Citation: WANG Qing, GUO Yong-Min, LI Yi, LI Bao-Zong. Preparation of Chiral Mesoporous Silica Using Phosphatidylcholine as a Chiral Additive[J]. Chinese Journal of Inorganic Chemistry, ;2013, 29(11): 2323-2326. doi: 10.3969/j.issn.1001-4861.2013.00.374 shu

Preparation of Chiral Mesoporous Silica Using Phosphatidylcholine as a Chiral Additive

  • Received Date: 27 May 2013
    Available Online: 10 July 2013

    Fund Project: 国家自然科学基金(No.21071103)资助项目。 (No.21071103)

  • Helical mesoporous silica nanorods were prepared through a so-gel approach using cetyltrimethylammonium bromide (CTAB) as the template and phosphatidylcholine (PC) as a chiral additive. The molar ratio of PC and CTAB is 1:21. The morphologies and pore architectures were characterized using field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), N2 sorptions and X-ray diffraction. It was found that the mesoporous silica nanorods were about 30~50 nm in diameter and about 50~200 nm in length. The TEM images and the small-angle X-diffraction indicated that the pore channels arranged in a two-dimensional hexagonal structure. The FESEM images indicated that the ratio of the left-and right-handed nanorods is almost 1:1. However, the circular dichroism spectrum (CD) indicated that the nanorods tended to form a structure with homochirality at angstrom level. It seems that the chirality of PC has been successfully transferred to the walls of the helical mesoporous silica nanorods.
  • 加载中
    1. [1]

      [1] Kresge C T, Leonowicz M E, Beck J S, et al. Nature, 1992, 359:710-712

    2. [2]

      [2] Corma A. Chem. Rev., 1997,97(6):2373-2419

    3. [3]

      [3] Wan Y, Zhao D. Chem. Rev., 2007,107:2821-2860

    4. [4]

      [4] Yoshina I C, Asefa T, Coombs N, et al. Chem. Commun., 1999,24:2539-2540

    5. [5]

      [5] Wang H N, Wang Y H, Zhou X, et al. Adv. Funct. Mater., 2007,17(4):613-617

    6. [6]

      [6] Ding J X, Xi C S, Zhou X L, et al. Mater. Lett., 2012,73:17-20

    7. [7]

      [7] DONG Xiu-Fang(董秀芳), CAO Rui-Lin(曹瑞林), LI Yu(李 裕), et al. Chem. Engineer(Huaxue Gongchengshi), 2010,5: 43-45

    8. [8]

      [8] WU Hong-Yu(伍宏玉), LI Hai-Tao(李海涛),ZHANG You-Yu (张友玉), et al. Chinese J. Inorg. Chem.(Wuji Huaxue Xuebao), 2012,28(2):257-262

    9. [9]

      [9] Chen J F, Ding H M, Wang J X, et al. Biomaterials, 2004,25 (4):723-727

    10. [10]

      [10]Kawasaki T, Ishikawa K, Sekibata H, et al. Tetrahedron Lett., 2004,45(42):7939-7941

    11. [11]

      [11]Moreau J, Vellutini L, Bied C, et al. J. Am. Chem. Soc., 2001,123:1509-1510

    12. [12]

      [12]Yang Y G, Nakazawa M, Suzuki M, et al. Chem. Mater., 2004,16(20):3791-3793

    13. [13]

      [13]Yang Y, Suzuki M, Hanabusa K, et al. J. Am. Chem. Soc., 2007,129(17):581-587

    14. [14]

      [14]Wan X, Pei X, Yang Y, et al. Nanotechnology, 2008,19: 315603

    15. [15]

      [15]Li B, Xu Z, Yang Y, et al. Chem. Commun., 2011,47:11495-11497

    16. [16]

      [16]Zhou L, Hong G, Lu Y, et al. Langmuir, 2009,25:6040-6044

    17. [17]

      [17]Yang S, Zhao L, Zhao D, et al. J. Am. Chem. Soc., 2006, 128:10460

    18. [18]

      [18]Yang H, Ozin G A, Kresge C T. Adv. Mater., 1998,10(11): 883-887

    19. [19]

      [19]Hu Y, Yuan P, Yu C, et al. Chem. Lett., 2008,37:1160-1161

    20. [20]

      [20]Li Y, Bi L, Yang Y, et al. Chem. Commun., 2010,46:2680

    21. [21]

      [21]Zhuang W, Bi L, Yang Y, et al. Chin. J. Chem., 2011,29: 883-887

    22. [22]

      [22]Che S, Liu Z, Tatsumi T. Nature, 2004,429:281-284

    23. [23]

      [23]Li Y, Wang S, Yang Y, et al. Nanotachnology, 2013,24: 035603

  • 加载中
    1. [1]

      Dongheng WANGSi LIShuangquan ZANG . Construction of chiral alkynyl silver chains and modulation of chiral optical properties. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 131-140. doi: 10.11862/CJIC.20240379

    2. [2]

      Ke QIAOYanlin LIShengli HUANGGuoyu YANG . Advancements in asymmetric catalysis employing chiral iridium (ruthenium) complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2091-2104. doi: 10.11862/CJIC.20240265

    3. [3]

      Zhaoxuan ZHULixin WANGXiaoning TANGLong LIYan SHIJiaojing SHAO . Application of poly(vinyl alcohol) conductive hydrogel electrolytes in zinc ion batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 893-902. doi: 10.11862/CJIC.20240368

    4. [4]

      Qiuting Zhang Fan Wu Jin Liu Zian Lin . Chromatographic Stationary Phase and Chiral Separation Using Frame Materials. University Chemistry, 2025, 40(4): 291-298. doi: 10.12461/PKU.DXHX202405174

    5. [5]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    6. [6]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    7. [7]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    8. [8]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    9. [9]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    10. [10]

      Wei HEJing XITianpei HENa CHENQuan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364

    11. [11]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

    12. [12]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024

    13. [13]

      Haiying Wang Andrew C.-H. Sue . How to Visually Identify Homochiral Crystals. University Chemistry, 2024, 39(3): 78-85. doi: 10.3866/PKU.DXHX202309004

    14. [14]

      Keying Qu Jie Li Ziqiu Lai Kai Chen . Unveiling the Mystery of Chirality from Tartaric Acid. University Chemistry, 2024, 39(9): 369-378. doi: 10.12461/PKU.DXHX202310091

    15. [15]

      Xilin Zhao Xingyu Tu Zongxuan Li Rui Dong Bo Jiang Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106

    16. [16]

      Ruiying WANGHui WANGFenglan CHAIZhinan ZUOBenlai WU . Three-dimensional homochiral Eu(Ⅲ) coordination polymer and its amino acid configuration recognition. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 877-884. doi: 10.11862/CJIC.20250052

    17. [17]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    18. [18]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    19. [19]

      Conghao Shi Ranran Wang Juli Jiang Leyong Wang . The Illustration on Stereoisomers of Macrocycles Containing Multiple Chiral Centers via Tröger Base-based Macrocycles. University Chemistry, 2024, 39(7): 394-397. doi: 10.3866/PKU.DXHX202311034

    20. [20]

      Tingyu Zhu Hui Zhang Wenwei Zhang . Exploration and Practice of Ideological and Political Education in the Course of Experiments on Chemical Functional Molecules: Synthesis and Catalytic Performance Study of Chiral Mn(III)Cl-Salen Complex. University Chemistry, 2024, 39(4): 75-80. doi: 10.3866/PKU.DXHX202311011

Metrics
  • PDF Downloads(0)
  • Abstract views(299)
  • HTML views(7)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return