Citation: WANG Yong, YU Hai-Peng, HU Yong-Qi, ZHAO Rui-Hong, LI Fei-Long, ZHANG Wen-Jiao, ZHANG Zhao-Xiang. Influence of CuSO4 Doping on the Oxidation Resistance of TiO2-Coated Carbon Fibers[J]. Chinese Journal of Inorganic Chemistry, ;2013, 29(12): 2549-2554. doi: 10.3969/j.issn.1001-4861.2013.00.403 shu

Influence of CuSO4 Doping on the Oxidation Resistance of TiO2-Coated Carbon Fibers

  • Received Date: 27 May 2013
    Available Online: 31 July 2013

    Fund Project: 河北省自然科学基金(B2013208155) (B2013208155)国家自然科学基金(No.60578041)资助项目。 (No.60578041)

  • Carbon fiber (CF) was coated with TiO2 layer by sol-dipping method using CuSO4 as dopant. The prepared samples were characterized by X-ray diffraction (XRD), scanning electronic microscopy (SEM) and transmission electron microscopy (TEM). The SEM/TEM results show that the prepared CuSO4-TiO2 layer is uniformly and compactly. The thickness of the coating layer is increased from 45 nm to 185 nm. XRD results show that prepared layer is composited by anatase TiO2. The oxidation resistant properties of the carbon fibers were studied using isothermal oxidation experimental. Compared with TiO2 coated carbon fiber, the complete decomposition temperature of the CuSO4-TiO2 coated carbon fiber is increased from 667 ℃ to 800 ℃. The oxidation activation energy of TiO2 coating carbon fiber and CuSO4-TiO2 coating carbon fiber are 118.390 kJ· mol-1, 152.562 kJ·mol-1, respectively. The improvement of oxidation resistant of the CuSO4-TiO2 coated carbon fiber is attributed to the CuSO4 liquid sinter effect on the TiO2 layer.
  • 加载中
    1. [1]

      [1] HE Fu (贺福), WANG Mao-Zhang (王茂章). Carbon Fiber and Composite Materials (碳纤维及其复合材料). Beijing: Science Press, 1997.

    2. [2]

      [2] Sheehan J E. Carbon, 1989, 5:709-715

    3. [3]

      [3] LIU Jie (刘杰), GUO Yun-Xia (郭云霞), LIANG Jie-Ying (梁节英), et al. Acta Materi. Compositae Sin. (Fuhe Cailiao Xuebao), 2004, 21 (4):40-44

    4. [4]

      [4] Lu W, Chung D D L. Carbon, 2000, 40:1249-1254

    5. [5]

      [5] Damjianovic T, Chrargirusis B, Jokanovic R H. J.Eur.Ceram. Soc., 2007, 27 (2):1299-1302

    6. [6]

      [6] LI He-Jun (李贺军), XUE Hui (薛晖), FU Qian-Gang (付前刚), et al. Chinese J. Inorg. Mater. (Wuji Cailiao Xuebao), 2010, 25 (4):337-343

    7. [7]

      [7] WANG Yu-Ping (王玉萍), PENG Pan-Ying (彭盘英), DING Hai-Yan (丁海燕), et al. Acta Scientiae Circustantiea (Huanjing Kexue Xuebao), 2005, 25 (5):61l-617

    8. [8]

      [8] Ogihara H, Sadakane M, Nodasaka Y. Chem. Mater., 2006, 18:4981-4983

    9. [9]

      [9] LUO Zhong-Kuan (罗仲宽), SONG Li-Xi (宋力昕), LI Ming (李明), et al. Chinese J. Inorg. Mater. (Wuji Cailiao Xuebao), 2004, 19 (6):1398-1401

    10. [10]

      [10] Battiston G A, Gerbasi R, Gregori A, et al. Thin Solid Films, 2000, 371:126-131

    11. [11]

