Citation: CHEN Zhi-Gang, KUANG Xing-Yu, SONG Lin-Lin, TIAN Qi-Wei, HU Jun-Qing. Research Progress in NIR-Light-Driven Nanomaterials and Nanodevices[J]. Chinese Journal of Inorganic Chemistry, ;2013, 29(8): 1574-1590. doi: 10.3969/j.issn.1001-4861.2013.00.305 shu

Research Progress in NIR-Light-Driven Nanomaterials and Nanodevices

  • Received Date: 22 February 2013
    Available Online: 20 May 2013

    Fund Project: 国家自然科学基金(No.21171035和51272299) (No.21171035和51272299)上海市青年科技启明星计划(No.11QA140010) (No.11QA140010)

  • Near-infrared (NIR) light has great potential in biomedical application due to its advantages such as deep penetration depth and low photodamage to biological tissues. If we want to use NIR light that has entered animal body, for in-vivo diagnosis and therapeutic intervention, a prerequisite is to obtain nanomaterials and/or nanodevices that can absorb or convert NIR light. This paper reviews the recent research progress in NIR-light-driven nanomaterials and/or nanodevices, including up-converting rare-earth nanophosphors, 980-nm laser-driven generator, and photothermal nanoagents. The main attention has been given to the biological application of these nanomaterials and/or nanodevices. At last, the present problems and the future development trends are pointed out.
  • 加载中
    1. [1]

      [1] Kobayashi H, Ogawa M, Alford R, et al. Chem. Rev., 2010, 110(5):2620-2640

    2. [2]

      [2] Wang F, Liu X. Chem. Soc. Rev., 2009,38(4):976-989

    3. [3]

      [3] Zhou J, Liu Z, Li F. Chem. Soc. Rev., 2012,41(3):1323-1349

    4. [4]

      [4] Xu Y, Heberlein W E, Mahmood M, et al. J. Mater. Chem., 2012,22(38):20128-20142

    5. [5]

      [5] Chen Z G, Zhang L S, Sun Y G, et al. Adv. Funct. Mater., 2009,19(23):3815-3820

    6. [6]

      [6] Zhang L, Tian Q, Xu W, et al. J. Mater. Chem., 2012,22(35): 18156-18163

    7. [7]

      [7] Tian Q W, Tang M H, Sun Y G, et al. Adv. Mater., 2011,23 (31):3542-3547

    8. [8]

      [8] Tian Q W, Jiang F R, Zou R J, et al. ACS Nano, 2011,5(12): 9761-9771

    9. [9]

      [9] Chen Z G, Wang Q, Wang H L, et al. Adv. Mater., 2013,25 (14):2095-2100

    10. [10]

      [10] Chen Z G, Chen H L, Hu H, et al. J. Am. Chem. Soc., 2008,130(10):3023-3029

    11. [11]

      [11] Chen Z G, Tian Q W, Song Y L, et al. J. Alloys Compd., 2010,506(2):L17-L21

    12. [12]

      [12] CHEN Zhi-Gang(陈志钢), SONG Yue-Lin(宋岳林), TIAN Qi-Wei(田启威), et al. Mod. Chem. Ind.(Xiandai Huagong), 2010,30(07):27-33

    13. [13]

      [13] Song Y L, Tian Q W, Zou R J, et al. J. Alloys Compd., 2011,509(23):6539-6544

    14. [14]

      [14] GAO Yuan(高渊), CAO Tian-Ye(曹天野), LI Fu-You(李富 友). Chinese J. Inorg. Chem.(Wuji Huaxue Xuebao), 2012, 28(10):2043-2048

    15. [15]

      [15] Heer S, Kompe K, Gudel H U, et al. Adv. Mater., 2004,16 (23/24):2102-2105

    16. [16]

      [16] ZOU Shao-Yu(邹少瑜), MENG Jian-Xin(孟建新). Chinese J. Inorg. Chem.(Wuji Huaxue Xuebao), 2011,27(06):1138-1142

    17. [17]

