Citation: ZHENG Jia-Fei, ZHENG Ming-Bo, LI Nian-Wu, LU Hong-Ling, QIU Lan, CAO Jie-Ming, JI Guang-Bin. Preparation of Graphene Coated Carbon Nanotube-Sulfur Composite and Its Performance for Lithium-Sulfur Battery[J]. Chinese Journal of Inorganic Chemistry, ;2013, 29(7): 1355-1360. doi: 10.3969/j.issn.1001-4861.2013.00.218 shu

Preparation of Graphene Coated Carbon Nanotube-Sulfur Composite and Its Performance for Lithium-Sulfur Battery

  • Received Date: 10 January 2013
    Available Online: 15 March 2013

    Fund Project: 国家自然科学基金(No.51202106,No.51172109) (No.51202106,No.51172109)江苏省自然科学基金(No.BK2010497)资助项目。 (No.BK2010497)

  • To solve the main problems encountered in the lithium-sulfur battery research and practical application, a simple and effective hydrothermal reduction of graphene oxide was employed to encapsulate commercial carbon nanotube-sulfur (CNT-S) nanocomposite in this study, then an effective type of graphene coated CNT-S nanostructure was formed. The polysulphide anions diffusion phenomenon was effectively restrained by the graphene coating structure. The nanocomposites were characterized by X-ray diffraction and scanning electron microscope. The results indicated that elemental sulfur was uniformly distributed across the CNT, and a layer of graphene coated on the surface of CNT-S nanocomposite. The electrochemical test results showed that the graphene coating nanostructure obviously improved the lithium-sulfur battery performance of the CNT-S nanocomposite.
  • 加载中
    1. [1]

      [1] Yang Y, Yu G H, Cui Y, et al. ACS Nano, 2011,5(11):9187-9193

    2. [2]

      [2] Bruce P G, Freunberger S A, Hardwick L J, et al. Nat. Mater., 2012,11:19-29

    3. [3]

      [3] Bruce P G, Hardwick L J, Abraham K M. MRS Bull., 2011, 36(7):506-512

    4. [4]

      [4] Jayaprakash N, Shen J, Moganty S S, et al. Angew. Chem., 2011,123(26):6026-6030

    5. [5]

      [5] Wang C, Chen J J, Zheng M S, et al. Electrochimica Acta, 2010,55(23):7010-7015

    6. [6]

      [6] Ji X L, Evers S, Nazar L F, et al. Nat. Commun., 2011,2:325

    7. [7]

      [7] Ji X L, Lee K T, Nazar L F. Nat. Mater., 2009,8:500-506

    8. [8]

      [8] Xiao L F, Cao Y L, Liu J, et al. Adv. Mater., 2012,24(9): 1176-1181

    9. [9]

      [9] Ji X L, Nazar L F. J. Mater. Chem., 2010,20:9821-9826

    10. [10]

      [10] DONG Quan-Feng(董全峰), WANG Chong(王翀), ZHENG Ming-Sen(郑明森). Prog. Chem.(Huaxue Jinzhan), 2011,23 (2/3):533-539

    11. [11]

      [11] YANG Xue-Bing(杨学兵), WANG Chuan-Xin(王传新), WANG Jian-Hua(汪建华), et al. Chinese J. Inorg. Chem. (Wuji Huaxue Xuebao), 2011,27(12):2431-2436

    12. [12]

      [12] Cao Y L, Li X L, Liu J, et al. Phys. Chem. Chem. Phys., 2011,13:7660-7665

    13. [13]

      [13] Wang J Z, Lu L, Xu X, et al. J. Power Sources, 2011,196 (16):7030-7034

    14. [14]

      [14] Liang C D, Dudney N J, Howe J Y. Chem. Mater., 2009,21 (19):4724-4730

    15. [15]

      [15] Wang J, Chew S Y, Zhao Z W, et al. Carbon, 2008,46(2): 229-235

    16. [16]

      [16] Yuan L X, Yuan H P, Qiu X P, et al. J. Power Sources, 2009,189(2):1141-1146

    17. [17]

      [17] WU Feng(吴峰), WU Sheng-Xian(吴生先), CHEN Ren-Jie (陈人杰), et al. New Carbon Mater.(Xinxing Tancailiao), 2010,25(6):421-425

    18. [18]

      [18] Dörfler S, Hagen M, Althues H, et al. Chem. Commun., 2012,48:4097-4099

    19. [19]

      [19] XUE Lu-Ping(薛露平), ZHENG Ming-Bo(郑明波), SHEN Cheng-Fei(沈辰飞), et al. Chinese J. Inorg. Chem.(Wuji Huaxue Xuebao), 2010,26(8):1375-1381

    20. [20]

      [20] Zhang F F, Zhang X B, Wang L M, et al. J. Mater. Chem., 2012,22:11452-11454

    21. [21]

      [21] Wang H L, Yang Y, Dai H J, et al. Nano Lett., 2011,11(7): 2644-2647

    22. [22]

      [22] Li N W, Zheng M B, Cao J M, et al. Chem. Commun., 2012, 48(34):4106-4108

    23. [23]

