Citation: LIN Zi-Xia, WANG Gang, ZHENG Ming-Bo, ZHAO Bin, LI Nian-Wu, PU Lin, SHI Yi. Ultra-Long-Term Cyclability of Li4Ti5O12/Graphene Nanocomposite Anode Material with Three-Dimensional Continuous Structure for Lithium-Ion Batteries[J]. Chinese Journal of Inorganic Chemistry, ;2013, 29(7): 1465-1470. doi: 10.3969/j.issn.1001-4861.2013.00.232 shu

Ultra-Long-Term Cyclability of Li4Ti5O12/Graphene Nanocomposite Anode Material with Three-Dimensional Continuous Structure for Lithium-Ion Batteries

  • Received Date: 28 January 2013
    Available Online: 10 April 2013

    Fund Project: 国家重点基础研究发展计划(No.2013CB932900,2011CB922100) (No.2013CB932900,2011CB922100)国家自然科学基金(No.51202106,60990314,61106089) (No.51202106,60990314,61106089)江苏省自然科 学基金(No.KB2011011)资助项目。 (No.KB2011011)

  • Li4Ti5O12/graphene nanocomposite was synthesized using thermally exfoliated graphene with a three-dimensional continuous nanoporous structure as the matrix. The precursors were introduced into the interior nanopores of thermally exfoliated graphene by the ethanol evaporation method. After heat treatment, Li4Ti5O12 nanoparticles were formed in situ in the nanopores of thermally exfoliated graphene. As an anode material for lithium-ion batteries, the three-dimensional continuous structure of thermally exfoliated graphene ensures sufficient contact between Li4Ti5O12 and graphene during the long cycling. Consequently, the nanocomposite shows superior cyclic stability. The capacity retention is still as high as 94% after 5 000 cycles at 5C.
  • 加载中
    1. [1]

      [1] Armand M, Tarascon J M. Nature, 2008,451:652-657

    2. [2]

      [2] Amine K, Belharouak I, Chen Z, et al. Adv. Mater., 2010, 22:3052-3057

    3. [3]

      [3] Kang E, Jung Y S, Kim G H, et al. Adv. Funct. Mater., 2011,21:4349-4357

    4. [4]

      [4] Feckl J M, Fominykh K, Dölinger M, et al. Angew. Chem. Int. Ed., 2012,51:7459-7463

    5. [5]

      [5] Wang Y G, Liu H M, Wang K X, et al. J. Mater. Chem., 2009,19:6789-6795

    6. [6]

      [6] JIANG Zhi-Jun(蒋志军), LIU Kai-Yu(刘开宇), CHEN Yun-Yang(陈云扬), et al. Chinese J. Inorg. Chem.(Wuji Huaxue Xuebao), 2011,27(2):239-244

    7. [7]

      [7] Yi T F, Xie Y, Zhu Y R, et al. J. Power Sources, 2013,222: 448-454

    8. [8]

      [8] Wang H, Cui L F, Yang Y, et al. J. Am. Chem. Soc., 2010, 132:13978-13980

    9. [9]

      [9] Yang S, Feng X, Ivanovici S, et al. Angew. Chem. Int. Ed., 2010,49:8408-8411

    10. [10]

      [10] CUI Yong-Li(崔永丽), XU Kun(徐坤), YUAN Zheng(袁铮), et al. Chinese J. Inorg. Chem.(Wuji Huaxue Xuebao), 2013, 29(1):50-56

    11. [11]

      [11] NIU Yu-Lian(牛玉莲), JIN Xin(金鑫), ZHENG Jia(郑佳), et al. Chinese J. Inorg. Chem.(Wuji Huaxue Xuebao), 2012, 28(9):1878-1884

    12. [12]

      [12] JIN Li(金莉), SUN Dong(孙东), ZHANG Jian-Rong(张剑荣). Chinese J. Inorg. Chem.(Wuji Huaxue Xuebao), 2012,28(6): 1084-1090

    13. [13]

      [13] Kim H K, Bak S M, Kim K B. Electrochem. Commun., 2010,12:1768-1771

    14. [14]

      [14] Shen L, Yuan C, Luo H, et al. Nanoscale, 2011,3:572-574

    15. [15]

      [15] Jian Z, Zhao L, Wang R, et al. RSC Adv., 2012,2:1751-1754

    16. [16]

      [16] Han S Y, Kim I Y, Jo K Y, et al. J. Phys. Chem. C, 2012, 116:7269-7279

    17. [17]

      [17] Tang Y, Huang F, Zhao W, et al. J. Mater. Chem., 2012,22: 11257

    18. [18]

      [18] Shi Y, Wen L, Li F, et al. J. Power Sources, 2011,196:8610-8617

    19. [19]

      [19] Xiang H, Tian B, Liao P, et al. J. Alloys Compd., 2011,509: 7205-7209

    20. [20]

