Citation: LIU Xue-Li, WANG Shu-Tao. Construction of Nanostructured Inorganic Biointerface towards Highly Efficient Isolation of Circulating Tumor Cells[J]. Chinese Journal of Inorganic Chemistry, ;2013, 29(8): 1609-1616. doi: 10.3969/j.issn.1001-4861.2013.00.315 shu

Construction of Nanostructured Inorganic Biointerface towards Highly Efficient Isolation of Circulating Tumor Cells

  • Received Date: 28 February 2013
    Available Online: 14 June 2013

    Fund Project: 国家自然科学基金(No.21175140)资助项目。 (No.21175140)

  • Constructions and applications of nanostructured inorganic biointerface is one of the new emerging research fronts of inorganic chemistry. Nanostructured inorganic materials are showing their important roles in areas such as biomimetic interface, cell interface, and biological detection. Recently, inorganic nanostructures have been exploringly applied for the fundamental study of trace circulating tumor cells (CTCs) isolation. The isolation of trace CTCs is very important for the early diagnosis and prognosis monitor of cancer, and the study of cancer biology, etc. In this review, we mainly focus on the construction of nanostructured inorganic biointerface for trace CTCs isolation. The research progress is summarized and the future prospect is discussed.
  • 加载中
    1. [1]

      [1] Wang X Y, Guo Z J. Chem. Soc. Rev., 2013,42(1):202-224

    2. [2]

      [2] Wegner S V, Boyaci H, Chen H, et al. Angew. Chem. Int., 2009,48(13):2339-2341

    3. [3]

      [3] JIANG Long(江龙). Chinese J. Inorg. Chem.(Wuji Huaxue Xuebao), 2000,16(2):185-194

    4. [4]

      [4] Zhang L J, Webster T J. Nano Today, 2009,4(1):66-80

    5. [5]

      [5] Chen C S, Mrksich M, Huang S, et al. Science, 1997,276 (5317):1425-1428

    6. [6]

      [6] Flemming R G, Murphy C J, Abrams G A, et al. Biomaterials, 1999,20(6):573-588

    7. [7]

      [7] Rosi N L, Mirkin C A. Chem. Rev., 2005,105(4):1547-1562

    8. [8]

      [8] Feng L Y, Chen Y, Ren J S, et al. Biomaterials, 2011,32 (11):2930-2937

    9. [9]

      [9] XIE Hai-Yan(谢海燕), PANG Dai-Wen(庞代文). Chinese J.Anal. Chem.(Fenxi Huaxue), 2004,32(8):1099-1103

    10. [10]

      [10] Ferrari M. Nat. Rev. Cancer, 2005,5(3):161-171

    11. [11]

      [11] Hughes A D, King M R. Wiley Interdiscip. Rev.-Nanomed. Nanobiotechnol., 2012,4(3):291-309

    12. [12]

      [12] Gao X F, Jiang L. Nature, 2004,432(7013):36-36

    13. [13]

      [13] Tuteja A, Choi W, Ma M L, et al. Science, 2007,318(5856): 1618-1622

    14. [14]

      [14] OUYANG Jian-Ming(欧阳健明). Prog. Chem.(Huaxue Jinzhan), 2005,17(4):749-756

    15. [15]

      [15] CAI Guo-Bin(蔡国斌), GUO Xiao-Hui(郭晓辉), YU Shu-Hong(余书宏). Prog. Chem.(Huaxue Jinzhan), 2008,20(7/8): 1001-1014

    16. [16]

      [16] Yao H B, Fang H Y, Tan Z H, et al. Angew. Chem. Int., 2010,49(12):2140-2145

    17. [17]

      [17] Wang J. Small, 2005,1(11):1036-1043

    18. [18]

      [18] Yu X, Munge B, Patel V, et al. J. Am. Chem. Soc., 2006, 128(34):11199-11205

    19. [19]

      [19] Steeg P S. Nat. Med., 2006,12(8):895-904

    20. [20]

      [20] Pantel K, Brakenhoff R H, Brandt B. Nat. Rev. Cancer, 2008,8(5):329-340

    21. [21]

      [21] Paterlini-Brechot P, Benali N L. Cancer Lett., 2007,253(2): 180-204

    22. [22]

      [22] Mostert B, Sleijfer S, Foekens J A, et al. Cancer Treat. Rev., 2009,35(5):463-474

    23. [23]

      [23] Nagrath S, Sequist L V, Maheswaran S, et al. Nature, 2007,450(7173):1235-U10

    24. [24]

      [24] Adams A A, Okagbare P I, Feng J, et al. J. Am. Chem. Soc., 2008,130(27):8633-8641

    25. [25]

