Tetrahedron 2010, 66, 7268; (b) Ooyama, Y.; Harima, Y. J. Mater. Chem. 2011, 21, 8372.

    12. [12]

      Xue, P. C.; Yao, B. Q.; Sun, J. B.; Xu, Q. X.; Chen, P.; Zhang, Z. Q.; Lu, R. J. Mater. Chem. C 2014, 2, 3942; (b) Xue, P. C.; Chen, P.; Jia, J. H.; Xu, Q. X.; Sun, J. B.; Yao, B. Q.; Zhang, Z. Q.; Lu, R. Chem. Commun. 2014, 50, 2569; (c) Zhang, Z. Q.; Xue, P. C.; Gong, P.; Zhang, G. H.; Peng, J.; Lu, R. J. Mater. Chem. C 2014, 2, 9543; (d) Xue, P. C.; Yao, B. Q.; Wang, P. P.; Sun, J. B.; Zhang, Z. Q.; Lu, R. RSC Adv. 2014, 4, 58732. 

    13. [13]

      Xue, P. C.; Yao, B. Q.; Liu, X. H.; Sun, J. B.; Gong, P.; Zhang, Z. Q.; Qian, C.; Zhang, Y.; Lu, R. J. Mater. Chem. C 2015, 3, 1018; (b) Zhang, Z. Q.; Wu, Z.; Sun, J. B.; Yao, B. Q.; Zhang, G. H.; Xue, P. C.; Lu, R. J. Mater. Chem. C 2015, 3, 4921; (c) Zhang, G. H.; Sun, J. B.; Xue, P. C.; Zhang, Z. Q.; Gong, P.; Peng, J.; Lu, R. J. Mater. Chem. C 2015, 3, 2925. 

    14. [14]

      Muniz, F. M.; Alcazar, V.; Sanz, F.; Simon, L.; de Arriba, A. L. F.; Raposo, C.; Moran, J. R. Eur. J. Org. Chem. 2010, 6179.

    15. [15]

      Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A.; Bloino, F. J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery Jr, J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J. M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian 09, Revision A. 02, Gaussian, Inc., Wallingford, CT, 2009.

    16. [16]

    17. [17]

      Vasanthan, N.; Manne, J.; Krishnama, A. Ind. Eng. Chem. Res. 2013, 52, 17920. 

  • 加载中
    1. [1]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    2. [2]

      Zeyi Yan Ruitao Liu Xinyu Qi Yuxiang Zhang Lulu Sun Xiangyuan Li Anchao Feng . Exploration of Suspension Polymerization: Preparation and Fluorescence Stability of Perovskite Polystyrene Microbeads. University Chemistry, 2025, 40(4): 72-79. doi: 10.12461/PKU.DXHX202405110

    3. [3]

      Chengqian Mao Yanghan Chen Haotong Bai Junru Huang Junpeng Zhuang . Photodimerization of Styrylpyridinium Salt and Its Application in Silk Screen Printing. University Chemistry, 2024, 39(5): 354-362. doi: 10.3866/PKU.DXHX202312014

    4. [4]

      Zishuo Yi Peng Liu Yan Xu . Fluorescent “Chameleon”: A Popular Science Experiment Based on Dynamic Luminescence. University Chemistry, 2024, 39(9): 304-310. doi: 10.12461/PKU.DXHX202311079

    5. [5]

      Xiyuan Su Zhenlin Hu Ye Fan Xianyuan Liu Xianyong Lu . Change as You Want: Multi-Responsive Superhydrophobic Intelligent Actuation Material. University Chemistry, 2024, 39(5): 228-237. doi: 10.3866/PKU.DXHX202311059

    6. [6]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

    7. [7]

      Yanyang Li Zongpei Zhang Kai Li Shuangquan Zang . Ideological and Political Design for the Comprehensive Experiment of the Synthesis and Aggregation-Induced Emission (AIE) Performance Study of Salicylaldehyde Schiff-Base. University Chemistry, 2024, 39(2): 105-109. doi: 10.3866/PKU.DXHX202307020

    8. [8]

      Yan ZHAOXiaokang JIANGZhonghui LIJiaxu WANGHengwei ZHOUHai GUO . Preparation and fluorescence properties of Eu3+-doped CaLaGaO4 red-emitting phosphors. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1861-1868. doi: 10.11862/CJIC.20240242

    9. [9]

      Xinyu Liu Weiran Hu Zhengkai Li Wei Ji Xiao Ni . Algin Lab: Surging Luminescent Sea. University Chemistry, 2024, 39(5): 396-404. doi: 10.3866/PKU.DXHX202312021

    10. [10]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    11. [11]

      Chun-Lin Sun Yaole Jiang Yu Chen Rongjing Guo Yongwen Shen Xinping Hui Baoxin Zhang Xiaobo Pan . Construction, Performance Testing, and Practical Applications of a Home-Made Open Fluorescence Spectrometer. University Chemistry, 2024, 39(5): 287-295. doi: 10.3866/PKU.DXHX202311096

    12. [12]

      Jianjun Liu Xue Yang Chi Zhang Xueyu Zhao Zhiwei Zhang Yongmei Chen Qinghong Xu Shao Jin . Preparation and Fluorescence Characterization of CdTe Semiconductor Quantum Dots. University Chemistry, 2024, 39(7): 307-315. doi: 10.3866/PKU.DXHX202311031

    13. [13]

      Zhongxin YUWei SONGYang LIUYuxue DINGFanhao MENGShuju WANGLixin YOU . Fluorescence sensing on chlortetracycline of a Zn-coordination polymer based on mixed ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2415-2421. doi: 10.11862/CJIC.20240304

    14. [14]

      Zijuan LIXuan LÜJiaojiao CHENHaiyang ZHAOShuo SUNZhiwu ZHANGJianlong ZHANGYanling MAJie LIZixian FENGJiahui LIU . Synthesis of visual fluorescence emission CdSe nanocrystals based on ligand regulation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 308-320. doi: 10.11862/CJIC.20240138

    15. [15]

      Yi DINGPeiyu LIAOJianhua JIAMingliang TONG . Structure and photoluminescence modulation of silver(Ⅰ)-tetra(pyridin-4-yl)ethene metal-organic frameworks by substituted benzoates. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 141-148. doi: 10.11862/CJIC.20240393

    16. [16]

      Mi Wen Baoshuo Jia Yongqi Chai Tong Wang Jianbo Liu Hailong Wu . Improvement of Fluorescence Quantitative Analysis Experiment: Simultaneous Determination of Rhodamine 6G and Rhodamine 123 in Food Using Chemometrics-Assisted Three-Dimensional Fluorescence Method. University Chemistry, 2025, 40(4): 390-398. doi: 10.12461/PKU.DXHX202405147

    17. [17]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    18. [18]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    19. [19]

      Xinyi Hong Tailing Xue Zhou Xu Enrong Xie Mingkai Wu Qingqing Wang Lina Wu . Non-Site-Specific Fluorescent Labeling of Proteins as a Chemical Biology Experiment. University Chemistry, 2024, 39(4): 351-360. doi: 10.3866/PKU.DXHX202310010

    20. [20]

      Lin Song Dourong Wang Biao Zhang . Innovative Experimental Design and Research on Preparing Flexible Perovskite Fluorescent Gels Using 3D Printing. University Chemistry, 2024, 39(7): 337-344. doi: 10.3866/PKU.DXHX202310107

Metrics
  • PDF Downloads(0)
  • Abstract views(1680)
  • HTML views(443)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return