Citation: Huang Gang, Chen Yuzhen, Jiang Hailong. Metal-Organic Frameworks for Catalysis[J]. Acta Chimica Sinica, ;2015, 74(2): 113-129. doi: 10.6023/A15080547 shu

Metal-Organic Frameworks for Catalysis

  • Corresponding author: Jiang Hailong, jianglab@ustc.edu.cn
  • Received Date: 17 August 2015

    Fund Project: the Recruitment Program of Global Youth Experts and the Fundamental Research Funds for the Central Universities No. WK2060190026the Natural Science Foundation of Anhui Province No. 1408085MB23the National Natural Science Foundation of China Nos. 21371162, 51301159the 973 Program No. 2014CB931803

Figures(20)

  • Emerging as a relatively new class of porous materials, metal-organic frameworks (MOFs), possessing diversified, designable and tailorable structures as well as ultrahigh surface area, have captured broad research interest and shown potential applications in many fields in recent years. In particular, MOFs have attracted intensive attention in catalysis. In the first two parts of this review, according to the origin of active sites, for examples, coordinatively unsaturated metal centers, functional organic linkers, functional sites chemically grafted onto the framework, as well as metal complexes or metal nanoparticles (MNPs) encapsulated inside the MOFs, etc., we have summarized the recent progress in heterogeneous catalysis over MOFs and their composites in recent several years. In addition, the MOF-based photocatalysis and electrocatalysis have also been briefly introduced in the subsequent two parts. Finally, the further development and challenge in MOF catalysis are discussed.
  • 加载中
    1. [1]

      Yaghi, O. M.; Li, G.; Li, H. Nature 1995, 378, 703. 

    2. [2]

      Moulton, B.; Zaworotko, M. J. Chem. Rev. 2001, 101, 1629. 

    3. [3]

      Férey, G.; Mellot-Draznieks, C.; Serre, C.; Millange, F. Acc. Chem. Res. 2005, 38, 217. 

    4. [4]

      Hill, R. J.; Long, D.-L.; Champness, N. R.; Hubberstey, P.; Schrder, M. Acc. Chem. Res. 2005, 38, 335. 

    5. [5]

       

    6. [6]

       

    7. [7]

       

    8. [8]

       

    9. [9]

       

    10. [10]

      Wang, W.; Yuan, Y.; Sun, F.-X.; Zhu, G.-S. Chin. Chem. Lett. 2014, 25, 1407.

    11. [11]

      Wen, R.-M.; Han, S.-D.; Wang, H.; Zhang, Y.-H. Chin. Chem. Lett. 2014, 25, 854.

    12. [12]

      Zhao, J.-A.; Chen, S.-F.; Zhao, D.-D.; Guo, Y.; Peng, K.; Hu, J.-Y. Chin. Chem. Lett. 2013, 24, 483.

    13. [13]

      Long, J. R.; Yaghi, O. M. Chem. Soc. Rev. 2009, 38, 1213. 

    14. [14]

      Zhou, H.-C.; Long, J. R.; Yaghi, O. M. Chem. Rev. 2012, 112, 673. 

    15. [15]

      Furukawa, H.; Cordova, K. E.; O’Keeffe, M.; Yaghi, O. M. Science 2013, 341, 974.

    16. [16]

      Zhou, H.-C.; Kitagawa, S. Chem. Soc. Rev. 2014, 43, 5415. 

    17. [17]

      Cook, T. R.; Zheng, Y.-R.; Stang, P. J. Chem. Rev. 2013, 113, 734. 

    18. [18]

      Ma, S.; Zhou, H.-C. Chem. Commun. 2010, 46, 44.

    19. [19]

      Sumida, K.; Rogow, D. L.; Mason, J. A.; McDonald, T. M.; Bloch, E. D.; Herm, Z. R.; Bae, T.-H.; Long, J. R. Chem. Rev. 2012, 112, 724. 

    20. [20]

      Suh, M. P.; Park, H. J.; Prasad, T. K.; Lim, D.-W. Chem. Rev. 2012, 112, 782. 

    21. [21]

      Nugent, P.; Belmabkhout, Y.; Burd, S. D.; Cairns, A. J.; Luebke, R.; Forrest, K.; Pham, T.; Ma, S.; Space, B.; Wojtas, L.; Eddaoudi, M.; Zaworotko, M. J. Nature 2013, 495, 80. 

