Citation: ZHONG Yong-Hui, ZHOU Qi, LIU Jia-Qin, WANG Yan, CHEN Xing, WU Yu-Cheng. Preparation of Fluorizated TiO2 Hollow Microspheres and Their Photocatalytic Activity[J]. Chinese Journal of Inorganic Chemistry, ;2013, 29(10): 2133-2139. doi: 10.3969/j.issn.1001-4861.2013.00.238 shu

Preparation of Fluorizated TiO2 Hollow Microspheres and Their Photocatalytic Activity

  • Received Date: 27 February 2013
    Available Online: 9 April 2013

    Fund Project: 国家自然科学基金(No.51202052,No.91023030) (No.51202052,No.91023030)安徽省国际科技合作计划(No.10080703017)资助项目 (No.10080703017)

  • Using tetrabutyl orthotitanate as Ti source, hydrofluoric acid as Fsource and ethanol as solvent, well crystallized anatase-phase F-modified TiO2 hollow microspheres have been synthesized via a solvothermal process. The structure and properties of the resulting samples were characterized by XRD, SEM, FTIR, XPS. The results indicated that the fluorizated TiO2 hollow microspheres had an anatase phase, the fluorine atoms were mainly distributed on the surface of TiO2, and existed in forms of chemical-adsorption. Hollow anatase TiO2 microspheres were achieved by Ostwald ripening under solvothermal conditions. Compared to pure titania, the fluorizated TiO2 hollow microspheres showed a much higher degradation efficiency, and degradation rate of which can be up to 98% during the photodegradation of methyl orange with the initial concentration of 20 mg·L-1 for 30 minutes. The mechanism for the great improvement for photocatalytic activity can be attributed to the unique structure of hollow microsphere and the fluorine modification, because the strong electron withdrawing ability of the surface ≡Ti-Fgroups reduces the recombination of photogenerated electrons and holes, and enhances the formation of free OHradicals.
  • 加载中
    1. [1]

      [1] Fujishima A, Honda K. Nature, 1972,238(5358):37-38 [2] Pelaez M, Nolan N T, Pillai S C, et al. Appl. Catal. B, 2012, 125:331-349 [3] WU Yu-Cheng(吴玉程), WANG Yan(王岩), CUI Jie-Wu (崔接武), et al. Chin. J. Nonferrous Metals. (Zhongguo Youse Jinshu Xuebao), 2011,121(10):2430-2447 [4] Dipaola A, Garcia L E, Marci G, et al. J. Hazard. Mater., 2012,211:3-29 [5] Kubacka A, Fernández G M, Colón G. Chem. Rev., 2011,112 (3):1555-1614 [6] WU Da-Wang (吴大旺), LI Shuo(李硕), ZHANG Qiu-Lin (张秋林), et al. Acta Phys -Chim. Sin. (Wuli Huaxue Xuebao), 2012,28(7):1383-1388 [7] HUANG Dong-Sheng (黄东升), CHEN Chao-Feng (陈朝凤), LI Yu-Hua(李玉花), et al. Chinese J. Inorg. Chem. (Wuji Huaxue Xuebao), 2007,23(4):738-742 [8] YANG Juan(杨娟), LI Jian-Tong(李建通), MIAO-Juan(缪娟). Chinese J. Inorg. Chem.(Wuji Huaxue Xuebao), 2012,27(3): 547-555 [9] XIAO Yi-Fan(肖逸帆), LIU Song(柳松), XIANG De-Cheng (向德成), et al. Bull. Chin. Ceram. Soc. (Guisuanyan Xuebao), 2011,30(2):348-355 [10]Tada H, Kiyonaga T, Naya S. Chem.Soc. Rev., 2009,38: 1849-1858 [11]LIU Shao-You(刘少友), FENG Qing-Ge(冯庆革), TANG Wen-Hua(唐文华), et al. Chinese J. Inorg. Chem. (Wuji Huaxue Xuebao), 2011,27(4):273-281 [12]Lü K, Cheng B, Yu J G, et al. Phys. Chem. Chem. Phys., 2012,14(16):5349-5410 [13]Pan J H, Cai Z Y, Yu Y, et al. J. Mater. Chem., 2011,21 (30):11430-11438 [14]HUANG Dong-Gen(黄冬根), LIAO Shi-Jun(廖世军), ZHOU Wen-Bin(周文斌), et al. J. Funct. Mater. (Goneneng Cailiao), 2008,39(7):1166-1173 [15]LI Zhu-Ying(李竹英), WEI Shun-Wen(韦顺文), CHAI Li- Yuan(柴立元), et al. J. Cent. South Univ. (Zhongnan Daxue Xuebao), 2009,40(1):56-59 [16]GAO Yue-Jun (高岳君), XU Yi-Ming(许宜铭). Acta Phys. -Chim.Sin.(Wuli Huaxue Xuebao), 2012,28(3):641-646 [17]CAI Chen-Ling(蔡陈灵), WANG Jin-Guo(王金果), CAO Feng-Lei(曹锋雷), et al. Chin. J. Catal. (Cuihua Xuebao), 2011,32(5):862-871 [18]JIANG Jing-Jing (蒋晶晶), LONG Ming-Ce(龙明策), WU De-Yong(吴德勇), et al. -Acta. Phys. Chim. Sin.(Wuli Huaxue Xuebao), 2011,27(5):1149-1156 [19]Yu J G, Wang W G, Cheng B, et al. J. Phys. Chem. C, 2009,113(16):6743-6750 [20]Minero C, Mariella G, Maurino V, et al. Langmuir, 2000,16 (17):8964-8972 [21]Li J Q, Wang D F, He Z L, et al. J. Am. Ceram. Soc., 2011, 94(5):1639-1642 [22]Yang H G, Sun C G, Qiao S G, et al. Nature, 2008,453 (7195):638-642 [23]Pan L, Zou J J, Wang S B, et al. ACS Appl. Mater. Inter., 2012,4(3):1650-1655 [24]Li H X, Bian Z F, Zhu J, et al. J. Am. Chem. Soc., 2007, 129(27):8406-8407 [25]Yang H G, Zeng H C. J. Phys. Chem. B, 2004,108(11): 3492-3495 [26]Yu J G, Liu S W, Yu H G, et al. J. Catal., 2007,249(1):59-66 [27]HUANG Dong-Gen (黄冬根), LIAO Shi-Jun (廖世军), DANG Zhi(党志). Acta Chim. Sin.(Huaxue Xuebao), 2006,64(17): 1805-1811 [28]CHEN Yan-Min(陈艳敏), ZHONG Jing(钟晶), CHEN Feng (陈锋), et al. Chin. J. Catal(Cuihua Xuebao), 2010,31(1): 120-125 [29]Liu M, Lü K L, Wang G H, et al. Chem. Eng. Technol., 2010,33(9):1531-1536 [30]Mrowetz M, Selli E. Phys. Chem. Chem. Phys., 2005,7(6): 1100-1102 [31]Minero C, Mariella G, Maurino V, et al. Langmuir, 2000,16 (6):2632-2641 [32]Kondo Y, Yoshikawa H, Awaga K, et al. Langmuir, 2007,24 (2):547-550