      [17] WANG Neng-Li(王能利), WANG Kun(王坤), YANG Liu(杨 柳), et al. Chinese J. Inorg. Chem.(Wuji Huaxue Xuebao), 2011,27(04):619-624

    18. [18]

      [18] QU Yu-Qiu(曲玉秋), LI Mei-Cheng(李美成). Chinese J. Inorg. Chem.(Wuji Huaxue Xuebao), 2010,26(10):1815-1819

    19. [19]

      [19] Li Z, Zhang Y. Angew. Chem. Int. Ed., 2006,45(46):7732-7735

    20. [20]

      [20] Wang X, Zhuang J, Peng Q, et al. Nature, 2005,437(7055): 121-124

    21. [21]

      [21] Wang L, Li Y. Nano Lett., 2006,6(8):1645-1649

    22. [22]

      [22] Wang L, Li Y. Chem. Mater., 2007,19(4):727-734

    23. [23]

      [23] Wang G, Peng Q, Li Y. J. Am. Chem. Soc., 2009,131(40): 14200-14201

    24. [24]

      [24] Zhang Y W, Sun X, Si R, et al. J. Am. Chem. Soc., 2005, 127(10):3260-3261

    25. [25]

      [25] Mai H X, Zhang Y W, Si R, et al. J. Am. Chem. Soc., 2006, 128(19):6426-6436

    26. [26]

      [26] Boyer J C, Vetrone F, Cuccia L A, et al. J. Am. Chem. Soc., 2006,128(23):7444-7445

    27. [27]

      [27] Zhang F, Wan Y, Yu T, et al. Angew. Chem. Int. Ed., 2007, 46(42):7976-7979

    28. [28]

      [28] Wang F, Han Y, Lim C S, et al. Nature, 2010,463(7284): 1061-1065

    29. [29]

      [29] Yi G S, Chow G M. Adv. Funct. Mater., 2006,16(18):2324-2329

    30. [30]

      [30] Li Z, Zhang Y, Jiang S. Adv. Mater., 2008,20(24):4765-4769

    31. [31]

      [31] Naccache R, Vetrone F, Mahalingam V, et al. Chem. Mater., 2009,21(4):717-723

    32. [32]

      [32] Yi G S, Chow G M. Chem. Mater., 2007,19(3):341-343

    33. [33]

      [33] Wang L Y, Yan R X, Hao Z Y, et al. Angew. Chem. Int. Ed., 2005,44(37):6054-6057

    34. [34]

      [34] Xiong L Q, Chen Z G, Yu M X, et al. Biomaterials, 2009,30 (29):5592-5600

    35. [35]

      [35] Barone V, Cacelli I, Ferretti A, et al. Phys. Chem. Chem. Phys., 2009,11(45):10644-10656

    36. [36]

      [36] Hamdi M. Nanotechnology, 2009,20(48):485501

    37. [37]

      [37] Kalantari-Nejad R, Bahrami M, Rafii-Tabar H, et al. Nanotechnology, 2010,21(44):445501

    38. [38]

      [38] Liu M, Zentgraf T, Liu Y, et al. Nat. Nanotech., 2010,5(8): 570-573

    39. [39]

      [39] Wang X D, Song J H, Liu J, et al. Science, 2007,316(5821): 102-105

    40. [40]

      [40] Wang X D, Gao Y F, Wei Y G, et al. Nano Research, 2009, 2(3):177-182

    41. [41]

      [41] Cha S, Kim S M, Kim H, et al. Nano Lett., 2011,11(12): 5142-5147

    42. [42]

      [42] Wang Z L. Adv. Mater., 2012,24(2):280-285

    43. [43]

      [43] Yang R, Qin Y, Li C, et al. Nano Lett., 2009,9(3):1201-1205

    44. [44]

      [44] Li Z, Zhu G A, Yang R S, et al. Adv. Mater., 2010,22(23): 2534-2537

    45. [45]

      [45] Pan C, Wu H, Wang C, et al. Adv. Mater., 2008,20(9):1644-1648

    46. [46]