    22. [22]

      Li, J.-R.; Sculley, J.; Zhou, H.-C. Chem. Rev. 2012, 112, 869.

    23. [23]

      He, Y.; Zhou, W.; Qian, G.; Chen, B. Chem. Soc. Rev. 2014, 43, 5657. 

    24. [24]

      Seo, J. S.; Whang, D.; Lee, H.; Jun, S. I.; Oh, J.; Jeon, Y. J.; Kim, K. Nature 2000, 404, 982. 

    25. [25]

      Corma, A.; García, H.; Llabrés i Xamena, F. X. Chem. Rev. 2010, 110, 4606. 

    26. [26]

      Jiang, H.-L.; Xu, Q. Chem. Commun. 2011, 47, 3351.

    27. [27]

      Gascon, J.; Corma, A.; Kapteijn, F.; Llabrés i Xamena, F. X. ACS Catal. 2014, 4, 361. 

    28. [28]

      Zhang, T.; Lin, W. Chem. Soc. Rev. 2014, 43, 5982. 

    29. [29]

      Liu, J.; Chen, L.; Cui, H.; Zhang, J.; Zhang, L.; Su, C.-Y. Chem. Soc. Rev. 2014, 43, 6011.

    30. [30]

      Dhakshinamoorthy, A.; Alvaro, M.; Garcia, H. Chem. Eur. J. 2010, 16, 8530. 

    31. [31]

      Chen, B.; Xiang, S.; Qian, G. Acc. Chem. Res. 2010, 43, 1115. 

    32. [32]

      Takashima, Y.; Martinez, V. M.; Furukawa, S.; Kondo, M.; Shimomura, S.; Uehara, H.; Nakahama, M.; Sugimoto, K.; Kitagawa, S. Nat. Commun. 2011, 2, 168.

    33. [33]

      Kreno, L. E.; Leong, K.; Farha, O. K.; Allendorf, M.; Van Duyne, R. P.; Hupp, J. T. Chem. Rev. 2012, 112, 1105. 

    34. [34]

      Lin, R.-B.; Li, F.; Liu, S.-Y.; Qi, X.-L.; Zhang, J.-P.; Chen, X.-M. Angew. Chem., Int. Ed. 2013, 52, 13429.

    35. [35]

      Hu, Z.; Deibert, B. J.; Li, J. Chem. Soc. Rev. 2014, 43, 5815. 

    36. [36]

      Zhang, M.; Feng, G.; Song, Z.; Zhou, Y.-P.; Chao, H.-Y.; Yuan, D.; Tan, T. T. Y.; Guo, Z.; Hu, Z.; Tang, B. Z.; Liu, B.; Zhao, D. J. Am. Chem. Soc. 2014, 136, 7241. 

    37. [37]

      An, J.; Geib, S. J.; Rosi, N. L. J. Am. Chem. Soc. 2009, 131, 8376. 

    38. [38]

      Horcajada, P.; Gref, R.; Baati, T.; Allan, P. K.; Maurin, G.; Couvreur, P.; Férey, G.; Morris, R. E.; Serre, C. Chem. Rev. 2012, 112, 1232.

    39. [39]

      Ramaswamy, P.; Wong, N. E.; Shimizu, G. K. H. Chem. Soc. Rev. 2014, 43, 5913. 

    40. [40]

      Mallick, A.; Garai, B.; Díaz, D. D.; Banerjee, R. Angew. Chem., Int. Ed. 2013, 52, 13755. 

    41. [41]

      Kitagawa, H. Nat. Chem. 2009, 1, 689.

    42. [42]

      Farrusseng, D.; Aguado, S.; Pinel, C. Angew. Chem., Int. Ed. 2009, 48, 7502. 

    43. [43]

      Choi, K. M.; Na, K.; Somorjai, G. A.; Yaghi, O. M. J. Am. Chem. Soc. 2015, 137, 7810. 

    44. [44]

      Wang, Z.; Cohen, S. M. Chem. Soc. Rev. 2009, 38, 1315. 

    45. [45]

      Dhakshinamoorthy, A.; Alvaro, M.; Garcia, H. Chem. Commun. 2012, 48, 11275.