      [11] JIN Hai-Yan (金海岩), Huang Chang-He (黄长河). Chinese J. Semiconductors. (Ban daoti Xuebao), 1997, 18 (2):97-102

    12. [12]

      [12] Ben Amor S, Guedri L, Baud G, et al. Mater Chem. Phys., 2001, 77:903-911

    13. [13]

      [13] Kuo D H, Tzeng K H. Thin Solid Films, 2002, 420-421: 497-502

    14. [14]

      [14] Dhakate S R, Parashar V K, Raman P V. et al. J. Mater. Sci. Lett., 2000, 19:699-701

    15. [15]

      [15] CHENG Xian-Jun (程显军), XIAO Ying (肖颖). China Patent: 201010554531.7

    16. [16]

      [16] JIA Xin-Bo (贾欣博). China Patent: 201010545782.9

    17. [17]

      [17] YIN Dong-Hong (银董红), DENG Dun-Ying (邓吨英), CHEN En-Wei (陈恩伟), et al. Ind. Catal. (Gongye Cuihua), 2004, 12 (1):1-6

    18. [18]

      [18] FENG Zhi-Yuan (冯志远), LIU Bin (刘斌), RAN Hai-Qiong (冉海琼), et al. Chinese J. Tissue Eng. Res. (Zhongguo Zuzhi Gongcheng Yanjiu), 2012, 16 (8):1439-1442

    19. [19]

      [19] LIU Xue (柳雪), SONG Ying (宋英), NIU Li-Dan (牛丽丹), et al. Chinese J. Inorg. Chem. (Wuji Huaxue Xuebao), 2010, 26 (1):157-160

    20. [20]

      [20] ZHOU De-Feng (周德凤), ZHU Jian-Xin (朱建新), XIA Yan-Jie (夏燕杰), et al. Chinese J. Inorg.Chem. (Wuji Huaxue Xuebao), 2010, 26 (1):91-95

    21. [21]

      [21] Riyas S, Krishnan G, Das P N M. J. Ceram. Process Res., 2006, 7 (4):301-306

    22. [22]

      [22] German R M, Suri P, Park S J. J Mater. Sci., 2009, 44 (1): 1-39

    23. [23]

      [23] Dai B, Marinkovi S. Carbon, 1987, 25 (3):409-415

  • 加载中
    1. [1]

      Xiaoyao YINWenhao ZHUPuyao SHIZongsheng LIYichao WANGNengmin ZHUYang WANGWeihai SUN . Fabrication of all-inorganic CsPbBr3 perovskite solar cells with SnCl2 interface modification. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 469-479. doi: 10.11862/CJIC.20240309

    2. [2]

      Hongye Bai Lihao Yu Jinfu Xu Xuliang Pang Yajie Bai Jianguo Cui Weiqiang Fan . Controllable Decoration of Ni-MOF on TiO2: Understanding the Role of Coordination State on Photoelectrochemical Performance. Chinese Journal of Structural Chemistry, 2023, 42(10): 100096-100096. doi: 10.1016/j.cjsc.2023.100096

    3. [3]

      Zhiqiang WangYajie GaoTianjun WangWei ChenZefeng RenXueming YangChuanyao Zhou . Photocatalyzed oxidation of water on oxygen pretreated rutile TiO2(110). Chinese Chemical Letters, 2025, 36(4): 110602-. doi: 10.1016/j.cclet.2024.110602

    4. [4]

      Jiatong LiLinlin ZhangPeng HuangChengjun Ge . Carbon bridge effects regulate TiO2–acrylate fluoroboron coatings for efficient marine antifouling. Chinese Chemical Letters, 2025, 36(2): 109970-. doi: 10.1016/j.cclet.2024.109970

    5. [5]

      Cailiang YueNan SunYixing QiuLinlin ZhuZhiling DuFuqiang Liu . A direct Z-scheme 0D α-Fe2O3/TiO2 heterojunction for enhanced photo-Fenton activity with low H2O2 consumption. Chinese Chemical Letters, 2024, 35(12): 109698-. doi: 10.1016/j.cclet.2024.109698

