Citation: Zhao Caibin, Wang Zhanling, Zhou Ke, Ge Hongguang, Zhang Qiang, Jin Lingxia, Wang Wenliang, Yin Shiwei. Theoretical Investigation on Photovoltaic Properties of BDT and DPP Copolymer as a Promising Organic Solar Cell[J]. Acta Chimica Sinica, ;2015, 74(3): 251-258. doi: 10.6023/A15090606 shu

Theoretical Investigation on Photovoltaic Properties of BDT and DPP Copolymer as a Promising Organic Solar Cell

  • Corresponding author: Zhao Caibin, zhaocb@snut.edu.cn
  • Received Date: 15 September 2015

    Fund Project: the National Natural Science Foundation of China 21373132the Doctor Research start foundation of Shaanxi University of Technology SLGKYQD2-13, SLGKYQD2-10, SLGQD14-10

Figures(6)

  • Designing and synthesizing novel polymer electron-donor materials of polymer-based solar cells (PSCs) with the high photovoltaic performance is an important and hot research field of organic electronics. In the current work, taking the 4,8-di(thiophen-2-yl)benzo[1,2-b:4,5-b']dithiophene (DBDT) as the electron-rich unit and the 3,6-di(thiophen-2-yl)pyrrolo[3, 4-c]pyrrole-1,4(2H,5H)-dione (DPP) as the electron-deficient one, a new donor material (PDBDTDPP) of PSCs has been designed. Then, with the [6,6]-phenyl-C61-butyric acid methyl ester (PC61BM) as an electron acceptor, the geometries, electronic properties, optical absorption properties, intramolecular and intermolecular reorganization energies, exciton binding energies, charge transfer integrals, and the rates of exciton dissociation and charge recombination for PC61BM-DBDTDPPn=1,2,3,∞ systems have been theoretically investigated by means of density functional theory (DFT) calculations coupled with the incoherent Marcus-Hush charge transfer model and some extensive multidimensional visualization techniques. In addition, the linear regression analysis has been done to explore the relationship between the above properties and the repeating unit. Calculated results show that the designed donor polymer possesses a good planar geometry, the low-lying the highest occupied molecular orbital (HOMO) level, strong and wide optical absorption in ultraviolet-visible band, large exciton binding energy (1.365 eV), and the relatively small intramolecular reorganization energies companying with the exciton dissociation (0.152 eV) and charge recombination (0.314 eV) processes. Furthermore, our theoretical study also reveals that in the donor-acceptor surface, the exciton dissociation rate is as high as 1.073×1014 s-1, while the charge recombination rate is only 1.797×108 s-1. The former is as six orders of magnitude large as the latter, which denotes that there is quite high exciton dissociation efficiency in the studied donor-acceptor surface. In brief, our theoretical results clearly indicate that PDBDTDPP should be a very promising electron-donating material, and is worth of making further device research by experiments. In addition, this study also shows that theoretical investigations not only can promote a deeper understanding for the connection between the chemical structures and the optical/electronic properties of organic compounds, but also can provide some valuable references for the rational design of novel donor-acceptor systems.
  • 加载中
    1. [1]

    2. [2]

    3. [3]

    4. [4]

      Hoppe, H.; Sariciftci, N. S. J. Mater. Res. 2004, 19, 1924. 

    5. [5]

      Brabec, C. J.; Sariciftci, N. S.; Hummelen, J. C. Adv. Mater. 2001, 11, 15.

    6. [6]

      Jorgensen, M.; Norrman, K.; Krebs, F. C. Sol. Energy Mater. Sol. Cells 2008, 92, 686. 

    7. [7]

      Thompson, B. C.; Frechet, J. M. J. Angew. Chem., Int. Ed. 2008, 47, 58. 

    8. [8]

      Coakley, K. M.; McGehee, M. D. Chem. Mater. 2004, 16, 4533. 

    9. [9]

      Bundgaard, E.; Krebs, F. C. Sol. Energy Mater. Sol. Cells 2007, 91, 954. 

    10. [10]

      You, J. B.; Dou, L. T.; Yoshimura, K.; Kato, T.; Ohya, K.; Moriarty, T.; Emery, K.; Chen, C.-C.; Gao, J.; Li, G.; Yang, Y. Nat. Commun. 2013, 4, 1446.