    46. [46]

      Chui, S. S.-Y.; Lo, S. M.-F.; Charmant, J. P. H.; Orpen, A. G.; Williams, I. D. Science 1999, 283, 1148. 

    47. [47]

      Schlichte, K.; Kratzke, T.; Kaskel, S. Microporous Mesoporous Mater. 2004, 73, 81. 

    48. [48]

      Alaerts, L.; Séguin, E.; Poelman, H.; Thibault-Starzyk, F.; Jacobs, P. A.; De Vos, D. E. Chem. Eur. J. 2006, 12, 7353. 

    49. [49]

      Férey, G.; Mellot-Draznieks, C.; Serre, C.; Millange, F.; Dutour, J.; Surblé, S.; Margiolaki, I. Science 2005, 309, 2040.

    50. [50]

      Henschel, A.; Gedrich, K.; Kraehnert, R.; Kaskel, S. Chem. Commun. 2008, 4192.

    51. [51]

      Kim, J.; Bhattacharjee, S.; Jeong, K.-E.; Jeong, S.-Y.; Ahn, W.-S. Chem. Commun. 2009, 3904.

    52. [52]

      Jiang, Z.-R.; Wang, H.; Hu, Y.; Lu, J.; Jiang, H.-L. ChemSusChem 2015, 8, 878.

    53. [53]

      Akiyama, G.; Matsuda, R.; Sato, H.; Takata, M.; Kitagawa, S. Adv. Mater. 2011, 23, 3294.

    54. [54]

      Zhou, Y.-X.; Chen, Y.-Z.; Hu, Y.; Huang, G.; Yu, S.-H.; Jiang, H.-L. Chem. Eur. J. 2014, 20, 14976.

    55. [55]

      Bloch, E. D.; Britt, D.; Lee, C.; Doonan, C. J.; Uribe-Romo, F. J.; Furukawa, H.; Long, J. R.; Yaghi, O. M. J. Am. Chem. Soc. 2010, 132, 14382. 

    56. [56]

       

    57. [57]

      Valvekens, P.; Bloch, E. D.; Long, J. R.; Ameloot, R.; De Vos, D. E. Catal. Today 2015, 246, 55. 

    58. [58]

      Feng, D.; Gu, Z.-Y.; Li J.-R.; Jiang, H.-L.; Wei, Z.; Zhou, H.-C. Angew. Chem., Int. Ed. 2012, 51, 10307.

    59. [59]

      Vermoortele, F.; Ameloot, R.; Vimont, A.; Serre, C.; De Vos, D. Chem. Commun. 2011, 47, 1521.

    60. [60]

       

    61. [61]

      Banerjee, M.; Das, S.; Yoon, M.; Choi, H. J.; Hyun, M. H.; Park, S. M.; Seo, G.; Kim, K. J. Am. Chem. Soc. 2009, 131, 7524. 

    62. [62]

      Seo, J. S.; Whang, D.; Lee, H.; Jun, S. I.; Oh, J.; Jeon, Y. J.; Kim, K. Nature 2000, 404, 982. 

    63. [63]

      Ma, L.; Abney, C.; Lin, W. Chem. Soc. Rev. 2009, 38, 1248. 

    64. [64]

      Yoon, M.; Srirambalaji, R.; Kim, K. Chem. Rev. 2012, 112, 1196.

    65. [65]

       

    66. [66]

      Alkordi, M. H.; Liu, Y.; Larsen, R. W.; Eubank, J. F.; Eddaoudi, M. J. Am. Chem. Soc. 2008, 130, 12639. 

    67. [67]

      Li, B.; Zhang, Y.; Ma, D.; Ma, T.; Shi, Z.; Ma, S. J. Am. Chem. Soc. 2014, 136, 1202. 

    68. [68]

      Dhakshinamoorthy, A.; Garcia, H. Chem. Soc. Rev. 2012, 41, 5262. 

    69. [69]

      Moon, H. R.; Lim, D.-W.; Suh, M. P. Chem. Soc. Rev. 2013, 42, 1807. 

    70. [70]

      Meilikhov, M.; Yusenko, K.; Esken, D.; Turner, S.; Tendeloo, G. V.; Fischer, R. A. Eur. J. Inorg. Chem. 2010, 3701.

