Citation: QU Ling-Zhi, CHENG Zhi-Qiang, DENG Da-Wei, CAO Jie, JIN Jing, GU Yue-Qing. Oil-Soluble CuInS2/ZnS Quantum Dots and Water Transfer Using Temperature-Sensitive Poly(N-isopropylacrylamide-co-Acrylamide-co-Octadecyl acrylate) Micelle[J]. Chinese Journal of Inorganic Chemistry, ;2013, 29(7): 1361-1368. doi: 10.3969/j.issn.1001-4861.2013.00.204 shu

Oil-Soluble CuInS2/ZnS Quantum Dots and Water Transfer Using Temperature-Sensitive Poly(N-isopropylacrylamide-co-Acrylamide-co-Octadecyl acrylate) Micelle

  • Received Date: 6 November 2012
    Available Online: 21 March 2013

    Fund Project: 国家自然科学基金(No.30800257 and No.81071194) (No.30800257 and No.81071194)江苏省自然科学基金(No.BK2011634) (No.BK2011634)中央高校基本科研业务费专项资金(No.JKP2011017) (No.JKP2011017)教育部新世纪优秀人才支持计划(No.NCET-12-0974)资助项目。 (No.NCET-12-0974)

  • High-quality oil-soluble CuInS2/ZnS core/shell quantum dots (QDs) have been synthesized successfully using a non-hot-injection method. The as-prepared QDs exhibits tunable photoluminescence (PL) emission (PL peak, 550~800 nm) with a maximum PL quantum yield (QY) up to 80%. Furthermore, in this study, we explored further the water transfer of oil-soluble CuInS2/ZnS QDs by using temperature-sensitive poly(N-isopropylacryla-mide-co-Acrylamide-co-Octadecylacrylate) (P(NIPA-co-AAm-co-ODA)) micelle. The QDs-loaded micelle not only shows favorable PL properties, but also maintains the initial sensitive thermal responsibility. These results confirm the promising potential of cadmium-free CuInS2/ZnS QDs as a fluorescent probe for the biological imaging of micelle.
  • 加载中
    1. [1]

      [1] Lewinski N, Colvin V, Drezek R. Small, 2008,4(1):26-49

    2. [2]

      [2] Deng D W, Xia J F, Gu Y Q, et al. J. Colloid Interface Sci., 2012,367:234-240

    3. [3]

      [3] CHENG Fang(程芳), LIU Zheng(刘贞), HU Yu-Zhu(胡育 筑), et al. Chem. J. Chinese Universities(Gaodeng Xuexiao Huaxue Xuebao), 2012,33(3):475-480

    4. [4]

      [4] CAO Mei-Rong(曹美荣), HOU Jie(侯洁), ZHANG Qi(张奇), et al. Chem. J. Chinese Universities(Gaodeng Xuexiao Huaxue Xuebao), 2012,33(3):437-441

    5. [5]

      [5] WU Jie(吴杰), CHI Yan-Hua(迟燕华), ZHUANG Jia(庄稼). Chinese J. Inorg. Chem.(Wuji Huaxue Xuebao), 2010,26(7): 1199-1206

    6. [6]

      [6] Xie R G, Rutherford M, Peng X G. J. Am. Chem. Soc., 2009, 131:5691-5697

    7. [7]

      [7] Alle P M, Liu W, Bawendi M G, et al. J. Am. Chem. Soc., 2010,132:470-471

    8. [8]

      [8] Park J, Dvoracek C, Lee K H, et al. Small, 2011,7(22):3148-3152

    9. [9]

      [9] Deng D W, Chen Y Q, Gu Y Q, et al. Chem. Mater., 2012, 24:3029-3037

    10. [10]

      [10] Zhang J, Xie R G, Yang W S, et al. Chem. Mater., 2011,23: 3357-3361

    11. [11]

      [11] Li L, Daou T J, Reiss P, et al. Chem. Mater., 2009,21:2422-2429

    12. [12]

      [12] Pons T, Pic E,Cassette E, et al. ACS Nano, 2010,4(5):2531-2538

    13. [13]

      [13] Zhang W J, Zhong X H. Inorg. Chem., 2011,50:4065-4072

    14. [14]

