Citation: Huang Gang, Chen Yuzhen, Jiang Hailong. Metal-Organic Frameworks for Catalysis[J]. Acta Chimica Sinica, ;2015, 74(2): 113-129. doi: 10.6023/A15080547 shu

Metal-Organic Frameworks for Catalysis

  • Corresponding author: Jiang Hailong, jianglab@ustc.edu.cn
  • Received Date: 17 August 2015

    Fund Project: the Recruitment Program of Global Youth Experts and the Fundamental Research Funds for the Central Universities No. WK2060190026the Natural Science Foundation of Anhui Province No. 1408085MB23the National Natural Science Foundation of China Nos. 21371162, 51301159the 973 Program No. 2014CB931803

Figures(20)

  • Emerging as a relatively new class of porous materials, metal-organic frameworks (MOFs), possessing diversified, designable and tailorable structures as well as ultrahigh surface area, have captured broad research interest and shown potential applications in many fields in recent years. In particular, MOFs have attracted intensive attention in catalysis. In the first two parts of this review, according to the origin of active sites, for examples, coordinatively unsaturated metal centers, functional organic linkers, functional sites chemically grafted onto the framework, as well as metal complexes or metal nanoparticles (MNPs) encapsulated inside the MOFs, etc., we have summarized the recent progress in heterogeneous catalysis over MOFs and their composites in recent several years. In addition, the MOF-based photocatalysis and electrocatalysis have also been briefly introduced in the subsequent two parts. Finally, the further development and challenge in MOF catalysis are discussed.
  • 加载中
    1. [1]

      Yaghi, O. M.; Li, G.; Li, H. Nature 1995, 378, 703. 

    2. [2]

      Moulton, B.; Zaworotko, M. J. Chem. Rev. 2001, 101, 1629. 

    3. [3]

      Férey, G.; Mellot-Draznieks, C.; Serre, C.; Millange, F. Acc. Chem. Res. 2005, 38, 217. 

    4. [4]

      Hill, R. J.; Long, D.-L.; Champness, N. R.; Hubberstey, P.; Schrder, M. Acc. Chem. Res. 2005, 38, 335. 

    5. [5]

       

    6. [6]

       

    7. [7]

       

    8. [8]

       

    9. [9]

       

    10. [10]

      Wang, W.; Yuan, Y.; Sun, F.-X.; Zhu, G.-S. Chin. Chem. Lett. 2014, 25, 1407.

    11. [11]

      Wen, R.-M.; Han, S.-D.; Wang, H.; Zhang, Y.-H. Chin. Chem. Lett. 2014, 25, 854.

    12. [12]

      Zhao, J.-A.; Chen, S.-F.; Zhao, D.-D.; Guo, Y.; Peng, K.; Hu, J.-Y. Chin. Chem. Lett. 2013, 24, 483.

    13. [13]

      Long, J. R.; Yaghi, O. M. Chem. Soc. Rev. 2009, 38, 1213. 

    14. [14]

      Zhou, H.-C.; Long, J. R.; Yaghi, O. M. Chem. Rev. 2012, 112, 673. 

    15. [15]

      Furukawa, H.; Cordova, K. E.; O’Keeffe, M.; Yaghi, O. M. Science 2013, 341, 974.

    16. [16]

      Zhou, H.-C.; Kitagawa, S. Chem. Soc. Rev. 2014, 43, 5415. 

    17. [17]

      Cook, T. R.; Zheng, Y.-R.; Stang, P. J. Chem. Rev. 2013, 113, 734. 

    18. [18]

      Ma, S.; Zhou, H.-C. Chem. Commun. 2010, 46, 44.

    19. [19]

      Sumida, K.; Rogow, D. L.; Mason, J. A.; McDonald, T. M.; Bloch, E. D.; Herm, Z. R.; Bae, T.-H.; Long, J. R. Chem. Rev. 2012, 112, 724. 