      [46] Pan C, Fang Y, Wu H, et al. Adv. Mater., 2010,22(47):5388-5392

    47. [47]

      [47] Gao F, Viry L, Maugey M, et al. Nat. Commun., 2010,1:2

    48. [48]

      [48] Hansen B J, Liu Y, Yang R S, et al. ACS Nano, 2010,4(7): 3647-3652

    49. [49]

      [49] Cinquin P, Gondran C, Giroud F, et al. PLoS ONE, 2010,5 (5):e10476

    50. [50]

      [50] Gratzel M. Nature, 2001,414(6861):338-344

    51. [51]

      [51] Gur I, Fromer N A, Geier M L, et al. Science, 2005,310 (5747):462-465

    52. [52]

      [52] Chen Z G, Li F Y, Huang C H. Curr. Org. Chem., 2007,11 (14):1241-1258

    53. [53]

      [53] Chen Z G, Li F Y, Yang H, et al. Chemphyschem, 2007,8 (9):1293-1297

    54. [54]

      [54] Chen Z G, Tang Y W, Yang H, et al. J. Power Sources, 2007,171(2):990-998

    55. [55]

      [55] Chen Z G, Yang H, Li X H, et al. J. Mater. Chem., 2007,17 (16):1602-1607

    56. [56]

      [56] Liu H, Tang J, Kramer I J, et al. Adv. Mater., 2011,23(33):3832-3837

    57. [57]

      [57] Wang Y C, Huang K C, Dong R X, et al. J. Mater. Chem., 2012,22(14):6982-6989

    58. [58]

      [58] Wilson J R, Mancini D M, McCully K, et al. Circulation, 1989,80(6):1668-1674

    59. [59]

      [59] Chance B, Dait M T, Zhang C D, et al. Am. J. Physiol., 1992,262(3):C766-C775

    60. [60]

      [60] Wu J L, Chen F C, Chuang M K, et al. Energ. Environ. Sci., 2011,4(9):3374-3378

    61. [61]

      [61] Chen W R, Adams R L, Bartels K E, et al. Cancer Lett., 1995,94(2):125-131

    62. [62]

      [62] Chen W R, Adams R L, Heaton S, et al. Cancer Lett., 1995, 88(1):15-19

    63. [63]

      [63] Chen W R, Adams R L, Higgins A K, et al. Cancer Lett., 1996,98(2):169-173

    64. [64]

      [64] Lucroy M D, Chen W R, Ridgway T D, et al. J. X-Ray Sci. Technol., 2002,10(3-4):237-243

    65. [65]

      [65] Yu J, Yaseen M A, Anvari B, et al. Chem. Mater., 2007,19 (6):1277-1284

    66. [66]

      [66] Yu J, Javier D, Yaseen M A, et al. J. Am. Chem. Soc., 2010,132(6):1929-1938

    67. [67]

      [67] Zheng X, Xing D, Zhou F, et al. Mol. Pharm., 2011,8(2): 447-456

    68. [68]

      [68] Peng C L, Shih Y H, Lee P C, et al. ACS Nano, 2011,5(7): 5594-5607

    69. [69]

      [69] Yang J, Choi J, Bang D, et al. Angew. Chem. Int. Ed., 2011, 50(2):441-444

    70. [70]

      [70] Chen M, Fang X, Tang S, et al. Chem. Commun., 2012,48 (71):8934-8936

    71. [71]

      [71] Zha Z, Yue X, Ren Q, et al. Adv. Mater., 2013,25(5):777-782

    72. [72]

      [72] Cheng L, Yang K, Chen Q, et al. ACS Nano, 2012,6(6): 5605-5613

    73. [73]

      [73] QU Xiao-Chao(屈晓超), LIANG Jia-Ming(梁佳明), YAO Cui-Ping(姚翠萍), et al. Chin. J. Lasers(Zhongguo Jiguang), 2007,34(11):1459-1465

    74. [74]

      [74] Nam J, Won N, Jin H, et al. J. Am. Chem. Soc., 2009,131 (38):13639-13645

    75. [75]

