Citation: JIANG Li-Long, LIU Xian, CAO Yan-Ning, ZENG Jie-Kai, LIN Shi-Tuan, WEI Ke-Mei. Effect of Fe2O3 Content on Structure and Catalytic Performance of Cu-Fe/Bauxite for Water Gas Shift Reaction[J]. Chinese Journal of Inorganic Chemistry, ;2013, 29(11): 2297-2304. doi: 10.3969/j.issn.1001-4861.2013.00.338 shu

Effect of Fe2O3 Content on Structure and Catalytic Performance of Cu-Fe/Bauxite for Water Gas Shift Reaction

  • Received Date: 9 March 2013
    Available Online: 6 June 2013

    Fund Project: 福建省自然科学基金(No.2011J01036) (No.2011J01036)福州大学育苗基金(No.2012-XY-5)资助项目。 (No.2012-XY-5)

  • Using modified bauxite with large surface area and mesoporous structure as the support, a series of Cu-Fe/Bauxite catalysts were synthesized with co-precipitation method. The catalysts were characterized by means of X-ray fluorescence spectrometry (XRF), X-ray diffraction (XRD), SBET, H2-temperature-programmed reduction (H2-TPR) and CO temperature-programmed desorption (CO-TPD) and X-ray photoelectron spectroscopy (XPS). Their catalytic activity in water gas shift (WGS) reaction has also been studied. The results indicate that the WGS reaction activity increases markedly with increasing the content of supported Fe2O3 and when the content of Fe2O3 is to 20%, the catalyst exhibits the highest activity. Because there exists obvious interaction between supported Fe2O3 and CuO to form composite oxide like CuFe2O4 and it enhances with increase in Fe2O3 content. The interaction promotes the reduction of Fe2O3 and CuO and restrains the clotting of CuO, and then the catalytic activity increases.
  • 加载中
    1. [1]

      [1] JIANG Li-Long(江莉龙), YE Bing-Huo(叶炳火), WEI Ke-Mei(魏可镁). Chinese J. Inorg. Chem.(Wuji Huaxue Xuebao), 2007,23(10):1733-1737

    2. [2]

      [2] FENG Shu-Bo(冯树波), LIANG Rui-E(梁瑞娥), DONG-Xian-Deng(董献登), et al. Chin. J. Catal. (Cuihua Xuebao), 1996,17:391-393

    3. [3]

      [3] Li Y, Fu Q, Flytzani-Stephanopoulos M. Appl. Catal. B, 2000, 27:179-191

    4. [4]

      [4] ZHENG Qi(郑起), XU Jian-Ben(徐建本), WEI Ke-Mei (魏可镁),et al. Chin. J. Catal. (Cuihua Xuebao), 1999,01: 21-24

    5. [5]

      [5] Zhang H M, Wu S Y, Zhang Z H. Condens. Matter. Phys., 2011,14:1-6

    6. [6]

      [6] Sagar G V, Rao P V R, Srikanth C S, et al. J. of Phys. Chem. B, 2006,110:13881-13888

    7. [7]

      [7] Chen C S, You J H., Lin J H, et al. Catal. Commun., 2008, 9:1230-1234

    8. [8]

      [8] Tanaka Y. J. Catal., 2003,215:271-278

    9. [9]

      [9] Shishido T, Yamamoto M, Atake I, et al. J. Mol. Catal. A: Chem., 2006,253:270-278

    10. [10]

      [10]Chen C S, Cheng W H, Lin S S. Appl. Catal., A, 2004,257: 97-106

    11. [11]

      [11]Lendzion-Bielun Z, Bettahar M M, Monteverdi S. Catal. Commun., 2010,11:1137-1142

    12. [12]

      [12]JIANG Li-Long(江莉龙), Ma Yong-De(马永德), CAO Yan-Ning(曹彦宁), et al. Chinese J. Inorg. Chem.(Wuji Huaxue Xuebao), 2012,28(6):1157-1164