      [25] Gleghorn J P, Pratt E D, Denning D, et al. Lab Chip, 2010,10(1):27-29

    26. [26]

      [26] Went P T, Lugli A, Meier S, et al. Hum. Pathol., 2004,35 (1):122-128

    27. [27]

      [27] Hochbaum A I, Chen R K, Delgado R D, et al. Nature, 2008,451(7175):163-U5

    28. [28]

      [28] Sivakov V, Andra G, Gawlik A, et al. Nano Lett., 2009,9(4): 1549-1554

    29. [29]

      [29] Cui Y, Lauhon L J, Gudiksen M S, et al. Appl. Phys. Lett., 2001,78(15):2214-2216

    30. [30]

      [30] FANG Xiao-Sheng(方晓生), ZHANG Li-De(张立德). Chinese J. Inorg. Chem.(Wuji Huaxue Xuebao), 2006,22(9): 1555-1567

    31. [31]

      [31] YAN Xiao-Qin(闫小琴), LIU Zu-Qin(刘祖琴), TANG Dong-Sheng(唐东升), et al. Acta Phys. Sin-Ch. (Wuli Xuebao), 2003,52(2):454-458

    32. [32]

      [32] Peng K Q, Wu Y, Fang H, et al. Angew. Chem. Int., 2005, 44(18):2737-2742

    33. [33]

      [33] Chen C Y, Wu C S, Chou C J, et al. Adv. Mater., 2008,20 (20):3811-3815

    34. [34]

      [34] Wang S T, Wang H, Jiao J, et al. Angew. Chem. Int., 2009, 48(47):8970-8973

    35. [35]

      [35] Wang S T, Liu K, Liu J, et al. Angew. Chem. Int., 2011,50 (13):3084-3088

    36. [36]

      [36] Fischer K E, Aleman B J, Tao S L, et al. Nano Lett., 2009,9 (2):716-720

    37. [37]

      [37] Park G S, Kwon H, Kwak D W, et al. Nano Lett., 2012,12 (3):1638-1642

    38. [38]

      [38] Lee S K, Kim G S, Wu Y, et al. Nano Lett., 2012,12(6): 2697-2704

    39. [39]

      [39] Banerjee S S, Paul D, Bhansali S G, et al. Small, 2012,8 (11):1657-1663

    40. [40]

      [40] Sekine J, Luo S C, Wang S, et al. Adv. Mater., 2011,23(41): 4788-4792

    41. [41]

      [41] Zhang N A, Deng Y L, Tai Q D, et al. Adv. Mater., 2012,24 (20):2756-2760

    42. [42]

      [42] Hughes A D, King M R. Langmuir, 2010,26(14):12155-12164

    43. [43]

      [43] Chen W Q, Weng S N, Zhang F, et al. ACS Nano, 2013,7 (1):566-575

    44. [44]

      [44] Chen L, Liu X L, Su B, et al. Adv. Mater., 2011,23(38): 4376-4380

    45. [45]

      [45] Kim S T, Kim D J, Kim T J, et al. Nano Lett., 2010,10(8): 2877-2883

    46. [46]

      [46] Zha Z, Cohn C, Dai Z, et al. Adv. Mater., 2011,23(30):3435-3440

    47. [47]

      [47] Liu X L, Zhou J, Xue Z X, et al. Adv. Mater., 2012,24(25): 3401-3405

    48. [48]

      [48] Liu X L, Gao J, Xue Z X, et al. ACS Nano, 2012,6(6):5614-5620

    49. [49]

      [49] Sheparovych R, Motornov M, Minko S. Adv. Mater., 2009,21 (18):1840-1844

    50. [50]

      [50] Chen L, Liu M J, Bai H, et al. J. Am. Chem. Soc., 2009,131 (30):10467-10472

    51. [51]

      [51] Liu H L, Liu X L, Meng J X, et al. Adv. Mater., 2013,25(6): 922-927

  • 加载中
    1. [1]

      Zhaoxin LIRuibo WEIMin ZHANGZefeng WANGJing ZHENGJianbo LIU . Advancements in the construction of inorganic protocells and their cell mimic and bio-catalytical applications. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2286-2302. doi: 10.11862/CJIC.20240235

    2. [2]

      Tiejin ChenXiaokuang XueJian LiMinhui CuiYongliang HaoMianqi XueHaihua XiaoJiechao GePengfei Wang . Membrane-anchoring nanoengineered carbon dots as a pyroptosis amplifier for robust tumor photodynamic-immunotherapy. Acta Physico-Chimica Sinica, 2025, 41(10): 100113-0. doi: 10.1016/j.actphy.2025.100113

    3. [3]