    20. [20]

      Suh, M. P.; Park, H. J.; Prasad, T. K.; Lim, D.-W. Chem. Rev. 2012, 112, 782. 

    21. [21]

      Nugent, P.; Belmabkhout, Y.; Burd, S. D.; Cairns, A. J.; Luebke, R.; Forrest, K.; Pham, T.; Ma, S.; Space, B.; Wojtas, L.; Eddaoudi, M.; Zaworotko, M. J. Nature 2013, 495, 80. 

    22. [22]

      Li, J.-R.; Sculley, J.; Zhou, H.-C. Chem. Rev. 2012, 112, 869.

    23. [23]

      He, Y.; Zhou, W.; Qian, G.; Chen, B. Chem. Soc. Rev. 2014, 43, 5657. 

    24. [24]

      Seo, J. S.; Whang, D.; Lee, H.; Jun, S. I.; Oh, J.; Jeon, Y. J.; Kim, K. Nature 2000, 404, 982. 

    25. [25]

      Corma, A.; García, H.; Llabrés i Xamena, F. X. Chem. Rev. 2010, 110, 4606. 

    26. [26]

      Jiang, H.-L.; Xu, Q. Chem. Commun. 2011, 47, 3351.

    27. [27]

      Gascon, J.; Corma, A.; Kapteijn, F.; Llabrés i Xamena, F. X. ACS Catal. 2014, 4, 361. 

    28. [28]

      Zhang, T.; Lin, W. Chem. Soc. Rev. 2014, 43, 5982. 

    29. [29]

      Liu, J.; Chen, L.; Cui, H.; Zhang, J.; Zhang, L.; Su, C.-Y. Chem. Soc. Rev. 2014, 43, 6011.

    30. [30]

      Dhakshinamoorthy, A.; Alvaro, M.; Garcia, H. Chem. Eur. J. 2010, 16, 8530. 

    31. [31]

      Chen, B.; Xiang, S.; Qian, G. Acc. Chem. Res. 2010, 43, 1115. 

    32. [32]

      Takashima, Y.; Martinez, V. M.; Furukawa, S.; Kondo, M.; Shimomura, S.; Uehara, H.; Nakahama, M.; Sugimoto, K.; Kitagawa, S. Nat. Commun. 2011, 2, 168.

    33. [33]

      Kreno, L. E.; Leong, K.; Farha, O. K.; Allendorf, M.; Van Duyne, R. P.; Hupp, J. T. Chem. Rev. 2012, 112, 1105. 

    34. [34]

      Lin, R.-B.; Li, F.; Liu, S.-Y.; Qi, X.-L.; Zhang, J.-P.; Chen, X.-M. Angew. Chem., Int. Ed. 2013, 52, 13429.

    35. [35]

      Hu, Z.; Deibert, B. J.; Li, J. Chem. Soc. Rev. 2014, 43, 5815. 

    36. [36]

      Zhang, M.; Feng, G.; Song, Z.; Zhou, Y.-P.; Chao, H.-Y.; Yuan, D.; Tan, T. T. Y.; Guo, Z.; Hu, Z.; Tang, B. Z.; Liu, B.; Zhao, D. J. Am. Chem. Soc. 2014, 136, 7241. 

    37. [37]

      An, J.; Geib, S. J.; Rosi, N. L. J. Am. Chem. Soc. 2009, 131, 8376. 

    38. [38]

      Horcajada, P.; Gref, R.; Baati, T.; Allan, P. K.; Maurin, G.; Couvreur, P.; Férey, G.; Morris, R. E.; Serre, C. Chem. Rev. 2012, 112, 1232.

    39. [39]

      Ramaswamy, P.; Wong, N. E.; Shimizu, G. K. H. Chem. Soc. Rev. 2014, 43, 5913. 

    40. [40]

      Mallick, A.; Garai, B.; Díaz, D. D.; Banerjee, R. Angew. Chem., Int. Ed. 2013, 52, 13755. 