      [75] Sharma P, Brown S C, Singh A, et al. J. Mater. Chem., 2010,20(25):5182-5185

    76. [76]

      [76] Umeda Y, Kojima C, Harada A, et al. Bioconjugate. Chem., 2010,21(8):1559-1564

    77. [77]

      [77] Wang S T, Chen K J, Wu T H, et al. Angew. Chem. Int. Ed., 2010,49(22):3777-3781

    78. [78]

      [78] Buchkremer A, Linn M J, Reismann M, et al. Small, 2011,7 (10):1397-1402

    79. [79]

      [79] Khlebtsov N, Dykman L. Chem. Soc. Rev., 2011,40(3):1647-1671

    80. [80]

      [80] Van de Broek B, Devoogdt N, D'Hollander A, et al. ACS Nano, 2011,5(6):4319-4328

    81. [81]

      [81] Huang X H, El-Sayed I H, Qian W, et al. J. Am. Chem. Soc., 2006,128(6):2115-2120

    82. [82]

      [82] Li J L, Day D, Gu M. Adv. Mater., 2008,20(20):3866-3871

    83. [83]

      [83] von Maltzahn G, Centrone A, Park J H, et al. Adv. Mater., 2009,21(31):3175-3180

    84. [84]

      [84] Ungureanu C, Kroes R, Petersen W, et al. Nano Lett., 2011, 11(5):1887-1894

    85. [85]

      [85] Wang J, Zhu G, You M, et al. ACS Nano, 2012,6(6):5070-5077

    86. [86]

      [86] YANG Yu-Dong(杨玉东), XU Jing-Hua(徐菁华), YANG Lin-Mei(杨林梅), et al. Laser Optoelectronics Prog.(Jiguang Yu Guangdianzixue Jinzhan), 2010,47(7):071702

    87. [87]

      [87] MA Zhan-Fang(马占芳), TIAN Le(田乐), DI Jing(邸静), et al. Prog. Chem.(Huaxue Jinzhan), 2009,21(1):134-142

    88. [88]

      [88] Zhang Z, Wang L, Wang J, et al. Adv. Mater., 2012,24(11): 1418-1423

    89. [89]

      [89] Yang J, Lee J, Kang J, et al. Adv. Mater., 2009,21(43):4339-4342

    90. [90]

      [90] Ke H T, Wang J R, Dai Z F, et al. Angew. Chem. Int. Ed., 2011,50(13):3017-3021

    91. [91]

      [91] ZHANG Hao-Ran(张浩然), MAN Shi-Qing(满石清), XU Meng(徐萌), et al. Chinese J. Inorg. Chem.(Wuji Huaxue Xuebao), 2010,26(10):1768-1775

    92. [92]

      [92] You J, Zhang G D, Li C. ACS Nano, 2010,4(2):1033-1041

    93. [93]

      [93] Preciado-Flores S, Wang D C, Wheeler D A, et al. J. Mater. Chem., 2011,21(7):2344-2350

    94. [94]

      [94] Chen J Y, Wang D L, Xi J F, et al. Nano Lett., 2007,7(5): 1318-1322

    95. [95]

      [95] Yavuz M S, Cheng Y, Chen J, et al. Nat. Mater., 2009,8(12): 935-939

    96. [96]

      [96] Chen J Y, Glaus C, Laforest R, et al. Small, 2010,6(7):811-817

    97. [97]

      [97] Ye E Y, Win K Y, Tan H R, et al. J. Am. Chem. Soc., 2011,133(22):8506-8509

    98. [98]

      [98] Yuan H, Fales A M, Vo-Dinh T. J. Am. Chem. Soc., 2012, 134(28):11358-11361

    99. [99]

      [99] Huang X, Tang S, Yang J, et al. J. Am. Chem. Soc., 2011, 133(40):15946-15949

    100. [100]

      [100] Huang X, Tang S, Liu B, et al. Adv. Mater., 2011,23(30): 3420-3425

    101. [101]