    11. [11]

      Li, N.; Baran, D.; Forberich, K.; Machui, F.; Ameri, T.; Turbiez, M.; Carrasco-Orozco, M.; Drees, M.; Facchetti, A.; Krebs, F. C.; Brabec, C. J. Energy Environ. Sci. 2013, 6, 3407. 

    12. [12]

      You, J. B.; Chen, C.-C.; Hong, Z. R.; Yoshimura, K.; Ohya, K.; Xu, R.; Ye, S. L.; Gao, J.; Li, G.; Yang, Y. Adv. Mater. 2013, 25, 3973.

    13. [13]

      Peet, J.; Senatore, M. L.; Heeger, A. J.; Bazan, G. C. Adv. Mater. 2009, 21, 1521. 

    14. [14]

      Scharber, M. C.; Mühlbacher, D.; Koppe, M.; Denk, P.; Waldauf, C.; Heeger, A. J.; Brabec, C. J. Adv. Mater. 2006, 18, 789. 

    15. [15]

      Huo, L. J.; Hou, J. H.; Chen, H.-Y.; Zhang, S. Q.; Jiang, Y.; Chen, T. L.; Yang, Y. Macromolecules 2009, 42, 6564. 

    16. [16]

      Sista, P.; Nguyen, H.; Murphy, J. W.; Hao, J.; Dei, D. K.; Palaniappan, K.; Servello, J.; Kularatne, R. S.; Gnade, B. E.; Xue, B.; Dastoor, P. C. M.; Biewer, C.; Stefan, M. C. Macromolecules 2010, 43, 7875. 

    17. [17]

      Hou, J. H.; Chen, H. Y.; Zhang, S. Q.; Chen, R. I.; Yang, Y.; Wu, Y.; Li, G. J. Am. Chem. Soc. 2009, 131, 15586. 

    18. [18]

      Huo, L. J.; Zhang, S. Q.; Guo, X.; Xu, F.; Li, Y. F.; Hou, J. H. Angew. Chem., Int. Ed. 2011, 50, 9697. 

    19. [19]

      Zhang, M. J.; Guo, X.; Zhang, S. Q.; Hou, J. H. Adv. Mater. 2014, 26, 1118. 

    20. [20]

      Bijleveld, J. C.; Zoombelt, A. P.; Mathijssen, S. G. J.; Wienk, M. M.; Turbiez, M.; de Leeuw, D. M.; Janssen, R. A. J. J. Am. Chem. Soc. 2009, 131, 16616. 

    21. [21]

      Bronstein, H.; Chen, Z. Y.; Ashraf, R. S.; Zhang, W. M.; Du, J. P.; Durrant, J. R.; Tuladhar, P. S.; Song, K.; Watkins, S. E.; Geerts, Y.; Wienk, M. M.; Janssen, R. A. J.; Anthopoulos, T.; Sirringhaus, H.; Heeney, M.; McCulloch, I. J. Am. Chem. Soc. 2011, 133, 3272. 

    22. [22]

      Hendriks, K. H.; Heintges, G. H. L.; Gevaerts, V. S.; Wienk, M. M.; Janssen, R. A. J. Angew. Chem. Int. Ed. 2013, 52, 8341. 

    23. [23]

      Yi, Z. R.; Sun, X. N.; Zhao, Y.; Guo, Y. L.; Chen, X. G.; Qin, J. G.; Yu, G.; Liu, Y. Q. Chem. Mater. 2012, 24, 4350. 

    24. [24]

      Fabiano, E.; Sala, F. D.; Cingolani, R.; Weimer, M.; Görling, A. J. Phys. Chem. A 2005, 109, 3078. 

    25. [25]

      Sai, F.-C.; Chang, C.-C.; Liu, C.-L.; Chen, W.-C.; Jenekhe, S. A. Macromolecules 2005, 38, 1958. 

    26. [26]

      Hutchison, G. R.; Ratner, M. A.; Marks, T. J. J. Am. Chem. Soc. 2005, 127, 2339. 

    27. [27]

      Yanai, T. Chem. Phys. Lett. 2004, 393, 51.

    28. [28]

      Jorge, R. E.; Jorge, S. S.; Suave, R. N. Chirality 2015, 27, 23. 

    29. [29]

      Vlček, A.; Záliš, S. Coord. Chem. Rev. 2007, 251, 258.

    30. [30]

      Franck, R. J. J. Phys. Chem. A 2013, 117, 4267. 

    31. [31]

      Jacquemin, D.; Perpète, E. A.; Vydrov, O. A.; Scuseria, G. E.; Carlo, A. J. Chem. Phys. 2007, 127, 094102.

    32. [32]

      Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. 1997, 78, 1396.

    33. [33]

      Sun, L.; Bai, F. Q.; Zhao, Z. X.; Zhang, H. X. Sol. Energy Mater. Sol. Cells 2011, 95, 1800. 

    34. [34]

      Lu, T.; Chen, F. W. J. Comp. Chem. 2012, 33, 580. 

    35. [35]

      Lu, T.; Chen, F. W. J. Mol. Graph. Model. 2012, 38, 314. 

    36. [36]

       

    37. [37]

      Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Keith, T.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian 09, Revision D.01, Gaussian Inc., Wallingford, CT, 2010.

    38. [38]

      Gautam, P.; Maragani, R.; Misra, R. Tetrahedron. Lett. 2014, 55, 6827.

    39. [39]

      Demeter, D.; Rousseau, T.; Leriche, P.; Cauchy, T.; Po, R.; Roncali, J. Adv. Funct. Mater. 2011, 21, 4379. 

    40. [40]

      Turbiez, M.; Frère, P.; Allain, M.; Videlot, C.; Ackermann, J.; Roncali, J. Chem-Eur. J. 2005, 11, 3742.

    41. [41]

      Hummelen, J. C.; Knight, B. W.; LePeq, F.; Wudl, F.; Yao, J.; Wilkins, C. L. J. Org. Chem. 1995, 60, 532. 

    42. [42]

      Xu, Z.; Chen, L.-M.; Chen, M.-H.; Li, G.; Yang, Y. Appl. Phys. Lett. 2009, 95, 013301.

    43. [43]

      Zheng, L. P.; Zhou, Q. M.; Deng, X. Y.; Yuan, M.; Yu, G.; Cao, Y. J. Phys. Chem. B 2004, 108, 11921. 

    44. [44]

      Wang, X. M.; Guo, Y. L.; Xiao, Y.; Zhang, L.; Yu, G.; Liu, Y. Q. J. Mater. Chem. 2009, 19, 3258. 

    45. [45]

      Li, Y. Z.; Pullerits, T.; Zhao, M. Y.; Sun, M. T. J. Phys. Chem. C 2011, 115, 21865. 

    46. [46]

      Rand, B. P.; Genoe, J.; Heremans, P.; Poortmans, J. Prog. Photovolt: Res. Appl. 2007, 15, 659. 

    47. [47]

      Zhen, C.-G.; Becker, U.; Kieffer, J. J. Phys. Chem. A 2009, 113, 9707. 

    48. [48]

      Nayak, P. K.; Periasamy, N. Org. Electron. 2009, 10, 1396.

    49. [49]

      Schwenn, P. E.; Burn, P. L.; Powell, B. J. Org. Electron. 2011, 12, 394. 

    50. [50]

      Shen, F. G.; Peng, A. D.; Chen, Y.; Dong, Y.; Jiang, Z. W.; Wang, Y. B.; Fu, H. B.; Yao, J. N. J. Phys. Chem. A 2008, 112, 2206. 

    51. [51]

      Akaike, K.; Kanai, K.; Yoshida, H.; Tsutsumi, J.; Nishi, T.; Sato, N.; Ouchi, Y.; Seki, K. J. Appl. Phys. 2008, 104, 023710. 

    52. [52]

      Guan, Z.-L.; Kim, J. B.; Wang, H.; Jaye, C.; Fischer, D. A.; Loo, Y.-L.; Kahn, A. Org. Electron. 2010, 11, 1779.

    53. [53]

      Kanai, K.; Akaike, K.; Koyasu, K.; Sakai, K.; Nishi, T.; Kamizuru, Y.; Nishi, T.; Ouchi, Y.; Seki, K. Appl. Phys. A: Mater. Sci. Process. 2009, 95, 309. 

    54. [54]

      Zang, D.-Y.; So, F. F.; Forrest, S. R. Appl. Phys. Lett. 1991, 59, 823. 

    55. [55]

      Brocks, G.; van den Brink, J.; Morpurgo, A. F. Phys. Rev. Lett. 2004, 93, 146405. 

    56. [56]

      Mossotti, O. F. Memorie Mat. Fis. Modena. 1985, 24, 49.

