Citation:
YANG Chao, LIU Jing-Song, ZHANG Min-Fang, YOU Mei-Rong. Effect of Sintering Temperature on B-Site Order of Pb(Mg1/3Nb2/3)O3-Based Ferroelectric Ceramics[J]. Chinese Journal of Inorganic Chemistry,
;2013, 29(10): 2145-2149.
doi:
10.3969/j.issn.1001-4861.2013.00.334
-
The effect of CuOdoping on B-site order of 0.94Pb(Mg1/3Nb2/3)O3-0.06PbTiO3 (abbreviated as PMN-6PT) ceramics with different sintering temperatures was studied. The Raman and XRDresults revealed that under different sintering temperature, ion substitution was different, which had different influence to B-site order. Sintering temperature at 950 ℃, Cu2+ ions entered the crystal lattice and made no difference in the B-site order. However, Sintering temperature at 1080 ℃, Cu1+ ions entered the crystal lattice and had an effect in the B-site order. The dependence of dielectric constant on temperature illustrated an obvious relaxor characteristic for CuOdoped PMN-based ceramics, which was in accord with Raman spectra analysis.
-
-
-
[1]
[1] CHEN Xue-Feng(陈学锋), LI Hua-Mei(李华梅), LI Dong-Jie (李东杰), et al. Acta Phy. Sin.(Wuli Xuebao), 2008,57(11): 7298-7303 [2] Haertling G H. J. Am. Ceram. Soc., 1999,82(4):797-818 [3] Swartz S L, Shrout T R, Schulze W A, et al. J. Am. Ceram. Soc., 1984,67(5):311-314 [4] Uchino K. Am. Ceram. Soc. Bull., 1986,65:647-652 [5] YAO Wen-Long(姚文龙), FENG Chu-De(冯楚德), YANG Yi (杨毅), et al. J. Inorg. Mater.(Wuji Cailiao Xuebao), 2002,17 (6):1181-1186 [6] Smolensky G A, Isupon V A, Agranaovska A I, et al. Soc. Phys. Solid. State., 1961,2(11):2584-2594 [7] Chen J, Chan H M, Harmer M P. J. Am. Ceram. Soc., 1989, 72(4):593-598 [8] Cross L E. Ferroelectrics, 1987,76(1):241-267 [9] Yao X, Chen Z L, Cross L E. J. Appl. Phys., 1983,54(6):3399 -3403 [10]Akbas M A, Davis P K. J. Am. Ceram. Soc., 1997,80(11): 2933-2936 [11]Fu M J, Kojima S, Zhao C, et al. Appl. Phys. Lett., 2001,79: 3938-3940 [12]Lin D, Kwok K W, Chan H L W. J. Appl. Phys., 2007,90: 232903 [13]Huang C L, Chiang K H. Mater. Res. Bull., 2004,39(11): 1701-1708 [14]Jo W, Ollagnier J B, Park J L, et al. J. Eur. Ceram. Soc., 2011,31(12):2107-2117 [15]Wang L, Mao C L, Wang G S, et al. J. Am. Ceram. Soc., 2013,96(1):24-27 [16]Swartz S L, Shrout T R. Mater. Res. Bull., 1982,17(10):1245 -1250 [17]Hoang N N, Huynh D C, Nguyen T T, et al. Appl. Phys. A, 2008,92:715-725 [18]Husson E, Abello L, Morell A. Mater. Res. Bull., 1990,25 (4):539-545 [19]Li T, Liu J, Li H, et al. J. Mater. Sci.: Mater. Electron., 2011, 22(8):1188-1194 [20]LI Xin-Yuan(李新元), FENG Chu-De(冯楚德), LI Cheng-En (李承恩), et al. J. Inorg. Mater.(Wuji Cailiao Xuebao), 1998, 13(6):823- 829 [21]Bokov A A. Ferroelectrics, 1996,183(1):65-73 [22]ZHONG Wei-Lie(钟维烈). Ferroelectrics Physics(铁电体物 理学). Beijing: Science Press, 2000. [23]Set ter N, Cross L E. J. Mater. Sci, 1980,15(10):2478-2482 [24]QU Shao-Bo(屈绍波), YANG Zu-Pei(杨祖培), GAO Feng(高 峰), et al. J. Mater. Engin.(Cailiao Gongcheng), 2000,1:44- 48 [25]Mitoseriu L, Stancu A, Fedor C, et al. J. Appl. Phys., 2003, 94(3):1918-1925
-
[1]
-
-
-
[1]
Liang MA , Honghua ZHANG , Weilu ZHENG , Aoqi YOU , Zhiyong OUYANG , Junjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075
-
[2]
Jiajie Li , Xiaocong Ma , Jufang Zheng , Qiang Wan , Xiaoshun Zhou , Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117
-
[3]
Zhuomin Zhang , Hanbing Huang , Liangqiu Lin , Jingsong Liu , Gongke Li . Course Construction of Instrumental Analysis Experiment: Surface-Enhanced Raman Spectroscopy for Rapid Detection of Edible Pigments. University Chemistry, 2024, 39(2): 133-139. doi: 10.3866/PKU.DXHX202308034
-
[4]
Jingyi Chen , Fu Liu , Tiejun Zhu , Kui Cheng . Practice of Integrating Ideological and Political Education into Raman Spectroscopy Analysis Experiment Course. University Chemistry, 2024, 39(2): 140-146. doi: 10.3866/PKU.DXHX202310111
-
[5]
Xiaohui Li , Ze Zhang , Jingyi Cui , Juanjuan Yin . Advanced Exploration and Practice of Teaching in the Experimental Course of Chemical Engineering Thermodynamics under the “High Order, Innovative, and Challenging” Framework. University Chemistry, 2024, 39(7): 368-376. doi: 10.3866/PKU.DXHX202311027
-
[6]
Wenwen Zhang , Peichao Zhang , Conghao Gai , Xiaoyun Chai , Yan Zou , Qingjie Zhao . Unveiling Kinetics at Natural Abundance: 13C NMR Isotope Effect Experiments. University Chemistry, 2025, 40(10): 203-207. doi: 10.12461/PKU.DXHX202411076
-
[7]
Jianan Fang , Youhao Gu , Zexuan Gui , Laiying Zhang , Jiawei Yan , Ruming Yuan , Xiaoming Xu . Experimental Improvement and Expansion of the Electromotive Force Method to Determine the Mean Activity Coefficient of Electrolyte Solution. University Chemistry, 2025, 40(11): 263-271. doi: 10.12461/PKU.DXHX202504055
-
[8]
.