      [101] Kam N W S, O'Connell M, Wisdom J A, et al. Proc. Natl. Acad. Sci. USA., 2005,102(33):11600-11605

    102. [102]

      [102] Kim J W, Galanzha E I, Shashkov E V, et al. Nat. Nanotech., 2009,4(10):688-694

    103. [103]

      [103] Moon H K, Lee S H, Choi H C. ACS Nano, 2009,3(11): 3707-3713 [104] Fisher J W, Sarkar S, Buchanan C F, et al. Cancer Res., 2010,70(23):9855-9864

    104. [104]

      [105] Robinson J T, Welsher K, Tabakman S M, et al. Nano Res., 2010,3(11):779-793

    105. [105]

      [106] Liu X W, Tao H Q, Yang K, et al. Biomaterials., 2011,32 (1):144-151

    106. [106]

      [107] Markovic Z M, Harhaji-Trajkovic L M, Todorovic-Markovic B M, et al. Biomaterials., 2011,32(4):1121-1129

    107. [107]

      [108] Whitney J R, Sarkar S, Zhang J F, et al. Laser. Surg. Med., 2011,43(1):43-51

    108. [108]

      [109] Wang X, Wang C, Cheng L, et al. J. Am. Chem. Soc., 2012,134(17):7414-7422

    109. [109]

      [110] Antaris A L, Robinson J T, Yaghi O K, et al. ACS Nano, 2013,7(4):3644-3652

    110. [110]

      [111] Yang K, Zhang S, Zhang G X, et al. Nano Lett., 2010,10 (9):3318-3323

    111. [111]

      [112] Robinson J T, Tabakman S M, Liang Y Y, et al. J. Am. Chem. Soc., 2011,133(17):6825-6831

    112. [112]

      [113] Li M, Yang X, Ren J, et al. Adv. Mater., 2012,24(13):1722-1728

    113. [113]

      [114] Yang K, Hu L, Ma X, et al. Adv. Mater., 2012,24(14):1868-1872

    114. [114]

      [115] Yang K, Gong H, Shi X, et al. Biomaterials., 2013,34(11): 2787-2795

    115. [115]

      [116] Yang K, Feng L, Shi X, et al. Chem. Soc. Rev., 2013,42 (2):530-547

    116. [116]

      [117] Wang Y, Wang K, Zhao J, et al. J. Am. Chem. Soc., 2013, 135(12):4799-4804

    117. [117]

      [118] Li Y B, Lu W, Huang Q A, et al. Nanomedicine, 2010,5 (8):1161-1171

    118. [118]

      [119] Zhou M, Zhang R, Huang M A, et al. J. Am. Chem. Soc., 2010,132(43):15351-15358

  • 加载中
    1. [1]

      Yang YANGPengcheng LIZhan SHUNengrong TUZonghua WANG . Plasmon-enhanced upconversion luminescence and application of molecular detection. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 877-884. doi: 10.11862/CJIC.20230440

    2. [2]

      Xinyuan Shi Chenyangjiang Changyu Zhai Xuemei Lu Jia Li Zhu Mao . Preparation and Photoelectric Performance Characterization of Perovskite CsPbBr3 Thin Films. University Chemistry, 2024, 39(6): 383-389. doi: 10.3866/PKU.DXHX202312019

    3. [3]

      Jinghan ZHANGGuanying CHEN . Progress in the application of rare-earth-doped upconversion nanoprobes in biological detection. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2335-2355. doi: 10.11862/CJIC.20240249

    4. [4]

      Jiahui CHENTingting ZHENGXiuyun ZHANGWei LÜ . Research progress of near-infrared absorption inorganic nanomaterials in photothermal and photodynamic therapy of tumors. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2396-2414. doi: 10.11862/CJIC.20240106

    5. [5]

      Kun Rong Cuilian Wen Jiansen Wen Xiong Li Qiugang Liao Siqing Yan Chao Xu Xiaoliang Zhang Baisheng Sa Zhimei Sun . 层状MoS2/Ti3C2Tx异质结光热转换材料用于太阳能驱动水蒸发. Acta Physico-Chimica Sinica, 2025, 41(6): 100053-. doi: 10.1016/j.actphy.2025.100053