    57. [57]

      Mihailetchi, V. D.; van Duren, J. K. J.; Blom, P. W. M.; Hummelen, J. C.; Janssen, R. A. J.; Kroon, J. M.; Rispens, M. T.; Verhees, W. J. H.; Wienk M. M. Adv. Funct. Mater. 2003, 13, 43. 

    58. [58]

      Malagoli, M.; Brédas, J. L. Chem. Phys. Lett. 2000, 327, 13. 

    59. [59]

      Lemaur, V.; da Silva Filho, D. A.; Coropceanu, V.; Lehmann, M.; Geerts, Y.; Piris, J.; Debije, M. G.; van de Craats, A. M.; Senthilkumar, K.; Siebbeles, L. D. A.; Warman, J. M.; Brédas, J.-L.; Cornil, J. J. Am. Chem. Soc. 2004, 126, 3271. 

    60. [60]

      Lemaur, V.; Steel, M.; Beljonne, D.; Brédas, J.-L.; Cornil, J. J. Am. Chem. Soc. 2005, 127, 6077. 

    61. [61]

      Marcus, R. A. J. Chem. Phys. 1965, 43, 679. 

    62. [62]

      Imahori, H.; Tkachenko, N. V.; Vehmanen, V.; Tamaki, K.; Lemmetyinen, H.; Sakata, Y.; Fukuzumi, S. J. Phys. Chem. A 2001, 105, 1750. 

    63. [63]

      D'Souza, F.; Chitta, R.; Ohkubo, K.; Tasior, M.; Subbaiyan, N. K.; Zandler, M. E.; Rogacki, M. K.; Gryko, D. T.; Fukuzumi, S. J. Am. Chem. Soc. 2008, 130, 14263. 

    64. [64]

      Coropceanu, V.; Cornil, J.; da Silva Filho, D. A.; Olivier, Y.; Silbey, R.; Brédas, J.-L. Chem. Rev. 2007, 107, 926.

    65. [65]

      Brédas, J.-L.; Beljonne, D.; Coropceanu, V.; Cornil, J. Chem. Rev. 2004, 104, 4971.

    66. [66]

      Marcus, R. A. Rev. Mod. Phys. 1993, 65, 599. 

    67. [67]

      Hush, N. S. J. Chem. Phys. 1958, 28, 962. 

    68. [68]

    69. [69]

    70. [70]

      Yang, X. D.; Li, Q. K.; Shuai, Z. G. Nanotechnology 2007, 18, 424029. 

    71. [71]

      Yang, X. D.; Wang, L. J.; Wang, C. L.; Long, W.; Shuai, Z. G. Chem. Mater. 2008, 20, 3205. 

    72. [72]

      Wen, S.-H.; Deng, W.-Q.; Han, K.-L. Phys. Chem. Chem. Phys. 2010, 12, 9267.

    73. [73]

      Nan, G. J.; Li, Z. S. Org. Electron. 2012, 13, 1229. 

    74. [74]

    75. [75]

      Yin, S. W.; Li, L. L.; Yang, Y. M.; Reimers, J. R. J. Phys. Chem. C 2012, 116, 14826. 

    76. [76]

      Liu, T.; Cheung, D. L.; Troisi, A. Phys. Chem. Chem. Phys. 2011, 13, 21461. 

  • 加载中
    1. [1]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    2. [2]

      Yikai WangXiaolin JiangHaoming SongNan WeiYifan WangXinjun XuCuihong LiHao LuYahui LiuZhishan Bo . Thickness-Insensitive, Cyano-Modified Perylene Diimide Derivative as a Cathode Interlayer Material for High-Efficiency Organic Solar Cells. Acta Physico-Chimica Sinica, 2025, 41(3): 2406007-0. doi: 10.3866/PKU.WHXB202406007

    3. [3]

      Jichao XUMing HUXichang CHENChunhui WANGLeichen WANGLingyi ZHOUXing HEXiamin CHENGSu JING . Construction and hydrogen peroxide-activated chemodynamic activity of ferrocene?benzoselenadiazole conjugate. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1495-1504. doi: 10.11862/CJIC.20250144

    4. [4]

      Tingting Yu Si Chen Lianglong Sun Tongtong Shi Kai Sun Xin Wang . Comprehensive Experimental Design for the Photochemical Synthesis, Analysis, and Characterization of Difluoropyrroles. University Chemistry, 2024, 39(11): 196-203. doi: 10.3866/PKU.DXHX202401022

