Citation: Huang Qingming, Yu Han, Zhang Xinqi, Cao Wenbing, Yu Jianchang. Upconversion Performance Enhancement of NaYF4:Yb/Tm by Codoping Hf4+ as Energy Migrator[J]. Acta Chimica Sinica, ;2015, 74(2): 191-198. doi: 10.6023/A15040257 shu

Upconversion Performance Enhancement of NaYF4:Yb/Tm by Codoping Hf4+ as Energy Migrator

  • Corresponding author: Yu Jianchang, jcyu@fzu.edu.cn
  • Received Date: 14 April 2015

    Fund Project: the Natural Science Fund of Fujian Province No. 2013J05027

Figures(6)

  • In this paper we report the infrared to visible upconversion(UC) luminescence properties of Hf4+ and Zr4+ codoped NaYF4:Yb3+/Tm3+. Samples were synthesised by hydrothermal method. Concentration of Tm3+ and Yb3+ ions were fixed to be 2 mol% and 5 mol% for all samples, respectively. NaY0.93-xYb0.05Tm0.02F4 was tridoped with 0, 2, 4, 6, 8 mol% Hf4+ or Zr4+ and corresponding samples were named as Hf0, Hf2, Hf4, Hf6, Hf8 and Zr0, Zr2, Zr4, Zr6, Zr8, respectively. In a typical procedure, trivalent nitrate stock solutions of 0.2 mol/L were prepared at first by dissolving the corresponding metal oxide in concentrated nitric acid or hydrofluoric acid at elevated temperatures. And then, a certain mole percentage of trivalent nitrate solutions were added into 20 mL 0.04 mmol EDTA aqueous solution. After vigorous stirring for 30 min, 25 mL ethanol solution containing 0.2 mmol NaF, 0.2 mmol NH4HF2 and corresponding stoichiometric amount Hf4+ or Zr4+ were dropwise added into the solution, and then pH value of solution was adjusted to 3.0 by addition 1 mol/L HF, and stirring continued for 30 min. Then the emulsion mixture was moved to PTFE-lined high pressure pot and incubated in oven at 180℃ for 12 h. The final products were collected, washed several times with water and ethanol alternately, and gathered by centrifugation, and then dried in oven at 60℃. Crystal microstructure, morphology and UC luminescence properties of samples were investigated by X-ray diffraction, field emission scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy and upconversion photoluminescence spectra. Results revealed the bond distance of F1-Y and F2-Y become close with the rising of Hf4+ or Zr4+ codoped concentration, indicating crystal field asymmetry of rare earth ions were tuned effectively by Hf4+ or Zr4+ codoping. Electron hypersensitive transition was promoted, and the intensity of 802 nm emission was enhanced obviously. Hf4+ ion was a better dopant than Zr4+, for the extranuclear electronic structure of Hf4+ was the same with rare earth ions, and Hf4+ ion was involved in UC process as a migrator to improve Tm3+ upper state levels'population. UC luminescence of Hf4+ codoped sample were enhanced obviously, especially the shortwave emissions. The reported work establishes the understanding of Hf4+ as a migrator for Tm3+ ions upconversion luminescence, which may be helpful for design and synthesis of high-performance upconversion materials.
  • 加载中
    1. [1]

      Cates, E. L.; Chinnapongse, S. L.; Kim, J. H. Environ. Sci. Technol. 2012, 46(22), 12316. 

    2. [2]

      Li, C. X.; Lin, J. J. Mater. Chem.2010, 20(33), 6831. 

    3. [3]

      Feng, W.; Han, C.; Li, F. Adv. Mater. 2013, 25(37), 5287.

    4. [4]

      Buenzli, J.-C. G.; Eliseeva, S. V. J. Rare Earths 2010, 28(6), 824. 

    5. [5]

      Zhou, L.; Li, Z.; Liu, Z.; Yin, M.; Ren, J.; Qu, X. Nanoscale 2014, 6(3), 1445.

    6. [6]

      Lin, M.; Zhao, Y.; Wang, S. Q.; Liu, M.; Duan, Z. F.; Chen, Y. M.; Li, F.; Xu, F.; Lu, T. J. Biotechnol. Adv. 2012, 30(6), 1551. 