    71. [71]

      Hermes, S.; Schrter, M.-K.; Schmid, R.; Khodeir, L.; Muhler, M.; Tissler, A.; Fischer, R. W.; Fischer, R. A. Angew. Chem., Int. Ed. 2005, 44, 6237. 

    72. [72]

      Ishida, T.; Nagaoka, M.; Akita, T.; Haruta, M. Chem. Eur. J. 2008, 14, 8456. 

    73. [73]

      Yuan, B.; Pan, Y.; Li, Y.; Yin, B.; Jiang, H. Angew. Chem., Int. Ed. 2010, 49, 4054. 

    74. [74]

      Long, J.; Liu, H.; Wu, S.; Liao, S.; Li, Y. ACS Catal. 2013, 3, 647.

    75. [75]

      Aijaz, A.; Karkamkar, A.; Choi, Y. J.; Tsumori, N.; Rnnebro, E.; Autrey, T.; Shioyama, H.; Xu, Q. J. Am. Chem. Soc. 2012, 134, 13926. 

    76. [76]

      Schrder, F.; Esken, D.; Cokoja, M.; van den Berg, M. W. E.; Lebedev, O. I.; Van Tendeloo, G.; Walaszek, B.; Buntkowsky, G.; Limbach, H.-H.; Chaudret, B.; Fischer, R. A. J. Am. Chem. Soc. 2008, 130, 6119. 

    77. [77]

      Jiang, H.-L.; Liu, B.; Akita, T.; Haruta, M.; Sakurai, H.; Xu, Q. J. Am. Chem. Soc. 2009, 131, 11302. 

    78. [78]

       

    79. [79]

      Jiang, H.-L.; Akita, T.; Ishida, T.; Haruta, M.; Xu, Q. J. Am. Chem. Soc. 2011, 133, 1304. 

    80. [80]

      Gu, X.; Lu, Z.-H.; Jiang, H.-L.; Akita, T.; Xu, Q. J. Am. Chem. Soc. 2011, 133, 11822. 

    81. [81]

      Guo, Z.; Xiao, C.; Maligal-Ganesh, R. V.; Zhou, L.; Goh, T. W.; Li, X.; Tesfagaber, D.; Thiel, A.; Huang, W. ACS Catal. 2014, 4, 1340.

    82. [82]

      Yang, Q.; Chen, Y.-Z.; Wang, Z. U.; Xu, Q.; Jiang, H.-L. Chem. Commun. 2015, 51, 10419.

    83. [83]

      Chen, Y.-Z.; Xu, Q.; Yu, S.-H.; Jiang, H.-L. Small 2015, 11, 71.

    84. [84]

      Chen, Y.-Z.; Liang, L.; Yang, Q.; Hong, M.; Xu, Q.; Yu, S.-H.; Jiang, H.-L. Mater. Horiz. 2015, 2, 606.

    85. [85]

      Zhang, H.-X.; Liu, M.; Bu, X.; Zhang, J. Sci. Rep. 2014, 4, 3923.

    86. [86]

      Chen, Y.-Z.; Zhou, Y.-X.; Wang, H.; Lu, J.; Uchida, T.; Xu, Q.; Yu, S.-H.; Jiang, H.-L. ACS Catal. 2015, 5, 2062.

    87. [87]

      Lu, G.; Li, S.; Guo, Z.; Farha, O. K.; Hauser, B. G.; Qi, X.; Wang, Y.; Wang, X.; Han, S.; Liu, X.; Duchene, J. S.; Zhang, H.; Zhang, Q.; Chen, X.; Ma, J.; Loo, S. C. J.; Wei, W. D.; Yang, Y.; Hupp, J. T.; Huo, F. Nat. Chem. 2012, 4, 310.

    88. [88]

      Kuo, C.-H.; Tang, Y.; Chou, L.-Y.; Sneed, B. T., Brodsky, C. N.; Zhao, Z.; Tsung, C.-K. J. Am. Chem. Soc. 2012, 134, 14345. 

    89. [89]

      Yang, Y.; Wang, F.; Yang, Q.; Hu, Y.; Yang, H.; Chen, Y.-Z.; Liu, H.; Zhang, G.; Lu, J.; Jiang, H.-L.; Xu, H. ACS Appl. Mater. Interfaces 2014, 6, 18163. 