      [14] Xue B, Deng D W, Gu Y Q, et al. Dalton Trans., 2012,41: 4935-4947

    15. [15]

      [15] Cao J, Deng D W, Gu Y Q, et al. J. Biomed. Mater. Res. Part A, 2012:958-968

    16. [16]

      [16] Kakizawa Y, Kataoka K. Adv. Drug Deliv. Rev., 2002,54(2): 203-222

    17. [17]

      [17] Torchilin V P. J. Control Release, 2001,73(2-3):137-172

    18. [18]

      [18] Nishiyama N, Kataoka K. Pharmacol. Ther., 2006,3(112): 630-648

    19. [19]

      [19] Cheng C, Wei H, Shi B X, et al. Biomaterials, 2008,4(29): 497-505

    20. [20]

      [20] Neradovic D, Van Nostrum C F, Hennink W E. Macromole-cules, 2001,22(34):7589-7591

    21. [21]

      [21] Wei H, Cheng S, Zhang X, et al. Prog. Polym. Sci., 2009,34 (9):893-910

    22. [22]

      [22] DENG Da-Wei(邓大伟), YU Jun-Sheng(于俊生). Chinese J. Inorg. Chem.(Wuji Huaxue Xuebao), 2008,24(5):701-707

    23. [23]

      [23] QI Cui-Cha(齐翠茶), HE Zi-Jian(何子剑), XIE Hai-Yan(谢 海燕). Chinese J. Inorg. Chem.(Wuji Huaxue Xuebao), 2010,26(6):951-956

    24. [24]

      [24] Stuart M A C, Huck W T S, Genzer J, et al. Nature Mater., 2010,9:101-113

    25. [25]

      [25] Liu X M, Wang L S, He C B, et al. Biomaterials, 2004,25 (25):5659-5666

  • 加载中
    1. [1]

      Fanpeng Shang Jiantuo Chen . 多视角分析DMPE盘状双层胶束——第38届中国化学奥林匹克(初赛)第4题解析. University Chemistry, 2025, 40(8): 388-393. doi: 10.12461/PKU.DXHX202410034

    2. [2]

      Ke QiuFengmei WangMochou LiaoKerun ZhuJiawei ChenWei ZhangYongyao XiaXiaoli DongFei Wang . A Fumed SiO2-based Composite Hydrogel Polymer Electrolyte for Near-Neutral Zinc-Air Batteries. Acta Physico-Chimica Sinica, 2024, 40(3): 2304036-0. doi: 10.3866/PKU.WHXB202304036

    3. [3]

      Yu WangHaiyang ShiZihan ChenFeng ChenPing WangXuefei Wang . 具有富电子Ptδ壳层的空心AgPt@Pt核壳催化剂:提升光催化H2O2生成选择性与活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100081-0. doi: 10.1016/j.actphy.2025.100081

    4. [4]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    5. [5]

      Fan Wu Wenchang Tian Jin Liu Qiuting Zhang YanHui Zhong Zian Lin . Core-Shell Structured Covalent Organic Framework-Coated Silica Microspheres as Mixed-Mode Stationary Phase for High Performance Liquid Chromatography. University Chemistry, 2024, 39(11): 319-326. doi: 10.12461/PKU.DXHX202403031

    6. [6]

      Miaomiao He Zhiqing Ge Qiang Zhou Jiaqing He Hong Gong Lingling Li Pingping Zhu Wei Shao . Exploring the Fascinating Realm of Quantum Dots. University Chemistry, 2024, 39(6): 231-237. doi: 10.3866/PKU.DXHX202310040

    7. [7]

      Wenlong WangWentao HaoLang HeJia QiaoNing LiChaoqiu ChenYong Qin . Bandgap and adsorption engineering of carbon dots/TiO2 S-scheme heterojunctions for enhanced photocatalytic CO2 methanation. Acta Physico-Chimica Sinica, 2025, 41(9): 100116-0. doi: 10.1016/j.actphy.2025.100116

    8. [8]

      Siming Bian Sijie Luo Junjie Ou . Application of van Deemter Equation in Instrumental Analysis Teaching: A New Type of Core-Shell Stationary Phase. University Chemistry, 2025, 40(3): 381-386. doi: 10.12461/PKU.DXHX202406087