      Jiahui CHENTingting ZHENGXiuyun ZHANGWei LÜ . Research progress of near-infrared absorption inorganic nanomaterials in photothermal and photodynamic therapy of tumors. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2396-2414. doi: 10.11862/CJIC.20240106

    4. [4]

      Jiahao Zeng Hui Chao . 诱导程序性细胞死亡的金属抗肿瘤药物研究. University Chemistry, 2025, 40(6): 145-159. doi: 10.12461/PKU.DXHX202406019

    5. [5]

      Jie WEIQing ZHOUDandan DINGXiang JINGFei LI . Photothermal toxicity of Prussian blue nanoparticles to cervical cancer cells. Chinese Journal of Inorganic Chemistry, 2025, 41(11): 2345-2357. doi: 10.11862/CJIC.20240435

    6. [6]

      Di WURuimeng SHIZhaoyang WANGYuehua SHIFan YANGLeyong ZENG . Construction of pH/photothermal dual-responsive delivery nanosystem for combination therapy of drug-resistant bladder cancer cell. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1679-1688. doi: 10.11862/CJIC.20240135

    7. [7]

      Lin LIJiaxue LIMeixia YANGJiayu DINGJiaqi JINGRuiping ZHANG . Preparation of mitoxantrone self-assembled carrier-free nanodrugs regulated by sodium acetate for apoptosis induction of human breast carcinoma cells. Chinese Journal of Inorganic Chemistry, 2025, 41(12): 2536-2548. doi: 10.11862/CJIC.20250138

    8. [8]

      Qi LiPingan LiZetong LiuJiahui ZhangHao ZhangWeilai YuXianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-0. doi: 10.3866/PKU.WHXB202311030

    9. [9]

      Shuyu Liu Xiaomin Sun Bohan Song Gaofeng Zeng Bingbing Du Chongshen Guo Cong Wang Lei Wang . Design and Fabrication of Phospholipid-Vesicle-based Artificial Cells towards Biomedical Applications. University Chemistry, 2024, 39(11): 182-188. doi: 10.12461/PKU.DXHX202404113

    10. [10]

      Yinyin Qian Rui Xu . Utilizing VESTA Software in the Context of Material Chemistry: Analyzing Twin Crystal Nanostructures in Indium Antimonide. University Chemistry, 2024, 39(3): 103-107. doi: 10.3866/PKU.DXHX202307051

    11. [11]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    12. [12]

      Shipeng WANGShangyu XIELuxian LIANGXuehong WANGJie WEIDeqiang WANG . Piezoelectric effect of Mn, Bi co-doped sodium niobate for promoting cell proliferation and bacteriostasis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1919-1931. doi: 10.11862/CJIC.20240094

    13. [13]

      Peng GENGGuangcan XIANGWen ZHANGHaichuang LANShuzhang XIAO . Hollow copper sulfide loaded protoporphyrin for photothermal-sonodynamic therapy of cancer cells. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1903-1910. doi: 10.11862/CJIC.20240155

    14. [14]

      . . Chinese Journal of Inorganic Chemistry, 2024, 40(11): 0-0.

    15. [15]

      Yang MeiqingLu WangHaozi LuYaocheng YangSong Liu . Recent Advances of Functional Nanomaterials for Screen-Printed Photoelectrochemical Biosensors. Acta Physico-Chimica Sinica, 2025, 41(2): 100018-0. doi: 10.3866/PKU.WHXB202310046

    16. [16]

      Mengzhen JIANGQian WANGJunfeng BAI . Research progress on low-cost ligand-based metal-organic frameworks for carbon dioxide capture from industrial flue gas. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 1-13. doi: 10.11862/CJIC.20240355

    17. [17]

      Xiaoyu YANGYejun ZHANGYu ZOUHongchao YANGJiang JIANGQiangbin WANG . Research progress of inorganic X-ray nanoscintillators. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 1929-1952. doi: 10.11862/CJIC.20250122

    18. [18]

      Yikai WangXiaolin JiangHaoming SongNan WeiYifan WangXinjun XuCuihong LiHao LuYahui LiuZhishan Bo . Thickness-Insensitive, Cyano-Modified Perylene Diimide Derivative as a Cathode Interlayer Material for High-Efficiency Organic Solar Cells. Acta Physico-Chimica Sinica, 2025, 41(3): 100027-0. doi: 10.3866/PKU.WHXB202406007

    19. [19]

      Pengli GUANRenhu BAIXiuling SUNBin LIU . Trianiline-derived aggregation-induced emission luminogen probe for lipase detection and cell imaging. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1817-1826. doi: 10.11862/CJIC.20250058

    20. [20]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

Metrics
  • PDF Downloads(0)
  • Abstract views(369)
  • HTML views(28)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return