    90. [90]

      Zhao, H.; Song, H.; Xu, L.; Chou, L. Appl. Catal. A: Gen. 2013, 456, 188. 

    91. [91]

      Zhou, Y.-X.; Chen, Y.-Z.; Cao, L.; Lu, J.; Jiang, H.-L. Chem. Commun. 2015, 51, 8292.

    92. [92]

       

    93. [93]

      Tachikawa, T.; Choi, J. R.; Fujitsuka, M.; Majima, T. J. Phys. Chem. C 2008, 112, 14090.

    94. [94]

      Wang, C.-C.; Li, J.-R.; Lv, X.-L.; Zhang, Y.-Q.; Guo, G. Energy Environ. Sci. 2014, 7, 2831. 

    95. [95]

      Du, J.-J.; Yuan, Y.-P.; Sun, J.-X.; Peng, F.-M.; Jiang, X.; Qiu, L.-G.; Xie, A.-J.; Shen, Y.-H.; Zhu, J.-F. J. Hazard. Mater. 2011, 190, 945.

    96. [96]

      Yang, H.; He, X.-W.; Wang, F.; Kang, Y.; Zhang, J. J. Mater. Chem. 2012, 22, 21849. 

    97. [97]

      Wang, C.; Xie, Z.; deKrafft, K. E.; Lin, W. J. Am. Chem. Soc. 2011, 133, 13445. 

    98. [98]

      Long, J.; Wang, S.; Ding, Z.; Wang, S.; Zhou, Y.; Huang, L.; Wang, X. Chem. Commun. 2012, 48, 11656.

    99. [99]

      Kataoka, Y.; Sato, K.; Miyazaki, Y.; Masuda, K.; Tanaka, H.; Naito, S.; Mori, W. Energy Environ. Sci. 2009, 2, 397.

    100. [100]

       

    101. [101]

      Wang, C.; deKrafft, K. E.; Lin, W. J. Am. Chem. Soc. 2012, 134, 7211. 

    102. [102]

      He, J.; Yan, Z.; Wang, J.; Xie, J.; Jiang, L.; Shi, Y.; Yuan, F.; Yu, F.; Sun, Y. Chem. Commun. 2013, 49, 6761.

    103. [103]

      Fu, Y.; Sun, D.; Chen, Y.; Huang, R.; Ding, Z.; Fu, X.; Li, Z. Angew. Chem., Int. Ed. 2012, 51, 3364. 

    104. [104]

      Li, R.; Deng, M.; Wang, H.; Wang, X.; Hu, Y.; Jiang, H.-L.; Jiang, J.; Zhang, Q.; Xie, Y.; Xiong, Y. Adv. Mater. 2014, 26, 4783.

    105. [105]

      Xu, H.-Q.; Hu, J.; Wang, D.; Li, Z.; Zhang, Q.; Luo, Y.; Yu, S.-H.; Jiang, H.-L. J. Am. Chem. Soc. 2015, 137, 13440.

    106. [106]

      Chen, Y.-Z.; Wang, C.; Wu, Z.-Y.; Xiong, Y.; Xu, Q.; Yu, S.-H.; Jiang, H.-L. Adv. Mater. 2015, 27, 5010.

    107. [107]

      Zhang, W.; Wu, Z.-Y.; Jiang, H.-L.; Yu, S.-H. J. Am. Chem. Soc. 2014, 136, 14385.

    108. [108]

      Qin, J.-S.; Du, D.-Y.; Guan, W.; Bo, X.-J.; Li, Y.-F.; Guo, L.-P.; Su, Z.-M.; Wang, Y.-Y.; Lan, Y.-Q.; Zhou, H.-C. J. Am. Chem. Soc. 2015, 137, 7169.

    109. [109]

      Ma, T. Y.; Dai, S.; Jaroniec, M.; Qiao, S. Z. J. Am. Chem. Soc. 2014, 136, 13925. 

    110. [110]

      Jiang, H.-L.; Liu, B.; Lan, Y.-Q.; Kuratani, K.; Akita, T.; Shioyama, H.; Zong, F.; Xu, Q. J. Am. Chem. Soc. 2011, 133, 11854. 