    9. [9]

      Zhiyang LiHui DengXinqi CaiZhuo Chen . Magnetic Core/Shell-Capsules Locally Neutralize Gastric Acid for Efficient Delivery of Active Probiotics. Acta Physico-Chimica Sinica, 2024, 40(7): 2306051-0. doi: 10.3866/PKU.WHXB202306051

    10. [10]

      Yuena Yang Xufang Hu Yushan Liu Yaya Kuang Jian Ling Qiue Cao Chuanhua Zhou . The Realm of Smart Hydrogels. University Chemistry, 2024, 39(5): 172-183. doi: 10.3866/PKU.DXHX202310125

    11. [11]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    12. [12]

      Cuiping HEZhuxuan LIYuqing SUNJie LIUShicheng XUZhanchao WU . Ca2+ doping induced crystal phase transition and spectral regulation of Ba3P4O13: Eu2+ phosphor. Chinese Journal of Inorganic Chemistry, 2025, 41(11): 2299-2306. doi: 10.11862/CJIC.20250074

    13. [13]

      Jiayao WangGuixu PanNing WangShihan WangYaolin ZhuYunfeng Li . Preparation of donor-π-acceptor type graphitic carbon nitride photocatalytic systems via molecular level regulation for high-efficient H2O2 production. Acta Physico-Chimica Sinica, 2025, 41(12): 100168-0. doi: 10.1016/j.actphy.2025.100168

    14. [14]

      Yajuan XingHui XueJing SunNiankun GuoTianshan SongJiawen SunYi-Ru HaoQin Wang . Cu3P-Induced Charge-Oriented Transfer and Surface Reconstruction of Ni2P to Achieve Efficient Oxygen Evolution Activity. Acta Physico-Chimica Sinica, 2024, 40(3): 2304046-0. doi: 10.3866/PKU.WHXB202304046

    15. [15]

      Chengyan GeJiawei HuXingyu LiuYuxi SongChao LiuZhigang Zou . Self-integrated black NiO clusters with ZnIn2S4 microspheres for photothermal-assisted hydrogen evolution by S-scheme electron transfer mechanism. Acta Physico-Chimica Sinica, 2026, 42(1): 100154-0. doi: 10.1016/j.actphy.2025.100154

    16. [16]

      Zunxiang Zeng Yuling Hu Yufei Hu Hua Xiao . Analysis of Plant Essential Oils by Supercritical CO2Extraction with Gas Chromatography-Mass Spectrometry: An Instrumental Analysis Comprehensive Experiment Teaching Reform. University Chemistry, 2024, 39(3): 274-282. doi: 10.3866/PKU.DXHX202309069

    17. [17]

      Shan ZhaoXu LiuHaotian GuoZonglin LiuPengfei WangJie ShuTingfeng Yi . Synergistic design of high-entropy P2/O3 biphasic cathodes for high-performance sodium-ion batteries. Acta Physico-Chimica Sinica, 2026, 42(1): 100129-0. doi: 10.1016/j.actphy.2025.100129

    18. [18]

      Qishen WangChangzhao ChenMengqing LiLingmin WuKai Dai . Lignin derived carbon quantum dots and oxygen vacancies coregulated S-scheme LCQDs/Bi2WO6 heterojunction for photocatalytic H2O2 production. Acta Physico-Chimica Sinica, 2025, 41(11): 100147-0. doi: 10.1016/j.actphy.2025.100147

    19. [19]

      Weilai YuChuanbiao Bie . Unveiling S-Scheme Charge Transfer Mechanism. Acta Physico-Chimica Sinica, 2024, 40(4): 2307022-0. doi: 10.3866/PKU.WHXB202307022

    20. [20]

      Kun RongCuilian WenJiansen WenXiong LiQiugang LiaoSiqing YanChao XuXiaoliang ZhangBaisheng SaZhimei Sun . Hierarchical MoS2/Ti3C2Tx heterostructure with excellent photothermal conversion performance for solar-driven vapor generation. Acta Physico-Chimica Sinica, 2025, 41(6): 100053-0. doi: 10.1016/j.actphy.2025.100053

Metrics
  • PDF Downloads(0)
  • Abstract views(719)
  • HTML views(72)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return