    6. [6]

      Maosen XuPengfei ZhuQinghong CaiMeichun BuChenghua ZhangHong WuYouzhou HeMin FuSiqi LiXingyan LiuIn-situ fabrication of TiO2/NH2−MIL-125(Ti) via MOF-driven strategy to promote efficient interfacial effects for enhancing photocatalytic NO removal activity. Chinese Chemical Letters, 2024, 35(10): 109524-. doi: 10.1016/j.cclet.2024.109524

    7. [7]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    8. [8]

      Zhuoyan Lv Yangming Ding Leilei Kang Lin Li Xiao Yan Liu Aiqin Wang Tao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 100038-. doi: 10.3866/PKU.WHXB202408015

    9. [9]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    10. [10]

      Fanxin Kong Hongzhi Wang Huimei Duan . Inhibition effect of sulfation on Pt/TiO2 catalysts in methane combustion. Chinese Journal of Structural Chemistry, 2024, 43(5): 100287-100287. doi: 10.1016/j.cjsc.2024.100287

    11. [11]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    12. [12]

      Linlu BaiWensen LiXiaoyu ChuHaochun YinYang QuEkaterina KozlovaZhao-Di YangLiqiang Jing . Effects of nanosized Au on the interface of zinc phthalocyanine/TiO2 for CO2 photoreduction. Chinese Chemical Letters, 2025, 36(2): 109931-. doi: 10.1016/j.cclet.2024.109931

    13. [13]

      Lihua HUANGJian HUA . Denitration performance of HoCeMn/TiO2 catalysts prepared by co-precipitation and impregnation methods. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 629-645. doi: 10.11862/CJIC.20230315

    14. [14]

      Wenhao WangGuangpu ZhangQiufeng WangFancang MengHongbin JiaWei JiangQingmin Ji . Hybrid nanoarchitectonics of TiO2/aramid nanofiber membranes with softness and durability for photocatalytic dye degradation. Chinese Chemical Letters, 2024, 35(7): 109193-. doi: 10.1016/j.cclet.2023.109193

    15. [15]

      Mengli Xu Zhenmin Xu Zhenfeng Bian . Achieving Ullmann coupling reaction via photothermal synergy with ultrafine Pd nanoclusters supported on mesoporous TiO2. Chinese Journal of Structural Chemistry, 2024, 43(7): 100305-100305. doi: 10.1016/j.cjsc.2024.100305

    16. [16]

      Fei ZHOUXiaolin JIA . Co3O4/TiO2 composite photocatalyst: Preparation and synergistic degradation performance of toluene. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2232-2240. doi: 10.11862/CJIC.20240236

    17. [17]

      Bo YANGGongxuan LÜJiantai MA . Corrosion inhibition of nickel-cobalt-phosphide in water by coating TiO2 layer. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 365-384. doi: 10.11862/CJIC.20240063

    18. [18]

      Xingang KongYabei SuCuijuan XingWeijie ChengJianfeng HuangLifeng ZhangHaibo OuyangQi Feng . Facile synthesis of porous TiO2/SnO2 nanocomposite as lithium ion battery anode with enhanced cycling stability via nanoconfinement effect. Chinese Chemical Letters, 2024, 35(11): 109428-. doi: 10.1016/j.cclet.2023.109428

    19. [19]

      Zhiwen HUWeixia DONGQifu BAOPing LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462

    20. [20]

      Yifen HeChao QuNa RenDawei Liang . Enhanced degradation of refractory organics in ORR-EO system with a blue TiO2 nanotube array modified Ti-based Ni-Sb co-doped SnO2 anode. Chinese Chemical Letters, 2024, 35(8): 109262-. doi: 10.1016/j.cclet.2023.109262

Metrics
  • PDF Downloads(0)
  • Abstract views(298)
  • HTML views(15)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return