    41. [41]

      Kitagawa, H. Nat. Chem. 2009, 1, 689.

    42. [42]

      Farrusseng, D.; Aguado, S.; Pinel, C. Angew. Chem., Int. Ed. 2009, 48, 7502. 

    43. [43]

      Choi, K. M.; Na, K.; Somorjai, G. A.; Yaghi, O. M. J. Am. Chem. Soc. 2015, 137, 7810. 

    44. [44]

      Wang, Z.; Cohen, S. M. Chem. Soc. Rev. 2009, 38, 1315. 

    45. [45]

      Dhakshinamoorthy, A.; Alvaro, M.; Garcia, H. Chem. Commun. 2012, 48, 11275.

    46. [46]

      Chui, S. S.-Y.; Lo, S. M.-F.; Charmant, J. P. H.; Orpen, A. G.; Williams, I. D. Science 1999, 283, 1148. 

    47. [47]

      Schlichte, K.; Kratzke, T.; Kaskel, S. Microporous Mesoporous Mater. 2004, 73, 81. 

    48. [48]

      Alaerts, L.; Séguin, E.; Poelman, H.; Thibault-Starzyk, F.; Jacobs, P. A.; De Vos, D. E. Chem. Eur. J. 2006, 12, 7353. 

    49. [49]

      Férey, G.; Mellot-Draznieks, C.; Serre, C.; Millange, F.; Dutour, J.; Surblé, S.; Margiolaki, I. Science 2005, 309, 2040.

    50. [50]

      Henschel, A.; Gedrich, K.; Kraehnert, R.; Kaskel, S. Chem. Commun. 2008, 4192.

    51. [51]

      Kim, J.; Bhattacharjee, S.; Jeong, K.-E.; Jeong, S.-Y.; Ahn, W.-S. Chem. Commun. 2009, 3904.

    52. [52]

      Jiang, Z.-R.; Wang, H.; Hu, Y.; Lu, J.; Jiang, H.-L. ChemSusChem 2015, 8, 878.

    53. [53]

      Akiyama, G.; Matsuda, R.; Sato, H.; Takata, M.; Kitagawa, S. Adv. Mater. 2011, 23, 3294.

    54. [54]

      Zhou, Y.-X.; Chen, Y.-Z.; Hu, Y.; Huang, G.; Yu, S.-H.; Jiang, H.-L. Chem. Eur. J. 2014, 20, 14976.

    55. [55]

      Bloch, E. D.; Britt, D.; Lee, C.; Doonan, C. J.; Uribe-Romo, F. J.; Furukawa, H.; Long, J. R.; Yaghi, O. M. J. Am. Chem. Soc. 2010, 132, 14382. 

    56. [56]

       

    57. [57]

      Valvekens, P.; Bloch, E. D.; Long, J. R.; Ameloot, R.; De Vos, D. E. Catal. Today 2015, 246, 55. 

    58. [58]

      Feng, D.; Gu, Z.-Y.; Li J.-R.; Jiang, H.-L.; Wei, Z.; Zhou, H.-C. Angew. Chem., Int. Ed. 2012, 51, 10307.

    59. [59]

      Vermoortele, F.; Ameloot, R.; Vimont, A.; Serre, C.; De Vos, D. Chem. Commun. 2011, 47, 1521.

    60. [60]

       

    61. [61]

      Banerjee, M.; Das, S.; Yoon, M.; Choi, H. J.; Hyun, M. H.; Park, S. M.; Seo, G.; Kim, K. J. Am. Chem. Soc. 2009, 131, 7524. 

    62. [62]

      Seo, J. S.; Whang, D.; Lee, H.; Jun, S. I.; Oh, J.; Jeon, Y. J.; Kim, K. Nature 2000, 404, 982. 

    63. [63]

      Ma, L.; Abney, C.; Lin, W. Chem. Soc. Rev. 2009, 38, 1248. 

    64. [64]

      Yoon, M.; Srirambalaji, R.; Kim, K. Chem. Rev. 2012, 112, 1196.