    13. [13]

      [13]JIANG Li-Long(江莉龙), Ma Yong-De(马永德), CAO Yan-Ning(曹彦宁), et al. Acta Phys.-Chin. Sin.(Wuli Huaxue Xuebao), 2012,28(03):674-680

    14. [14]

      [14]Faungnawakij K, Shimoda N, Fukunaga T, et al. Appl. Catal., B, 2009,92:341-350

    15. [15]

      [15]Yang X M, Wei Y, Su Y L, et al. Fuel Process. Technol., 2010,91:1168-1173

    16. [16]

      [16]Gingasu D, Mindru I, Patron L, et al. J. Alloys Compd, 2008,460:627-631

    17. [17]

      [17]Ristic M, Hannoyer B, Popovic S, et al. Mater. Sci. Eng., B, 2000,77:73-82

    18. [18]

      [18]Khan A, Smirniotis P G. J. Mol. Catal. A: Chem., 2008,280: 43-51

    19. [19]

      [19]Estrella M, Barrio L, Zhou G, et al. J. Phys. Chem. C, 2009, 113:14411-14417

    20. [20]

      [20]Mahajan R P, Patankar K K, Kothale M B, et al. Bull. Mater. Sci., 2000,23:273-279

    21. [21]

      [21]Liu Y C, Fu Y P. Ceram. Int., 2010,36:1597-1601

    22. [22]

      [22]ZHANG Ping(张平), YU Bo(于波), ZHANG Lei(张磊). Sci. China B: Chem.(Zhonguo Kexue B),2008,38(7):624-630

    23. [23]

      [23]Parmigiani F, Pacchioni G, Illas F, et al. J. Electron Spectrosc. Relat. Phenom., 1992,59:255-269

    24. [24]

      [24]Jolley J G, Geesey G, Haukins M R, et al. Appl. Surf. Sci., 1989,37:469-480

    25. [25]

      [25]Nakamura T, Tomizuka H, Takahashi M, et al. J. Surf. Sci. Soc.Jpn., 1995,16:515-521

    26. [26]

      [26]McIntyre N S, Cook M G. Anal. Chem., 1975,47:2208-2213

    27. [27]

      [27]Sing K S W, Everett D H, Haul R A W, et al. Pure Appl. Chem., 1985,57:603-619

    28. [28]

      [28]Venugopal A, Aluha J, Scurrell M S, et al. Appl. Catal. A, 2003,45:149-158

    29. [29]

      [29]Jozwiak W K, Kaczmarek E, Maniecki T P, et al. Appl. Catal. A, 2007,326:17-27

    30. [30]

      [30]Delahay G, Coq B, Broussous L. Appl. Catal. B, 1997,12: 49-59

    31. [31]

      [31]YE Qing(叶青), YAN Li-Na(闫立娜), HUO Fei-Fei(霍飞飞), et al. Acta Chimica Sinica(Huaxue Xuebao), 2011,69(13): 1524-1532

    32. [32]

      [32]Charles Kittel, Ryosei Uno(宇野良淸). Introduction to Solid State Physics(固体物理学入门). Japan: Maruzen, 1988.

    33. [33]

      [33]Lohitharn N, Goodwin J G, Lotero E. J. Catal., 2008,255: 104-113

    34. [34]

      [34]Lee H C, Kim D H. Catal. Today, 2008,132:109-113

    35. [35]

      [35]Pan Z Y, Dong M H, Meng X K, et al. Chem. Eng. Sci., 2007,62(10):2712-2715

  • 加载中
    1. [1]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    2. [2]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    3. [3]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    4. [4]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    5. [5]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    6. [6]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    7. [7]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    8. [8]

      Yingqi BAIHua ZHAOHuipeng LIXinran RENJun LI . Perovskite LaCoO3/g-C3N4 heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 480-490. doi: 10.11862/CJIC.20240259

    9. [9]

      Hailian Tang Siyuan Chen Qiaoyun Liu Guoyi Bai Botao Qiao Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004