南开大学师唯/华北电力大学(保定)刘景维:二维配位聚合物中有序的亲锂冠醚位点用于无枝晶锂沉积
. CCS Chemistry, 2025, 7(0): -. -
[9]
Shi-Yu Lu , Wenzhao Dou , Jun Zhang , Ling Wang , Chunjie Wu , Huan Yi , Rong Wang , Meng Jin . Amorphous-Crystalline Interfaces Coupling of CrS/CoS2 Few-Layer Heterojunction with Optimized Crystallinity Boosted for Water-Splitting and Methanol-Assisted Energy-Saving Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(8): 2308024-0. doi: 10.3866/PKU.WHXB202308024
-
[10]
Wei Peng , Baoying Wen , Huamin Li , Yiru Wang , Jianfeng Li . Exploration and Practice on Raman Scattering Spectroscopy Experimental Teaching. University Chemistry, 2024, 39(8): 230-240. doi: 10.3866/PKU.DXHX202312062
-
[11]
Zhaoyue Lü , Zhehao Chen , Yi Ni , Duanbin Luo , Xianfeng Hong . Multi-Level Teaching Design and Practice Exploration of Raman Spectroscopy Experiment. University Chemistry, 2024, 39(11): 304-312. doi: 10.12461/PKU.DXHX202402047
-
[12]
Ruiqin Feng , Ye Fan , Yun Fang , Yongmei Xia . Strategy for Regulating Surface Protrusion of Gold Nanoflowers and Their Surface-Enhanced Raman Scattering. Acta Physico-Chimica Sinica, 2024, 40(4): 2304020-0. doi: 10.3866/PKU.WHXB202304020
-
[13]
Yufan ZHAO , Jinglin YOU , Shixiang WANG , Guopeng LIU , Xiang XIA , Yingfang XIE , Meiqin SHENG , Feiyan XU , Kai TANG , Liming LU . Raman spectroscopic quantitative study of the melt microstructure in binary Li2O-GeO2 functional crystals. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1533-1544. doi: 10.11862/CJIC.20250063
-
[14]
Wanchun Zhu , Yongmei Liu , Li Wang , Yunshan Bai , Shu'e Song , Xiaokui Wang , Zhongyun Wu , Hong Yuan , Yunchao Li , Fuping Tian , Yuan Chun , Jianrong Zhang , Shuyong Zhang . Suggestions on Operating Specifications of Physical Chemistry Experiment: Measurement and Control of Temperature. University Chemistry, 2025, 40(5): 128-136. doi: 10.12461/PKU.DXHX202503028
-
[15]
Qiaoqiao BAI , Anqi ZHOU , Xiaowei LI , Tang LIU , Song LIU . Construction of pressure-temperature dual-functional flexible sensors and applications in biomedicine. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2259-2274. doi: 10.11862/CJIC.20240128
-
[16]
Mingxin LU , Liyang ZHOU , Xiaoyu XU , Xiaoying FENG , Hui WANG , Bin YAN , Jie XU , Chao CHEN , Hui MEI , Feng GAO . Preparation of La-doped lead-based piezoelectric ceramics with both high electrical strain and Curie temperature. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 329-338. doi: 10.11862/CJIC.20240206
-
[17]
Zelin Wang , Gang Liu , Mengran Wang , Peiyu Zhang , Aixin Song , Jingcheng Hao , Jiwei Cui . Application of Instrumental Analysis in the Detection of Organic Components in Liquor. University Chemistry, 2025, 40(11): 318-326. doi: 10.12461/PKU.DXHX202502077
-
[18]
Yali Yuan , Jinfang Nie , Jianping Li , Wenying Jin , Lin Li . 具有鲜明地方和专业特色的分析化学课程思政体系构建. University Chemistry, 2025, 40(8): 18-24. doi: 10.12461/PKU.DXHX202410007
-
[19]
Jian He , Dinglin Zhang , Liping Wu , Ying Bao , Xiaochao Yang . 知识网络构建策略在有机化学教学中的应用及效果分析. University Chemistry, 2025, 40(8): 66-71. doi: 10.12461/PKU.DXHX202410092
-
[20]
Yaofeng Yuan , Keyin Ye , Chunfa Xu , Hong Yan , Yuanming Li . Fostering an International Perspective in Postgraduate Student Teaching: A Case Study of the Organic Structure Analysis Course. University Chemistry, 2024, 39(6): 145-150. doi: 10.3866/PKU.DXHX202402024
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(469)
- HTML views(25)
Login In
DownLoad: