Citation: YAN Zhi-Ying, LI Jun-Jie, DUAN De-Liang, WANG Wei, WANG Jia-Qiang. Ionic Liquid-Assisted Hydrothermal Synthesis of Hexagonal WO3 Nanorod Bundles[J]. Chinese Journal of Inorganic Chemistry, ;2013, 29(12): 2637-2642. doi: 10.3969/j.issn.1001-4861.2013.00.397 shu

Ionic Liquid-Assisted Hydrothermal Synthesis of Hexagonal WO3 Nanorod Bundles

  • Received Date: 14 June 2013
    Available Online: 1 September 2013

    Fund Project: 国家自然科学基金(No.21063016,No.U1033603)资助项目。 (No.21063016,No.U1033603)

  • Hexagonal tungsten oxide (h-WO3) was synthesized by an ionic liquid (1-methyl-3-ethyl imidazole bromide (Emim+Br-)) -assisted hydrothermal method at 180 ℃ for 21 h. The as-synthesized products were characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM) and energy dispersive X-ray spectroscopy (EDS). The results show that the morphologies of WO3 are controlled by the amount of Emim+Br-. In 0.5 g Emim+Br--added solution, the product is h-WO3 nanorod bundles composed of uniform WO3 nanorods with average diameter of 25 nm and length of 200~300 nm. The formation mechanism of h-WO3 nanorod bundles is proposed according to the experimental results.
  • 加载中
    1. [1]

      [1] Xia Y, Yang P, Sun Y, et al. Adv. Mater., 2003, 15 (5): 353-389

    2. [2]

      [2] Chen D, Ye J H. Adv. Funct. Mater., 2008, 18:1922-1927

    3. [3]

      [3] Hibino M, Han W, Kudo T. Solid State Ionics, 2000, 135 (1/3/ 4):61-69

    4. [4]

      [4] Wang S J, Lu W J, Cheng G, et al. Appl. Phys. Lett., 2009, 94 (26):263106-263109

    5. [5]

      [5] Wu Y, Xi Z H, Zhang G M, et al. J. Cryst. Growth, 2006, 292:143-148

    6. [6]

      [6] Gu Z J, Ma Y, Yang W S, et al. Chem. Commun., 2005, 5 (28):3597-3599

    7. [7]

      [7] CHENG Li-Fang (程利芳), ZHANG Xin-Tang (张兴堂), CHEN Yan-Hui (陈艳辉), et al. Chinese. J. Inorg. Chem. (Wuji Huaxue Xuebao), 2004, 20 (9):1117-1122

    8. [8]

      [8] Gu Z J, Li H Q, Zhai T Y, et al. J. Solid State Chem., 2007, 180:98-105

    9. [9]

      [9] Gu Z J, Zhai T Y, Gao B F, et al. J. Phys. Chem. B, 2006, 110:23829-23836

    10. [10]

      [10] Phuruangrat A, Ham D J, Hong S J, et al. J. Mater. Chem., 2010, 20:1683-1690

    11. [11]

      [11] Ha J H, Muralidharan P, Kim D K. J. Alloys Compd., 2009, 475:446-451

    12. [12]

      [12] Zhang J, Tu J P, Xia X H, et al. J. Mater. Chem., 2011, 21: 5492-5498

    13. [13]

      [13] Peng T Y, Ke D N, Xiao J R, et al. J. Solid State Chem., 2012, 194:250-256

    14. [14]

      [14] Lou X W, Zeng H C. Inorg. Chem., 2003, 42 (20):6169-6171

    15. [15]

      [15] Wang J M, Khoo E, Lee P S, et al. J. Phys. Chem. C, 2008, 112:14306-14312

    16. [16]

      [16] Salmaoui S, Sediri F, Gharbi N. Polyhedron, 2010, 29:1771-1775

    17. [17]

      [17] Tong P V, Hoa N D, Quang V V. Sens. Actuators B, 2013, 183:372-380

    18. [18]

      [18] Biswas K, Rao C N R. Chem. Eur. J., 2007, 13 (21):6123-6129

    19. [19]

      [19] Yang L X, Zhu Y J, Wang W W, et al. J. Phys. Chem. B, 2006, 110 (13):6609-6614

    20. [20]

      [20] Shang Y, Hong J, Liu L. et al. J. Solid State Chem., 2010, 183 (3):696-701

    21. [21]

      [21] Liu X, Ma J, Zheng W. Rev. Adv. Mater. Sci., 2011, 27:43-51

    22. [22]

      [22] Lian J B, Kim T I, Liu X D, et al. J. Phys. Chem. C, 2009, 113 (21):9135-9140

    23. [23]

      [23] Zheng W J, Liu X D, Yan Z Y, et al. ACS Nano, 2009, 3 (1): 115-122

    24. [24]

      [24] Zhang J, Huang F, Zhang L. Nanoscale, 2010, 2:18-34

    25. [25]

      [25] Zitoun D, Pinna N, Frolet N, et al. J. Am. Chem. Soc., 2005, 127:15034-15035

    26. [26]