    7. [7]

      Wang, F.; Banerjee, D.; Liu, Y.; Chen, X.; Liu, X. Analyst 2010, 135(8), 1839.

    8. [8]

      Chen, Z.; Wu, X.; Hu, S.; Hu, P.; Yan, H.; Tang, Z.; Liu, Y. J. Mater. Chem. C 2015, 3(1), 153. 

    9. [9]

      Min, Y.; Li, J.; Liu, F.; Padmanabhan, P.; Yeow, E. K. L.; Xing, B. Nanomaterials 2014, 4(1), 129. 

    10. [10]

      Ni, D.; Bu, W.; Zhang, S.; Zheng, X.; Li, M.; Xing, H.; Xiao, Q.; Liu, Y.; Hua, Y.; Zhou, L.; Peng, W.; Zhao, K.; Shi, J. Adv. Funct. Mater. 2014, 24(42), 6613. 

    11. [11]

      Yang, D.; Kang, X.; Ma, P. a.; Dai, Y.; Hou, Z.; Cheng, Z.; Li, C.; Lin, J. Biomaterials 2013, 34(5), 1601.

    12. [12]

      Tian, G.; Gu, Z. J.; Liu, X. X.; Zhou, L. J.; Yin, W. Y.; Yan, L.; Jin, S.; Ren, W. L.; Xing, G. M.; Li, S. J.; Zhao, Y. L. J. Phys. Chem. C 2011, 115(48), 23790. 

    13. [13]

      Park, Y.; Kim, H. M.; Kim, J. H.; Moon, K. C.; Yoo, B.; Lee, K. T.; Lee, N.; Choi, Y.; Park, W.; Ling, D.; Na, K.; Moon, W. K.; Choi, S. H.; Park, H. S.; Yoon, S. Y.; Suh, Y. D.; Lee, S. H.; Hyeon, T. Adv. Mater. 2012, 24(42), 5755.

    14. [14]

      Vetrone, F.; Naccache, R.; Zamarron, A.; de la Fuente, A. J.; Sanz-Rodriguez, F.; Maestro, L. M.; Rodriguez, E. M.; Jaque, D.; Sole, J. G.; Capobianco, J. A. ACS Nano 2010, 4(6), 3254. 

    15. [15]

      Shaoshuai, Z.; Kaimo, D.; Xiantao, W.; Guicheng, J.; Changkui, D.; Yonghu, C.; Min, Y. Opt. Commun. 2013, 291, 138.

    16. [16]

      Wang, W.; Ding, M.; Lu, C.; Ni, Y.; Xu, Z. Appl. Catal. B-Environ. 2014, 144, 379. 

    17. [17]

      Fix, T.; Ferblantier, G.; Rinnert, H.; Slaoui, A. Sol. Energy Mater. Sol. Cells 2015, 132, 191. 

    18. [18]

      Huang, X.; Han, S.; Huang, W.; Liu, X. Chem. Soc. Rev. 2013, 42(1), 173. 

    19. [19]

      Khan, A. F.; Yadav, R.; Mukhopadhya, P. K.; Singh, S.; Dwivedi, C.; Dutta, V.; Chawla, S. J. Nanopart. Res. 2011, 13(12), 6837. 

    20. [20]

      Gao, D.; Zhang, X.; Zheng, H.; Shi, P.; Li, L.; Ling, Y. Dalton Trans. 2013, 42(5), 1834.

    21. [21]

      Zhang, H. B.; Bu, Y. Y.; Yang, X. L.; Xiao, S. G.; Ding, J. W. Mater. Sci. Eng. B-Adv. 2011, 176(3), 256. 

    22. [22]

      Wang, F.; Deng, R.; Wang, J.; Wang, Q.; Han, Y.; Zhu, H.; Chen, X.; Liu, X. Nat. Mater. 2011, 10(12), 968.

    23. [23]

      Zhao, J. Z.; Ji, S. M.; Guo, H. M. RSC Adv. 2011, 1(6), 937. 