    10. [10]

      Yi Yang Xin Zhou Miaoli Gu Bei Cheng Zhen Wu Jianjun Zhang . Femtosecond transient absorption spectroscopy investigation on ultrafast electron transfer in S-scheme ZnO/CdIn2S4 photocatalyst for H2O2 production and benzylamine oxidation. Acta Physico-Chimica Sinica, 2025, 41(6): 100064-. doi: 10.1016/j.actphy.2025.100064

    11. [11]

      Yuchen Zhou Huanmin Liu Hongxing Li Xinyu Song Yonghua Tang Peng Zhou . Designing thermodynamically stable noble metal single-atom photocatalysts for highly efficient non-oxidative conversion of ethanol into high-purity hydrogen and value-added acetaldehyde. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-. doi: 10.1016/j.actphy.2025.100067

    12. [12]

      Xue Dong Xiaofu Sun Shuaiqiang Jia Shitao Han Dawei Zhou Ting Yao Min Wang Minghui Fang Haihong Wu Buxing Han . 碳修饰的铜催化剂实现安培级电流电化学还原CO2制C2+产物. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-. doi: 10.3866/PKU.WHXB202404012

    13. [13]

      Fangxuan Liu Ziyan Liu Guowei Zhou Tingting Gao Wenyu Liu Bin Sun . Hollow structured photocatalysts. Acta Physico-Chimica Sinica, 2025, 41(7): 100071-. doi: 10.1016/j.actphy.2025.100071

    14. [14]

      Rui Li Huan Liu Yinan Jiao Shengjian Qin Jie Meng Jiayu Song Rongrong Yan Hang Su Hengbin Chen Zixuan Shang Jinjin Zhao . 卤化物钙钛矿的单双向离子迁移. Acta Physico-Chimica Sinica, 2024, 40(11): 2311011-. doi: 10.3866/PKU.WHXB202311011

    15. [15]

      Xinyuan Shi Chenyangjiang Changyu Zhai Xuemei Lu Jia Li Zhu Mao . Preparation and Photoelectric Performance Characterization of Perovskite CsPbBr3 Thin Films. University Chemistry, 2024, 39(6): 383-389. doi: 10.3866/PKU.DXHX202312019

    16. [16]

      Yao Ma Xin Zhao Hongxu Chen Wei Wei Liang Shen . Progress and Perspective of Perovskite Thin Single Crystal Photodetectors. Acta Physico-Chimica Sinica, 2025, 41(4): 100030-. doi: 10.3866/PKU.WHXB202309045

    17. [17]

      Jian Li Yu Zhang Rongrong Yan Kaiyuan Sun Xiaoqing Liu Zishang Liang Yinan Jiao Hui Bu Xin Chen Jinjin Zhao Jianlin Shi . 高效靶向示踪钙钛矿纳米系统光电增效抗肿瘤. Acta Physico-Chimica Sinica, 2025, 41(5): 100042-. doi: 10.1016/j.actphy.2024.100042

    18. [18]

      Yixuan Gao Lingxing Zan Wenlin Zhang Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091

    19. [19]

      Lin Song Dourong Wang Biao Zhang . Innovative Experimental Design and Research on Preparing Flexible Perovskite Fluorescent Gels Using 3D Printing. University Chemistry, 2024, 39(7): 337-344. doi: 10.3866/PKU.DXHX202310107

    20. [20]

      Pengyu Dong Yue Jiang Zhengchi Yang Licheng Liu Gu Li Xinyang Wen Zhen Wang Xinbo Shi Guofu Zhou Jun-Ming Liu Jinwei Gao . NbSe2纳米片优化钙钛矿太阳能电池的埋底界面. Acta Physico-Chimica Sinica, 2025, 41(3): 2407025-. doi: 10.3866/PKU.WHXB202407025

Metrics
  • PDF Downloads(0)
  • Abstract views(291)
  • HTML views(25)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return