      [26] Chang H C, Jiang J C, Tsai W C, et al. Chem. Phys. Lett., 2006, 427 (4/5/6):310-316

  • 加载中
    1. [1]

      Han ZHANGJianfeng SUNJinsheng LIANG . Hydrothermal synthesis and luminescent properties of broadband near-infrared Na3CrF6 phosphor. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 349-356. doi: 10.11862/CJIC.20240098

    2. [2]

      Wenjun Zheng . Application in Inorganic Synthesis of Ionic Liquids. University Chemistry, 2024, 39(8): 163-168. doi: 10.3866/PKU.DXHX202401020

    3. [3]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    4. [4]

      Wenjie Jiang Zhixiang Zhai Xiaoyan Zhuo Jia Wu Boyao Feng Tianqi Yu Huan Wen Shibin Yin . Revealing the reactant adsorption role of high-valence WO3 for boosting urea-assisted water splitting. Chinese Journal of Structural Chemistry, 2025, 44(3): 100519-100519. doi: 10.1016/j.cjsc.2025.100519

    5. [5]

      Zhengzheng LIUPengyun ZHANGChengri WANGShengli HUANGGuoyu YANG . Synthesis, structure, and electrochemical properties of a sandwich-type {Co6}-cluster-added germanotungstate. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1173-1179. doi: 10.11862/CJIC.20240039

    6. [6]

      Juan CHENGuoyu YANG . A porous-layered aluminoborate built by mixed oxoboron clusters and AlO4 tetrahedra. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 193-200. doi: 10.11862/CJIC.20240341

    7. [7]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    8. [8]

      Fei YinErli YangXue GeQian SunFan MoGuoqiu WuYanfei Shen . Coupling WO3−x dots-encapsulated metal-organic frameworks and template-free branched polymerization for dual signal-amplified electrochemiluminescence biosensing. Chinese Chemical Letters, 2024, 35(4): 108753-. doi: 10.1016/j.cclet.2023.108753

    9. [9]

      Qin Li Huihui Zhang Huajun Gu Yuanyuan Cui Ruihua Gao Wei-Lin DaiIn situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2025, 41(4): 100031-. doi: 10.3866/PKU.WHXB202402016

    10. [10]

      Xi YANGChunxiang CHANGYingpeng XIEYang LIYuhui CHENBorao WANGLudong YIZhonghao HAN . Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 440-452. doi: 10.11862/CJIC.20240371

    11. [11]

      Feiya Cao Qixin Wang Pu Li Zhirong Xing Ziyu Song Heng Zhang Zhibin Zhou Wenfang Feng . Magnesium-Ion Conducting Electrolyte Based on Grignard Reaction: Synthesis and Properties. University Chemistry, 2024, 39(3): 359-368. doi: 10.3866/PKU.DXHX202308094

    12. [12]

      Guoqiang Chen Zixuan Zheng Wei Zhong Guohong Wang Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021

    13. [13]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    14. [14]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    15. [15]

      Yingran Liang Fei WangJiabao Sun Hongtao Zheng Zhenli Zhu . Construction and Application of a New Experimental Device for Determination of Alkaline Metal Elements by Plasma Atomic Emission Spectrometry Based on Solution Cathode Glow Discharge: An Alternative Approach for Fundamental Teaching Experiments in Emission Spectroscopy. University Chemistry, 2024, 39(5): 380-387. doi: 10.3866/PKU.DXHX202312024

    16. [16]

      Zhuo Wang Xue Bai Kexin Zhang Hongzhi Wang Jiabao Dong Yuan Gao Bin Zhao . MOF模板法合成氮掺杂碳材料用于增强电化学钠离子储存和去除. Acta Physico-Chimica Sinica, 2025, 41(3): 2405002-. doi: 10.3866/PKU.WHXB202405002

    17. [17]

      Li'na ZHONGJingling CHENQinghua ZHAO . Synthesis of multi-responsive carbon quantum dots from green carbon sources for detection of iron ions and L-ascorbic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 709-718. doi: 10.11862/CJIC.20240280

    18. [18]

      Qiang Zhou Pingping Zhu Wei Shao Wanqun Hu Xuan Lei Haiyang Yang . Innovative Experimental Teaching Design for 3D Printing High-Strength Hydrogel Experiments. University Chemistry, 2024, 39(6): 264-270. doi: 10.3866/PKU.DXHX202310064

    19. [19]

      Pengyang FANShan FANQinjin DAIXiaoying ZHENGWei DONGMengxue WANGXiaoxiao HUANGYong ZHANG . Preparation and performance of rich 1T-MoS2 nanosheets for high-performance aqueous zinc ion battery cathode materials. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 675-682. doi: 10.11862/CJIC.20240339

    20. [20]

      Mei Yan Rida Feng Yerdos·Tohtarkhan Biao Long Li Zhou Chongshen Guo . Expansion and Extension of Liquid Saturated Vapor Measurement Experiment. University Chemistry, 2024, 39(3): 294-301. doi: 10.3866/PKU.DXHX202308103

Metrics
  • PDF Downloads(0)
  • Abstract views(701)
  • HTML views(80)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return