    111. [111]

      Tang, J.; Salunkhe, R. R.; Liu, J.; Torad, N. L.; Imura, M.; Furukawa, S.; Yamauchi, Y. J. Am. Chem. Soc. 2015, 137, 1572. 

    112. [112]

      Zhang, L.; Wu, H. B.; Madhavi, S.; Hng, H. H.; Lou, X. W. J. Am. Chem. Soc. 2012, 134, 17388. 

    113. [113]

      Cao, X.; Zheng, B.; Rui, X.; Shi, W.; Yan, Q.; Zhang, H. Angew. Chem., Int. Ed. 2014, 126, 1428. 

    114. [114]

      Lee, J.; Farha, O. K.; Roberts, J.; Scheidt, K. A.; Nguyen, S. T.; Hupp, J. T. Chem. Soc. Rev. 2009, 38, 1450. 

    115. [115]

      Ranocchiari, M.; van Bokhoven, J. A. Phys. Chem. Chem. Phys. 2011, 13, 6388. 

    116. [116]

      Valvekens, P.; Vermoortele, F.; De Vos, D. Catal. Sci. Technol. 2013, 3, 1435.

    117. [117]

      Song, Y.; Li, X.; Sun, L.; Wang, L. RSC Adv. 2015, 5, 7267.

    118. [118]

      Wang, J.-L.; Wang, C.; Lin, W. ACS Catal. 2012, 2, 2630.

    119. [119]

      Morozan, A.; Jaouen, F. Energy Environ. Sci. 2012, 5, 9269.

    120. [120]

      Xia, W.; Mahmood, A.; Zou, R.; Xu, Q. Energy Environ. Sci. 2015, 8, 1837.

    121. [121]

      Feng, D.; Gu, Z.-Y.; Chen, Y.-P.; Park, J.; Wei, Z.; Sun, Y.; Bosch, M.; Yuan, S.; Zhou, H.-C. J. Am. Chem. Soc. 2014, 136, 17714.

    122. [122]

      Feng, D.; Chung, W.-C.; Wei, Z.; Gu, Z.-Y.; Jiang, H.-L.; Chen, Y.-P.; Darensbourg, D. J.; Zhou, H.-C. J. Am. Chem. Soc. 2013, 135, 17105. 

    123. [123]

      Jiang, H.-L.; Feng, D.; Wang, K.; Gu, Z.-Y.; Wei, Z.; Chen, Y.-P.; Zhou, H.-C. J. Am. Chem. Soc. 2013, 135, 13934.

    124. [124]

      Mondloch, J. E.; Bury, W.; Fairen-Jimenez, D.; Kwon, S.; DeMarco, E. J.; Weston, M. H.; Sarjeant, A. A.; Nguyen, S. T.; Stair, P. C.; Snurr, R. Q.; Farha, O. K.; Hupp, J. T. J. Am. Chem. Soc. 2013, 135, 10294. 

    125. [125]

      Zhang, W.; Hu, Y.; Ge, J.; Jiang, H.-L.; Yu, S.-H. J. Am. Chem. Soc. 2014, 136, 16978.

  • 加载中
    1. [1]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    2. [2]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    3. [3]

      Xinlong XUChunxue JINGYuzhen CHEN . Bimetallic MOF-74 and derivatives: Fabrication and efficient electrocatalytic biomass conversion. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1545-1554. doi: 10.11862/CJIC.20250046

    4. [4]

      Jiajie Li Xiaocong Ma Jufang Zheng Qiang Wan Xiaoshun Zhou Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117

    5. [5]

      Yan KongWei WeiLekai XuChen Chen . Electrochemical Synthesis of Organonitrogen Compounds from N-integrated CO2 Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2307049-0. doi: 10.3866/PKU.WHXB202307049

    6. [6]

      Fangfang WANGJiaqi CHENWeiyin SUN . CuBi@Cu-MOF composite catalysts for electrocatalytic CO2 reduction to HCOOH. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 97-104. doi: 10.11862/CJIC.20240350

    7. [7]

      Ye WangRuixiang GeXiang LiuJing LiHaohong Duan . An Anion Leaching Strategy towards Metal Oxyhydroxides Synthesis for Electrocatalytic Oxidation of Glycerol. Acta Physico-Chimica Sinica, 2024, 40(7): 2307019-0. doi: 10.3866/PKU.WHXB202307019