    6. [6]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    7. [7]

      Xingchao Zhao Xiaoming Li Ming Liu Zijin Zhao Kaixuan Yang Pengtian Liu Haolan Zhang Jintai Li Xiaoling Ma Qi Yao Yanming Sun Fujun Zhang . 倍增型全聚合物光电探测器及其在光电容积描记传感器上的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2311021-. doi: 10.3866/PKU.WHXB202311021

    8. [8]

      Han ZHANGJianfeng SUNJinsheng LIANG . Hydrothermal synthesis and luminescent properties of broadband near-infrared Na3CrF6 phosphor. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 349-356. doi: 10.11862/CJIC.20240098

    9. [9]

      Wenjing ZHANGXiaoqing WANGZhipeng LIU . Recent developments of inorganic metal complex-based photothermal materials and their applications in photothermal therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2356-2372. doi: 10.11862/CJIC.20240254

    10. [10]

      . . Chinese Journal of Inorganic Chemistry, 2024, 40(12): 0-0.

    11. [11]

      Xinxin JINGWeiduo WANGHesu MOPeng TANZhigang CHENZhengying WULinbing SUN . Research progress on photothermal materials and their application in solar desalination. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1033-1064. doi: 10.11862/CJIC.20230371

    12. [12]

      Yang Wang Yunpeng Fu Xiaoji Liu Guotao Zhang Guobin Li Wanqiang Liu Jinglun Wang . Structural Analysis of Nitrile Solutions Based on Infrared Spectroscopy Probes. University Chemistry, 2025, 40(4): 367-374. doi: 10.12461/PKU.DXHX202406113

    13. [13]

      Chongjing Liu Yujian Xia Pengjun Zhang Shiqiang Wei Dengfeng Cao Beibei Sheng Yongheng Chu Shuangming Chen Li Song Xiaosong Liu . Understanding Solid-Gas and Solid-Liquid Interfaces through Near Ambient Pressure X-Ray Photoelectron Spectroscopy. Acta Physico-Chimica Sinica, 2025, 41(2): 100013-. doi: 10.3866/PKU.WHXB202309036

    14. [14]

      Pengcheng Yan Peng Wang Jing Huang Zhao Mo Li Xu Yun Chen Yu Zhang Zhichong Qi Hui Xu Henan Li . Engineering Multiple Optimization Strategy on Bismuth Oxyhalide Photoactive Materials for Efficient Photoelectrochemical Applications. Acta Physico-Chimica Sinica, 2025, 41(2): 100014-. doi: 10.3866/PKU.WHXB202309047

    15. [15]

      Meiqing Yang Lu Wang Haozi Lu Yaocheng Yang Song Liu . Recent Advances of Functional Nanomaterials for Screen-Printed Photoelectrochemical Biosensors. Acta Physico-Chimica Sinica, 2025, 41(2): 100018-. doi: 10.3866/PKU.WHXB202310046

    16. [16]

      Zhaoxin LIRuibo WEIMin ZHANGZefeng WANGJing ZHENGJianbo LIU . Advancements in the construction of inorganic protocells and their cell mimic and bio-catalytical applications. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2286-2302. doi: 10.11862/CJIC.20240235

    17. [17]

      Lina Feng Guoyu Jiang Xiaoxia Jian Jianguo Wang . Application of Organic Radical Materials in Biomedicine. University Chemistry, 2025, 40(4): 253-260. doi: 10.12461/PKU.DXHX202405171

    18. [18]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    19. [19]

      Qiaoqiao BAIAnqi ZHOUXiaowei LITang LIUSong LIU . Construction of pressure-temperature dual-functional flexible sensors and applications in biomedicine. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2259-2274. doi: 10.11862/CJIC.20240128

    20. [20]

      Wei HEJing XITianpei HENa CHENQuan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364

Metrics
  • PDF Downloads(0)
  • Abstract views(295)
  • HTML views(42)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return