    65. [65]

       

    66. [66]

      Alkordi, M. H.; Liu, Y.; Larsen, R. W.; Eubank, J. F.; Eddaoudi, M. J. Am. Chem. Soc. 2008, 130, 12639. 

    67. [67]

      Li, B.; Zhang, Y.; Ma, D.; Ma, T.; Shi, Z.; Ma, S. J. Am. Chem. Soc. 2014, 136, 1202. 

    68. [68]

      Dhakshinamoorthy, A.; Garcia, H. Chem. Soc. Rev. 2012, 41, 5262. 

    69. [69]

      Moon, H. R.; Lim, D.-W.; Suh, M. P. Chem. Soc. Rev. 2013, 42, 1807. 

    70. [70]

      Meilikhov, M.; Yusenko, K.; Esken, D.; Turner, S.; Tendeloo, G. V.; Fischer, R. A. Eur. J. Inorg. Chem. 2010, 3701.

    71. [71]

      Hermes, S.; Schrter, M.-K.; Schmid, R.; Khodeir, L.; Muhler, M.; Tissler, A.; Fischer, R. W.; Fischer, R. A. Angew. Chem., Int. Ed. 2005, 44, 6237. 

    72. [72]

      Ishida, T.; Nagaoka, M.; Akita, T.; Haruta, M. Chem. Eur. J. 2008, 14, 8456. 

    73. [73]

      Yuan, B.; Pan, Y.; Li, Y.; Yin, B.; Jiang, H. Angew. Chem., Int. Ed. 2010, 49, 4054. 

    74. [74]

      Long, J.; Liu, H.; Wu, S.; Liao, S.; Li, Y. ACS Catal. 2013, 3, 647.

    75. [75]

      Aijaz, A.; Karkamkar, A.; Choi, Y. J.; Tsumori, N.; Rnnebro, E.; Autrey, T.; Shioyama, H.; Xu, Q. J. Am. Chem. Soc. 2012, 134, 13926. 

    76. [76]

      Schrder, F.; Esken, D.; Cokoja, M.; van den Berg, M. W. E.; Lebedev, O. I.; Van Tendeloo, G.; Walaszek, B.; Buntkowsky, G.; Limbach, H.-H.; Chaudret, B.; Fischer, R. A. J. Am. Chem. Soc. 2008, 130, 6119. 

    77. [77]

      Jiang, H.-L.; Liu, B.; Akita, T.; Haruta, M.; Sakurai, H.; Xu, Q. J. Am. Chem. Soc. 2009, 131, 11302. 

    78. [78]

       

    79. [79]

      Jiang, H.-L.; Akita, T.; Ishida, T.; Haruta, M.; Xu, Q. J. Am. Chem. Soc. 2011, 133, 1304. 

    80. [80]

      Gu, X.; Lu, Z.-H.; Jiang, H.-L.; Akita, T.; Xu, Q. J. Am. Chem. Soc. 2011, 133, 11822. 

    81. [81]

      Guo, Z.; Xiao, C.; Maligal-Ganesh, R. V.; Zhou, L.; Goh, T. W.; Li, X.; Tesfagaber, D.; Thiel, A.; Huang, W. ACS Catal. 2014, 4, 1340.

    82. [82]

      Yang, Q.; Chen, Y.-Z.; Wang, Z. U.; Xu, Q.; Jiang, H.-L. Chem. Commun. 2015, 51, 10419.

    83. [83]

      Chen, Y.-Z.; Xu, Q.; Yu, S.-H.; Jiang, H.-L. Small 2015, 11, 71.

    84. [84]

      Chen, Y.-Z.; Liang, L.; Yang, Q.; Hong, M.; Xu, Q.; Yu, S.-H.; Jiang, H.-L. Mater. Horiz. 2015, 2, 606.

    85. [85]

      Zhang, H.-X.; Liu, M.; Bu, X.; Zhang, J. Sci. Rep. 2014, 4, 3923.