    8. [8]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    9. [9]

      Lu ZhuoranLi ShengkaiLu YuxuanWang ShuangyinZou Yuqin . Cleavage of C―C Bonds for Biomass Upgrading on Transition Metal Electrocatalysts. Acta Physico-Chimica Sinica, 2024, 40(4): 2306003-0. doi: 10.3866/PKU.WHXB202306003

    10. [10]

      Wentao XuXuyan MoYang ZhouZuxian WengKunling MoYanhua WuXinlin JiangDan LiTangqi LanHuan WenFuqin ZhengYoujun FanWei Chen . Bimetal Leaching Induced Reconstruction of Water Oxidation Electrocatalyst for Enhanced Activity and Stability. Acta Physico-Chimica Sinica, 2024, 40(8): 2308003-0. doi: 10.3866/PKU.WHXB202308003

    11. [11]

      Tao WangQin DongCunpu LiZidong Wei . Sulfur Cathode Electrocatalysis in Lithium-Sulfur Batteries: A Comprehensive Understanding. Acta Physico-Chimica Sinica, 2024, 40(2): 2303061-0. doi: 10.3866/PKU.WHXB202303061

    12. [12]

      Wenxiu YangJinfeng ZhangQuanlong XuYun YangLijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-0. doi: 10.3866/PKU.WHXB202312014

    13. [13]

      Fugui XIDu LIZhourui YANHui WANGJunyu XIANGZhiyun DONG . Functionalized zirconium metal-organic frameworks for the removal of tetracycline from water. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 683-694. doi: 10.11862/CJIC.20240291

    14. [14]

      Tongtong Zhao Yan Wang Shiyue Qin Liang Xu Zhenhua Li . New Experiment Development: Upgrading and Regeneration of Discarded PET Plastic through Electrocatalysis. University Chemistry, 2024, 39(3): 308-315. doi: 10.3866/PKU.DXHX202309003

    15. [15]

      Jianchun Wang Ruyu Xie . The Fantastical Dance of Miss Electron: Contra-Thermodynamic Electrocatalytic Reactions. University Chemistry, 2025, 40(4): 331-339. doi: 10.12461/PKU.DXHX202406082

    16. [16]

      Xueting CaoShuangshuang ChaMing Gong . Interfacial Electrical Double Layer in Electrocatalytic Reactions: Fundamentals, Characterizations and Applications. Acta Physico-Chimica Sinica, 2025, 41(5): 100041-0. doi: 10.1016/j.actphy.2024.100041

    17. [17]

      Xinyi ZhangKai RenYanning LiuZhenyi GuZhixiong HuangShuohang ZhengXiaotong WangJinzhi GuoIgor V. ZatovskyJunming CaoXinglong Wu . Progress on Entropy Production Engineering for Electrochemical Catalysis. Acta Physico-Chimica Sinica, 2024, 40(7): 2307057-0. doi: 10.3866/PKU.WHXB202307057

    18. [18]

      Mengzhen JIANGQian WANGJunfeng BAI . Research progress on low-cost ligand-based metal-organic frameworks for carbon dioxide capture from industrial flue gas. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 1-13. doi: 10.11862/CJIC.20240355

    19. [19]

      Xiting Zhou Zhipeng Han Xinlei Zhang Shixuan Zhu Cheng Che Liang Xu Zhenyu Sun Leiduan Hao Zhiyu Yang . Dual Modulation via Ag-Doped CuO Catalyst and Iodide-Containing Electrolyte for Enhanced Electrocatalytic CO2 Reduction to Multi-Carbon Products: A Comprehensive Chemistry Experiment. University Chemistry, 2025, 40(7): 336-344. doi: 10.12461/PKU.DXHX202412070

    20. [20]

      Lewang YuanYaoyao PengZong-Jie GuanYu Fang . Insights into the development of 2D covalent organic frameworks as photocatalysts in organic synthesis. Acta Physico-Chimica Sinica, 2025, 41(8): 100086-0. doi: 10.1016/j.actphy.2025.100086

Metrics
  • PDF Downloads(0)
  • Abstract views(5134)
  • HTML views(1387)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return