    24. [24]

       

    25. [25]

      Wang, F.; Deng, R. R.; Wang, J.; Wang, Q. X.; Han, Y.; Zhu, H. M.; Chen, X. Y.; Liu, X. G. Nat. Mater. 2011, 10(12), 968. 

    26. [26]

      Vetrone, F.; Naccache, R.; Mahalingam, V.; Morgan, C. G.; Capobianco, J. A. Adv. Funct. Mater. 2009, 19(18), 2924. 

    27. [27]

      Su, Q. Q.; Han, S. Y.; Xie, X. J.; Zhu, H. M.; Chen, H. Y.; Chen, C. K.; Liu, R. S.; Chen, X. Y.; Wang, F.; Liu, X. G. J. Am. Chem. Soc. 2012, 134(51), 20849. 

    28. [28]

      Luo, Q.; Chen, Y.; Li, Z.; Zhu, F.; Chen, X.; Sun, Z.; Wei, Y.; Guo, H.; Wang, Z. B.; Huang, S. Nanotechnology 2014, 25(18), 185401. 

    29. [29]

      Cheng, Q.; Sui, J. H.; Cai, W. Nanoscale 2012, 4(3), 779. 

    30. [30]

       

    31. [31]

      Chen, D. Q.; Yu, Y. L.; Huang, F.; Huang, P.; Yang, A. P.; Wang, Y. S. J. Am. Chem. Soc. 2010, 132(29), 9976. 

    32. [32]

      Tian, G.; Gu, Z. J.; Zhou, L. J.; Yin, W. Y.; Liu, X. X.; Yan, L.; Jin, S.; Ren, W. L.; Xing, G. M.; Li, S. J.; Zhao, Y. L. Adv. Mater. 2012, 24(9), 1226. 

    33. [33]

      Wang, F.; Han, Y.; Lim, C. S.; Lu, Y. H.; Wang, J.; Xu, J.; Chen, H. Y.; Zhang, C.; Hong, M. H.; Liu, X. G. Nature 2010, 463(7284), 1061. 

    34. [34]

      Richardson, F. S. Inorg. Chem.1980, 19(9), 2806. 

    35. [35]

      Huang, Q.; Yu, H.; Ma, E.; Zhang, X.; Cao, W.; Yang, C.; Yu, J. Inorg. Chem. 2015, 54(6), 2643.

    36. [36]

      Judd, B. R. Phys. Rev. 1962, 127, 750. 

    37. [37]

      Ofelt, G. S. J. Chem. Phys. 1962, 37, 511. 

    38. [38]

      Huang, Q.; Yu, J.; Ma, E.; Lin, K. J. Phys. Chem. C 2010, 114(10), 4719. 

  • 加载中
    1. [1]

      Jiahui YUJixian DONGYutong ZHAOFuping ZHAOBo GEXipeng PUDafeng ZHANG . The morphology control and full-spectrum photodegradation tetracycline performance of microwave-hydrothermal synthesized BiVO4:Yb3+,Er3+ photocatalyst. Journal of Fuel Chemistry and Technology, 2025, 53(3): 348-359. doi: 10.1016/S1872-5813(24)60514-1

    2. [2]

      Jinghan ZHANGGuanying CHEN . Progress in the application of rare-earth-doped upconversion nanoprobes in biological detection. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2335-2355. doi: 10.11862/CJIC.20240249

    3. [3]

      Yang YANGPengcheng LIZhan SHUNengrong TUZonghua WANG . Plasmon-enhanced upconversion luminescence and application of molecular detection. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 877-884. doi: 10.11862/CJIC.20230440

    4. [4]

      Keweiyang Zhang Zihan Fan Liyuan Xiao Haitao Long Jing Jing . Unveiling Crystal Field Theory: Preparation, Characterization, and Performance Assessment of Nickel Macrocyclic Complexes. University Chemistry, 2024, 39(5): 163-171. doi: 10.3866/PKU.DXHX202310084

    5. [5]