    86. [86]

      Chen, Y.-Z.; Zhou, Y.-X.; Wang, H.; Lu, J.; Uchida, T.; Xu, Q.; Yu, S.-H.; Jiang, H.-L. ACS Catal. 2015, 5, 2062.

    87. [87]

      Lu, G.; Li, S.; Guo, Z.; Farha, O. K.; Hauser, B. G.; Qi, X.; Wang, Y.; Wang, X.; Han, S.; Liu, X.; Duchene, J. S.; Zhang, H.; Zhang, Q.; Chen, X.; Ma, J.; Loo, S. C. J.; Wei, W. D.; Yang, Y.; Hupp, J. T.; Huo, F. Nat. Chem. 2012, 4, 310.

    88. [88]

      Kuo, C.-H.; Tang, Y.; Chou, L.-Y.; Sneed, B. T., Brodsky, C. N.; Zhao, Z.; Tsung, C.-K. J. Am. Chem. Soc. 2012, 134, 14345. 

    89. [89]

      Yang, Y.; Wang, F.; Yang, Q.; Hu, Y.; Yang, H.; Chen, Y.-Z.; Liu, H.; Zhang, G.; Lu, J.; Jiang, H.-L.; Xu, H. ACS Appl. Mater. Interfaces 2014, 6, 18163. 

    90. [90]

      Zhao, H.; Song, H.; Xu, L.; Chou, L. Appl. Catal. A: Gen. 2013, 456, 188. 

    91. [91]

      Zhou, Y.-X.; Chen, Y.-Z.; Cao, L.; Lu, J.; Jiang, H.-L. Chem. Commun. 2015, 51, 8292.

    92. [92]

       

    93. [93]

      Tachikawa, T.; Choi, J. R.; Fujitsuka, M.; Majima, T. J. Phys. Chem. C 2008, 112, 14090.

    94. [94]

      Wang, C.-C.; Li, J.-R.; Lv, X.-L.; Zhang, Y.-Q.; Guo, G. Energy Environ. Sci. 2014, 7, 2831. 

    95. [95]

      Du, J.-J.; Yuan, Y.-P.; Sun, J.-X.; Peng, F.-M.; Jiang, X.; Qiu, L.-G.; Xie, A.-J.; Shen, Y.-H.; Zhu, J.-F. J. Hazard. Mater. 2011, 190, 945.

    96. [96]

      Yang, H.; He, X.-W.; Wang, F.; Kang, Y.; Zhang, J. J. Mater. Chem. 2012, 22, 21849. 

    97. [97]

      Wang, C.; Xie, Z.; deKrafft, K. E.; Lin, W. J. Am. Chem. Soc. 2011, 133, 13445. 

    98. [98]

      Long, J.; Wang, S.; Ding, Z.; Wang, S.; Zhou, Y.; Huang, L.; Wang, X. Chem. Commun. 2012, 48, 11656.

    99. [99]

      Kataoka, Y.; Sato, K.; Miyazaki, Y.; Masuda, K.; Tanaka, H.; Naito, S.; Mori, W. Energy Environ. Sci. 2009, 2, 397.

    100. [100]

       

    101. [101]

      Wang, C.; deKrafft, K. E.; Lin, W. J. Am. Chem. Soc. 2012, 134, 7211. 

    102. [102]

      He, J.; Yan, Z.; Wang, J.; Xie, J.; Jiang, L.; Shi, Y.; Yuan, F.; Yu, F.; Sun, Y. Chem. Commun. 2013, 49, 6761.

    103. [103]

      Fu, Y.; Sun, D.; Chen, Y.; Huang, R.; Ding, Z.; Fu, X.; Li, Z. Angew. Chem., Int. Ed. 2012, 51, 3364. 

    104. [104]

      Li, R.; Deng, M.; Wang, H.; Wang, X.; Hu, Y.; Jiang, H.-L.; Jiang, J.; Zhang, Q.; Xie, Y.; Xiong, Y. Adv. Mater. 2014, 26, 4783.