      [23] Zhou Y, Bao Q L, Zhong Y L, et al. Chem. Mater., 2009,21 (13):2950-2956

    24. [24]

      [24] Shen J F, Yan B, Shi M, et al. J. Mater. Chem., 2011,21: 3415-3421

    25. [25]

      [25] Navarro C B, Coronado E, Gastaldo C M, et al. Nanoscale, 2012,4:3977-3982

    26. [26]

      [26] Hummers W S, Offeman R E. J. Am. Chem. Soc., 1958,80 (6):1339-1339

    27. [27]

      [27] ZHUO Hua-Lan(卓华兰), YUAN Zhong-Zhi(袁中直), LIU Jin-Cheng(刘金城). Chinese J. Power Sources(Dianyuan Jishu), 2010,34(12):1242-1245

  • 加载中
    1. [1]

      Haihua Yang Minjie Zhou Binhong He Wenyuan Xu Bing Chen Enxiang Liang . Synthesis and Electrocatalytic Performance of Iron Phosphide@Carbon Nanotubes as Cathode Material for Zinc-Air Battery: a Comprehensive Undergraduate Chemical Experiment. University Chemistry, 2024, 39(10): 426-432. doi: 10.12461/PKU.DXHX202405100

    2. [2]

      Ruiqing LIUWenxiu LIUKun XIEYiran LIUHui CHENGXiaoyu WANGChenxu TIANXiujing LINXiaomiao FENG . Three-dimensional porous titanium nitride as a highly efficient sulfur host. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 867-876. doi: 10.11862/CJIC.20230441

    3. [3]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    4. [4]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    5. [5]

      Bowen Yang Rui Wang Benjian Xin Lili Liu Zhiqiang Niu . C-SnO2/MWCNTs Composite with Stable Conductive Network for Lithium-based Semi-Solid Flow Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 100015-. doi: 10.3866/PKU.WHXB202310024

    6. [6]

      Xiangyu CAOJiaying ZHANGYun FENGLinkun SHENXiuling ZHANGJuanzhi YAN . Synthesis and electrochemical properties of bimetallic-doped porous carbon cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 509-520. doi: 10.11862/CJIC.20240270

    7. [7]

      Jie XIEHongnan XUJianfeng LIAORuoyu CHENLin SUNZhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216

    8. [8]

      Weihan Zhang Menglu Wang Ankang Jia Wei Deng Shuxing Bai . 表面硫物种对钯-硫纳米片加氢性能的影响. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-. doi: 10.3866/PKU.WHXB202309043

    9. [9]

      Xiufang Wang Donglin Zhao Kehua Zhang Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025

    10. [10]

      Hongyao Li Youyan Liu Luwei Dai Min Yang Qihui Wang . The Blessing of Indium Sulfide:Confronting the Narrow Path with Uric Acid. University Chemistry, 2024, 39(5): 325-335. doi: 10.3866/PKU.DXHX202311104

    11. [11]

      Jinyao Du Xingchao Zang Ningning Xu Yongjun Liu Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039

    12. [12]

      Yu ZHANGFangfang ZHAOCong PANPeng WANGLiangming WEI . Application of double-side modified separator with hollow carbon material in high-performance Li-S battery. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1218-1232. doi: 10.11862/CJIC.20230412

    13. [13]

      Tian TIANMeng ZHOUJiale WEIYize LIUYifan MOYuhan YEWenzhi JIABin HE . Ru-doped Co3O4/reduced graphene oxide: Preparation and electrocatalytic oxygen evolution property. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 385-394. doi: 10.11862/CJIC.20240298

    14. [14]

      Yiming Liang Ziyan Pan Kin Shing Chan . One Drink, Two Tears in the Central Nervous System: The Perils of Disulfiram-Like Reactions. University Chemistry, 2025, 40(4): 322-325. doi: 10.12461/PKU.DXHX202406016

    15. [15]

      Yunting Shang Yue Dai Jianxin Zhang Nan Zhu Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050

    16. [16]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    17. [17]

      Hong CAIJiewen WUJingyun LILixian CHENSiqi XIAODan LI . Synthesis of a zinc-cobalt bimetallic adenine metal-organic framework for the recognition of sulfur-containing amino acids. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 114-122. doi: 10.11862/CJIC.20240382

    18. [18]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    19. [19]

      Zhenlin Zhou Siyuan Chen Yi Liu Chengguo Hu Faqiong Zhao . A New Program of Voltammetry Experiment Teaching Based on Laser-Scribed Graphene Electrode. University Chemistry, 2024, 39(2): 358-370. doi: 10.3866/PKU.DXHX202308049

    20. [20]

      Tianqi Bai Kun Huang Fachen Liu Ruochen Shi Wencai Ren Songfeng Pei Peng Gao Zhongfan Liu . 石墨烯厚膜热扩散系数与微观结构的关系. Acta Physico-Chimica Sinica, 2025, 41(3): 2404024-. doi: 10.3866/PKU.WHXB202404024

Metrics
  • PDF Downloads(0)
  • Abstract views(709)
  • HTML views(141)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return