      Shuhui Li Jing Wang Haitao Tang Yingming Pan . A Taste Journey with Sauerkraut. University Chemistry, 2024, 39(9): 59-63. doi: 10.12461/PKU.DXHX202404061

    6. [6]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    7. [7]

      Jiarui Wu Gengxin Wu Yan Wang Yingwei Yang . Crystal Engineering Based on Leaning Towerarenes. University Chemistry, 2024, 39(3): 58-62. doi: 10.3866/PKU.DXHX202304014

    8. [8]

      Jiali CHENGuoxiang ZHAOYayu YANWanting XIAQiaohong LIJian ZHANG . Machine learning exploring the adsorption of electronic gases on zeolite molecular sieves. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 155-164. doi: 10.11862/CJIC.20240408

    9. [9]

      Yaqin Zheng Lian Zhuo Meng Li Chunying Rong . Enhancing Understanding of the Electronic Effect of Substituents on Benzene Rings Using Quantum Chemistry Calculations. University Chemistry, 2025, 40(3): 193-198. doi: 10.12461/PKU.DXHX202406119

    10. [10]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

    11. [11]

      Xingyuan Lu Yutao Yao Junjing Gu Peifeng Su . Energy Decomposition Analysis and Its Application in the Many-Body Effect of Water Clusters. University Chemistry, 2025, 40(3): 100-107. doi: 10.12461/PKU.DXHX202405074

    12. [12]

      Kun Rong Cuilian Wen Jiansen Wen Xiong Li Qiugang Liao Siqing Yan Chao Xu Xiaoliang Zhang Baisheng Sa Zhimei Sun . 层状MoS2/Ti3C2Tx异质结光热转换材料用于太阳能驱动水蒸发. Acta Physico-Chimica Sinica, 2025, 41(6): 100053-. doi: 10.1016/j.actphy.2025.100053

    13. [13]

      Xiaoyu Cao Wenchang Ke Xin Tian Luxuan Lin Yiru Zhuo Xinhang Li Dongxu Chen ChunhuiWu Yu Pei Jiaxing Yin Xiaohui Zhang Xuegao Qin Jiangyi Zhou Baoqiang Su Pingping Zhu . Polymers from the Perspective of Students: A Debate on “Is White Pollution the Fault of Plastics?”. University Chemistry, 2025, 40(4): 160-165. doi: 10.12461/PKU.DXHX202412106

    14. [14]

      Xingchao Zhao Xiaoming Li Ming Liu Zijin Zhao Kaixuan Yang Pengtian Liu Haolan Zhang Jintai Li Xiaoling Ma Qi Yao Yanming Sun Fujun Zhang . 倍增型全聚合物光电探测器及其在光电容积描记传感器上的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2311021-. doi: 10.3866/PKU.WHXB202311021

    15. [15]

      Yanhui XUEShaofei CHAOMan XUQiong WUFufa WUSufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183

    16. [16]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    17. [17]

      Yan Liu Yuexiang Zhu Luhua Lai . Introduction to Blended and Small-Class Teaching in Structural Chemistry: Exploring the Structure and Properties of Crystals. University Chemistry, 2024, 39(3): 1-4. doi: 10.3866/PKU.DXHX202306084

    18. [18]

      Hongwei Ma Fang Zhang Hui Ai Niu Zhang Shaochun Peng Hui Li . Integrated Crystallographic Teaching with X-ray,TEM and STM. University Chemistry, 2024, 39(3): 5-17. doi: 10.3866/PKU.DXHX202308107

    19. [19]

      Dongju Zhang . Exploring the Descriptions and Connotations of Basic Concepts of Teaching Crystal Structures. University Chemistry, 2024, 39(3): 18-22. doi: 10.3866/PKU.DXHX202304003

    20. [20]

      Weina Wang Fengyi Liu Wenliang Wang . “Extracting Commonality, Delving into Typicals, Deriving Individuality”: Constructing a Knowledge Graph of Crystal Structures. University Chemistry, 2024, 39(3): 36-42. doi: 10.3866/PKU.DXHX202308029

Metrics
  • PDF Downloads(0)
  • Abstract views(1351)
  • HTML views(316)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return