    105. [105]

      Xu, H.-Q.; Hu, J.; Wang, D.; Li, Z.; Zhang, Q.; Luo, Y.; Yu, S.-H.; Jiang, H.-L. J. Am. Chem. Soc. 2015, 137, 13440.

    106. [106]

      Chen, Y.-Z.; Wang, C.; Wu, Z.-Y.; Xiong, Y.; Xu, Q.; Yu, S.-H.; Jiang, H.-L. Adv. Mater. 2015, 27, 5010.

    107. [107]

      Zhang, W.; Wu, Z.-Y.; Jiang, H.-L.; Yu, S.-H. J. Am. Chem. Soc. 2014, 136, 14385.

    108. [108]

      Qin, J.-S.; Du, D.-Y.; Guan, W.; Bo, X.-J.; Li, Y.-F.; Guo, L.-P.; Su, Z.-M.; Wang, Y.-Y.; Lan, Y.-Q.; Zhou, H.-C. J. Am. Chem. Soc. 2015, 137, 7169.

    109. [109]

      Ma, T. Y.; Dai, S.; Jaroniec, M.; Qiao, S. Z. J. Am. Chem. Soc. 2014, 136, 13925. 

    110. [110]

      Jiang, H.-L.; Liu, B.; Lan, Y.-Q.; Kuratani, K.; Akita, T.; Shioyama, H.; Zong, F.; Xu, Q. J. Am. Chem. Soc. 2011, 133, 11854. 

    111. [111]

      Tang, J.; Salunkhe, R. R.; Liu, J.; Torad, N. L.; Imura, M.; Furukawa, S.; Yamauchi, Y. J. Am. Chem. Soc. 2015, 137, 1572. 

    112. [112]

      Zhang, L.; Wu, H. B.; Madhavi, S.; Hng, H. H.; Lou, X. W. J. Am. Chem. Soc. 2012, 134, 17388. 

    113. [113]

      Cao, X.; Zheng, B.; Rui, X.; Shi, W.; Yan, Q.; Zhang, H. Angew. Chem., Int. Ed. 2014, 126, 1428. 

    114. [114]

      Lee, J.; Farha, O. K.; Roberts, J.; Scheidt, K. A.; Nguyen, S. T.; Hupp, J. T. Chem. Soc. Rev. 2009, 38, 1450. 

    115. [115]

      Ranocchiari, M.; van Bokhoven, J. A. Phys. Chem. Chem. Phys. 2011, 13, 6388. 

    116. [116]

      Valvekens, P.; Vermoortele, F.; De Vos, D. Catal. Sci. Technol. 2013, 3, 1435.

    117. [117]

      Song, Y.; Li, X.; Sun, L.; Wang, L. RSC Adv. 2015, 5, 7267.

    118. [118]

      Wang, J.-L.; Wang, C.; Lin, W. ACS Catal. 2012, 2, 2630.

    119. [119]

      Morozan, A.; Jaouen, F. Energy Environ. Sci. 2012, 5, 9269.

    120. [120]

      Xia, W.; Mahmood, A.; Zou, R.; Xu, Q. Energy Environ. Sci. 2015, 8, 1837.

    121. [121]

      Feng, D.; Gu, Z.-Y.; Chen, Y.-P.; Park, J.; Wei, Z.; Sun, Y.; Bosch, M.; Yuan, S.; Zhou, H.-C. J. Am. Chem. Soc. 2014, 136, 17714.

    122. [122]

      Feng, D.; Chung, W.-C.; Wei, Z.; Gu, Z.-Y.; Jiang, H.-L.; Chen, Y.-P.; Darensbourg, D. J.; Zhou, H.-C. J. Am. Chem. Soc. 2013, 135, 17105. 