  • 加载中
    1. [1]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    2. [2]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    3. [3]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    4. [4]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    5. [5]

      Ke Li Chuang Liu Jingping Li Guohong Wang Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009

    6. [6]

      Yadan Luo Hao Zheng Xin Li Fengmin Li Hua Tang Xilin She . 调节O,S共掺杂C3N4中的活性氧生成以促进光催化降解微塑料. Acta Physico-Chimica Sinica, 2025, 41(6): 100052-. doi: 10.1016/j.actphy.2025.100052

    7. [7]

      Yingqi BAIHua ZHAOHuipeng LIXinran RENJun LI . Perovskite LaCoO3/g-C3N4 heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 480-490. doi: 10.11862/CJIC.20240259

    8. [8]

      Yuchen Zhou Huanmin Liu Hongxing Li Xinyu Song Yonghua Tang Peng Zhou . 设计热力学稳定的贵金属单原子光催化剂用于乙醇的高效非氧化转化形成高纯氢和增值产物乙醛. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-. doi: 10.1016/j.actphy.2025.100067

    9. [9]

      Changjun You Chunchun Wang Mingjie Cai Yanping Liu Baikang Zhu Shijie Li . 引入内建电场强化BiOBr/C3N5 S型异质结中光载流子分离以实现高效催化降解微污染物. Acta Physico-Chimica Sinica, 2024, 40(11): 2407014-. doi: 10.3866/PKU.WHXB202407014

    10. [10]

      Shengjuan Huo Xiaoyan Zhang Xiangheng Li Xiangning Li Tianfang Chen Yuting Shen . Unveiling the Marvels of Titanium: Popularizing Multifunctional Colored Titanium Product Films. University Chemistry, 2024, 39(5): 184-192. doi: 10.3866/PKU.DXHX202310127

    11. [11]

      Ruiqing LIUWenxiu LIUKun XIEYiran LIUHui CHENGXiaoyu WANGChenxu TIANXiujing LINXiaomiao FENG . Three-dimensional porous titanium nitride as a highly efficient sulfur host. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 867-876. doi: 10.11862/CJIC.20230441

    12. [12]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    13. [13]

      Jianyin He Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . ZnCoP/CdLa2S4肖特基异质结的构建促进光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-. doi: 10.3866/PKU.WHXB202404030

    14. [14]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    15. [15]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    16. [16]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

    17. [17]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    18. [18]

      Jingyu Cai Xiaoyu Miao Yulai Zhao Longqiang Xiao . Exploratory Teaching Experiment Design of FeOOH-RGO Aerogel for Photocatalytic Benzene to Phenol. University Chemistry, 2024, 39(4): 169-177. doi: 10.3866/PKU.DXHX202311028

    19. [19]

      Yulian Hu Xin Zhou Xiaojun Han . A Virtual Simulation Experiment on the Design and Property Analysis of CO2 Reduction Photocatalyst. University Chemistry, 2025, 40(3): 30-35. doi: 10.12461/PKU.DXHX202403088

    20. [20]

      Chenye An Abiduweili Sikandaier Xue Guo Yukun Zhu Hua Tang Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019

Metrics
  • PDF Downloads(0)
  • Abstract views(279)
  • HTML views(5)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return