      [20] Zhu N, Liu W, Xue M, et al. Electrochim. Acta, 2010,55: 5813-7209

    21. [21]

      [21] Du Q L, Zheng M B, Zhang L F, et al. Electrochim. Acta, 2010,55:3897-3903

    22. [22]

      [22] Qiu D F, Xu Z J, Zheng M B, et al. J. Solid State Electrochem., 2012,16:1889-1892

    23. [23]

      [23] Zheng M B, Qiu D F, Zhao B, et al. RSC Adv., 2013,3:699-703

    24. [24]

      [24] Yi T F, Jiang L J, Shu J, et al. J. Phys. Chem. Solids, 2010, 71:1236-1242

    25. [25]

      [25] Zhu G N, Wang Y G, Xia Y Y. Energy Environ. Sci., 2012, 5:6652-6667

    26. [26]

      [26] Cao Q, Zhang H P, Wang G J, et al. Electrochem. Comm., 2007,9:1228-1232

    27. [27]

      [27] Yi T F, Liu H P, Zhu Y R, et al. J. Power Sources, 2012, 215:258-265

  • 加载中
    1. [1]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    2. [2]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    3. [3]

      Xueyu Lin Ruiqi Wang Wujie Dong Fuqiang Huang . 高性能双金属氧化物负极的理性设计及储锂特性. Acta Physico-Chimica Sinica, 2025, 41(3): 2311005-. doi: 10.3866/PKU.WHXB202311005

    4. [4]

      Min LIXianfeng MENG . Preparation and microwave absorption properties of ZIF-67 derived Co@C/MoS2 nanocomposites. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1932-1942. doi: 10.11862/CJIC.20240065

    5. [5]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    6. [6]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    7. [7]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    8. [8]

      Yuting ZHANGZunyi LIUNing LIDongqiang ZHANGShiling ZHAOYu ZHAO . Nickel vanadate anode material with high specific surface area through improved co-precipitation method: Preparation and electrochemical properties. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2163-2174. doi: 10.11862/CJIC.20240204

    9. [9]

      Zhuo WANGXiaotong LIZhipeng HUJunqiao PAN . Three-dimensional porous carbon decorated with nano bismuth particles: Preparation and sodium storage properties. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 267-274. doi: 10.11862/CJIC.20240223

    10. [10]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    11. [11]

      Yifeng Xu Jiquan Liu Bin Cui Yan Li Gang Xie Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009

    12. [12]

      Siyu Zhang Kunhong Gu Bing'an Lu Junwei Han Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028

    13. [13]

      Aoyu Huang Jun Xu Yu Huang Gui Chu Mao Wang Lili Wang Yongqi Sun Zhen Jiang Xiaobo Zhu . Tailoring Electrode-Electrolyte Interfaces via a Simple Slurry Additive for Stable High-Voltage Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100037-. doi: 10.3866/PKU.WHXB202408007

    14. [14]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

    15. [15]

      Jiaxuan Zuo Kun Zhang Jing Wang Xifei Li . 锂离子电池Ni-Co-Mn基正极材料前驱体的形核调控及机制. Acta Physico-Chimica Sinica, 2025, 41(1): 2404042-. doi: 10.3866/PKU.WHXB202404042

    16. [16]

      Jie XIEHongnan XUJianfeng LIAORuoyu CHENLin SUNZhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216

    17. [17]

      Yu Guo Zhiwei Huang Yuqing Hu Junzhe Li Jie Xu . 钠离子电池中铁基异质结构负极材料的最新研究进展. Acta Physico-Chimica Sinica, 2025, 41(3): 2311015-. doi: 10.3866/PKU.WHXB202311015

    18. [18]

      Tian TIANMeng ZHOUJiale WEIYize LIUYifan MOYuhan YEWenzhi JIABin HE . Ru-doped Co3O4/reduced graphene oxide: Preparation and electrocatalytic oxygen evolution property. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 385-394. doi: 10.11862/CJIC.20240298

    19. [19]

      Jianjun Fang Kunchen Xie Yongli Song Kangyi Zhang Fei Xu Xiaoze Shi Ming Ren Minzhi Zhan Hai Lin Luyi Yang Shunning Li Feng Pan . Break the capacity limit of Li4Ti5O12 anodes through oxygen vacancy engineering. Chinese Journal of Structural Chemistry, 2025, 44(2): 100504-100504. doi: 10.1016/j.cjsc.2024.100504

    20. [20]

      Bowen Yang Rui Wang Benjian Xin Lili Liu Zhiqiang Niu . C-SnO2/MWCNTs Composite with Stable Conductive Network for Lithium-based Semi-Solid Flow Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 100015-. doi: 10.3866/PKU.WHXB202310024

Metrics
  • PDF Downloads(0)
  • Abstract views(373)
  • HTML views(47)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return