    5. [5]

      Yanglin JiangMingqing ChenMin LiangYige YaoYan ZhangPeng WangJianping Zhang . Experimental and Theoretical Investigations of Solvent Polarity Effect on ESIPT Mechanism in 4′-N,N-diethylamino-3-hydroxybenzoflavone. Acta Physico-Chimica Sinica, 2025, 41(2): 2309027-0. doi: 10.3866/PKU.WHXB202309027

    6. [6]

      Yihao Zhao Jitian Rao Jie Han . Synthesis and Photochromic Properties of 3,3-Diphenyl-3H-Naphthopyran: Design and Teaching Practice of a Comprehensive Organic Experiment. University Chemistry, 2024, 39(10): 149-155. doi: 10.3866/PKU.DXHX202402050

    7. [7]

      Ke QiuFengmei WangMochou LiaoKerun ZhuJiawei ChenWei ZhangYongyao XiaXiaoli DongFei Wang . A Fumed SiO2-based Composite Hydrogel Polymer Electrolyte for Near-Neutral Zinc-Air Batteries. Acta Physico-Chimica Sinica, 2024, 40(3): 2304036-0. doi: 10.3866/PKU.WHXB202304036

    8. [8]

      Liangzhen Hu Li Ni Ziyi Liu Xiaohui Zhang Bo Qin Yan Xiong . A Green Chemistry Experiment on Electrochemical Synthesis of Benzophenone. University Chemistry, 2024, 39(6): 350-356. doi: 10.3866/PKU.DXHX202312001

    9. [9]

      Yixuan Gao Lingxing Zan Wenlin Zhang Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091

    10. [10]

      Nengmin ZHUWenhao ZHUXiaoyao YINSongzhi ZHENGHao LIZeyuan WANGWenhao WEIXuanheng CHENWeihai SUN . Preparation of high-performance CsPbBr3 perovskite solar cells by the aqueous solution solvent method. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1131-1140. doi: 10.11862/CJIC.20240419

    11. [11]

      Pengyu DongYue JiangZhengchi YangLicheng LiuGu LiXinyang WenZhen WangXinbo ShiGuofu ZhouJun-Ming LiuJinwei Gao . NbSe2 Nanosheets Improved the Buried Interface for Perovskite Solar Cells. Acta Physico-Chimica Sinica, 2025, 41(3): 2407025-0. doi: 10.3866/PKU.WHXB202407025

    12. [12]

      Yameen AhmedXiangxiang FengYuanji GaoYang DingCaoyu LongMustafa HaiderHengyue LiZhuan LiShicheng HuangMakhsud I. SaidaminovJunliang Yang . Interface Modification by Ionic Liquid for Efficient and Stable FAPbI3 Perovskite Solar Cells. Acta Physico-Chimica Sinica, 2024, 40(6): 2303057-0. doi: 10.3866/PKU.WHXB202303057

    13. [13]

      Yawen GuoDawei LiYang GaoCuihong Li . Recent Progress on Stability of Organic Solar Cells Based on Non-Fullerene Acceptors. Acta Physico-Chimica Sinica, 2024, 40(6): 2306050-0. doi: 10.3866/PKU.WHXB202306050

    14. [14]

      Wei HEJing XITianpei HENa CHENQuan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364

    15. [15]

      南开大学师唯/华北电力大学(保定)刘景维:二维配位聚合物中有序的亲锂冠醚位点用于无枝晶锂沉积

      . CCS Chemistry, 2025, 7(0): -.

    16. [16]

      Zhuoming Liang Ming Chen Zhiwen Zheng Kai Chen . Multidimensional Studies on Ketone-Enol Tautomerism of 1,3-Diketones By 1H NMR. University Chemistry, 2024, 39(7): 361-367. doi: 10.3866/PKU.DXHX202311029

    17. [17]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    18. [18]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    19. [19]

      Xinhao Yan Guoliang Hu Ruixi Chen Hongyu Liu Qizhi Yao Jiao Li Lingling Li . Polyethylene Glycol-Ammonium Sulfate-Nitroso R Salt System for the Separation of Cobalt (II). University Chemistry, 2024, 39(6): 287-294. doi: 10.3866/PKU.DXHX202310073

    20. [20]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

Metrics
  • PDF Downloads(0)
  • Abstract views(1749)
  • HTML views(444)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return