    123. [123]

      Jiang, H.-L.; Feng, D.; Wang, K.; Gu, Z.-Y.; Wei, Z.; Chen, Y.-P.; Zhou, H.-C. J. Am. Chem. Soc. 2013, 135, 13934.

    124. [124]

      Mondloch, J. E.; Bury, W.; Fairen-Jimenez, D.; Kwon, S.; DeMarco, E. J.; Weston, M. H.; Sarjeant, A. A.; Nguyen, S. T.; Stair, P. C.; Snurr, R. Q.; Farha, O. K.; Hupp, J. T. J. Am. Chem. Soc. 2013, 135, 10294. 

    125. [125]

      Zhang, W.; Hu, Y.; Ge, J.; Jiang, H.-L.; Yu, S.-H. J. Am. Chem. Soc. 2014, 136, 16978.

  • 加载中
    1. [1]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    2. [2]

      Jiajie Li Xiaocong Ma Jufang Zheng Qiang Wan Xiaoshun Zhou Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117

    3. [3]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    4. [4]

      Fangfang WANGJiaqi CHENWeiyin SUN . CuBi@Cu-MOF composite catalysts for electrocatalytic CO2 reduction to HCOOH. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 97-104. doi: 10.11862/CJIC.20240350

    5. [5]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    6. [6]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    7. [7]

      Tongtong Zhao Yan Wang Shiyue Qin Liang Xu Zhenhua Li . New Experiment Development: Upgrading and Regeneration of Discarded PET Plastic through Electrocatalysis. University Chemistry, 2024, 39(3): 308-315. doi: 10.3866/PKU.DXHX202309003

    8. [8]

      Xueting Cao Shuangshuang Cha Ming Gong . 电催化反应中的界面双电层:理论、表征与应用. Acta Physico-Chimica Sinica, 2025, 41(5): 100041-. doi: 10.1016/j.actphy.2024.100041

    9. [9]

      Jianchun Wang Ruyu Xie . The Fantastical Dance of Miss Electron: Contra-Thermodynamic Electrocatalytic Reactions. University Chemistry, 2025, 40(4): 331-339. doi: 10.12461/PKU.DXHX202406082

    10. [10]

      Ke Li Chuang Liu Jingping Li Guohong Wang Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009

    11. [11]

      Shijie Li Ke Rong Xiaoqin Wang Chuqi Shen Fang Yang Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-Scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-. doi: 10.3866/PKU.WHXB202403005

    12. [12]

      Xin Zhou Zhi Zhang Yun Yang Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008

    13. [13]

      Yuchen Zhou Huanmin Liu Hongxing Li Xinyu Song Yonghua Tang Peng Zhou . 设计热力学稳定的贵金属单原子光催化剂用于乙醇的高效非氧化转化形成高纯氢和增值产物乙醛. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-. doi: 10.1016/j.actphy.2025.100067

    14. [14]

      Xue Dong Xiaofu Sun Shuaiqiang Jia Shitao Han Dawei Zhou Ting Yao Min Wang Minghui Fang Haihong Wu Buxing Han . 碳修饰的铜催化剂实现安培级电流电化学还原CO2制C2+产物. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-. doi: 10.3866/PKU.WHXB202404012

    15. [15]

      Fugui XIDu LIZhourui YANHui WANGJunyu XIANGZhiyun DONG . Functionalized zirconium metal-organic frameworks for the removal of tetracycline from water. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 683-694. doi: 10.11862/CJIC.20240291

    16. [16]

      Mengzhen JIANGQian WANGJunfeng BAI . Research progress on low-cost ligand-based metal-organic frameworks for carbon dioxide capture from industrial flue gas. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 1-13. doi: 10.11862/CJIC.20240355

    17. [17]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    18. [18]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    19. [19]

      Jianyin He Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . ZnCoP/CdLa2S4肖特基异质结的构建促进光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-. doi: 10.3866/PKU.WHXB202404030

    20. [20]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

Metrics
  • PDF Downloads(0)
  • Abstract views(4683)
  • HTML views(1347)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return