Citation: CHENG Lin, WANG Rui. Ce-Ti Mixed Oxides Supported H3PW12O40 for Effective Adsorption-Decomposition of NOx[J]. Chinese Journal of Inorganic Chemistry, ;2013, 29(6): 1206-1214. doi: 10.3969/j.issn.1001-4861.2013.00.195 shu

Ce-Ti Mixed Oxides Supported H3PW12O40 for Effective Adsorption-Decomposition of NOx

  • Received Date: 11 October 2012
    Available Online: 12 March 2013

    Fund Project: 国家自然科学基金(No.20576064,20776080,20911120088) 、教育部“新世纪优秀人才”支持计划(No.NECT-05-0584) (No.20576064,20776080,20911120088) 、教育部“新世纪优秀人才”支持计划(No.NECT-05-0584)教育部博士点基金 (No.20070422087) (No.20070422087)山东省科技计划(No.2006BS08020,2008GG10006005)资助项目。 (No.2006BS08020,2008GG10006005)

  • Ce-Ti mixed oxides (CeO2-TiO2) were prepared as the support for solid tungstophosphoric acid (H3PW12O40). FTIR, XRD, BET surface area measurement, SEM and TPD-MS were employed for characterization and mechanism analysis. CeO2-TiO2 is an excellent support for H3PW12O40. By loading on CeO2-TiO2, the NOx adsorption efficiency of H3PW12O40 increases, with a peak efficiency of 90%, which is much higher than that of H3PW12O40 (60%). With the increase of H3PW12O40 loading, the NOx adsorption efficiency tends to reach a peak value before dropping down. The mechanical grinding method is superior to the incipient impregnation method for preparing H3PW12O40/CeO2-TiO2. In NOx adsorption process, NOx reacts with H3PW12O40 to produce NOH+. The crystal water in the secondary structure of H3PW12O40 plays an important role in NOx adsorption. The lost crystal water and oxygen vacancy can be effectively compensated by adding water vapor to regenerate the catalyst. Furthermore, the adsorbed NOx is decomposed into N2, O2 and N2O, and rapid heating contributes significantly to the decomposition of NOx over the catalyst, where a yield of 30.5% is achieved for N2 with the supported catalyst at a temperature ramp of 50 ℃·min-1.
  • 加载中
    1. [1]

      [1] WANG En-Bo(王恩波), HU Chang-Wen(胡长文), XU Lin (许林). Introduction to Polyoxometalates Chemistry (多酸化 学导论). Beijing: Chemical Industry Press, 1998.

    2. [2]

      [2] WANG Xiao-Lan(王晓兰), LI Yang-Guang(李阳光), MENG Jing-Xin(孟靖昕), et al. Chinese J. Inorg. Chem. (Wuji Huaxue Xuebao), 2010,26(3):391-397

    3. [3]

      [3] ZHAO Zhi-Feng(赵志凤), ZHOU Bai-Bin(周百斌), SU Zhan- Hua(苏占华), et al. Chinese J. Inorg. Chem. (Wuji Huaxue Xuebao), 2009,25(5):900-905

    4. [4]

      [4] WANG Jing-Ping(王敬平), WU Qiang(吴 强), NIU Jing- Yang(牛景杨). Chinese J. Inorg. Chem. (Wuji Huaxue Xuebao), 2002,18(9):957-960

    5. [5]

      [5] Yang R T, Chen N. Ind. Eng. Chem. Res., 1994,33:825 -831

    6. [6]

      [6] Herring A M, McCormick R L. J. Phys. Chem. B, 1998,102 (17):3175-3184

    7. [7]

      [7] Herring A M, McCormick R L, Boonrueng S R. J. Phys. Chem. B, 2000,104(19):4653-4660

    8. [8]

      [8] Hodjati S, Vaezzadeh K, Kiennemann A, et al. Top. Catal., 2001,16/17(1/2/3/4):151-155

    9. [9]

      [9] Bonardet J L, Fraissard J, Mc Garvey G B, et al. J. Catal., 1995,151:147-154

    10. [10]

      [10] Belanger R, Moffat J B. J. Mol. Catal. A: Chem., 1996,114: 319-329

    11. [11]

      [11] Belanger R, Moffat J B. Environ. Sci. Techno., 1995,29: 1681-1685

    12. [12]

      [12] McCormick R L, Boonrueng S K, Herring A M. Catal. Today, 1998,42:145-157

    13. [13]

      [13] Thomas S, Vaezzadeh K, Pitchon V. Top. Catal., 2004,30/ 31:207-213

    14. [14]

      [14] Kozhevnikov I V. Catalysts for Fine Chemical Synthesis Vol. 2: Catalysis by Polyxometalates. West Sussex: John Wiley & Sons Ltd, 2002.

    15. [15]

      [15] Gómez-García M A, Pitchon V, Kiennemann A. Catal. Today, 2005,107/108:60-67

    16. [16]

      [16] Gómez-García M A, Pitchon V, Kiennemann A. Environ. Sci. Technol., 2005,39:638-644

    17. [17]

      [17] Benjaram M R, Ataullah K, Pandian L. J. Phys. Chem. B, 2005,109:3355-3363

    18. [18]

      [18] ZHANG Xue-Yang(张学杨), CHENG Lin(程琳), YANG Feng(杨烽), et al. Chem. J. Chin. Univ.(Gaodeng Xuexiao Huaxue Xuebao), 2012,33(8):1826-1834

    19. [19]

      [19] Chen N, Yang R T. J. Catal., 1995,157:76-86

    20. [20]

      [20] Hiskia A, Papaconstantinou E. Inorg. Chem., 1992,31:163- 167

    21. [21]

      [21] Hodjati S, Petit C. J. Catal., 2001,197:324-334

  • 加载中
    1. [1]

      Feng Han Fuxian Wan Ying Li Congcong Zhang Yuanhong Zhang Chengxia Miao . Comprehensive Organic Chemistry Experiment: Phosphotungstic Acid-Catalyzed Direct Conversion of Triphenylmethanol for the Synthesis of Oxime Ethers. University Chemistry, 2025, 40(3): 342-348. doi: 10.12461/PKU.DXHX202405181

    2. [2]

      Ran Yu Chen Hu Ruili Guo Ruonan Liu Lixing Xia Cenyu Yang Jianglan Shui . 杂多酸H3PW12O40高效催化MgH2储氢. Acta Physico-Chimica Sinica, 2025, 41(1): 2308032-. doi: 10.3866/PKU.WHXB202308032

    3. [3]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    4. [4]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    5. [5]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    6. [6]

      Lijun YanShiqi ChenPenglu WangXiangyu LiuLupeng HanTingting YanYuejin LiDengsong Zhang . Hydrothermally stable metal oxide-zeolite composite catalysts for low-temperature NOx reduction with improved N2 selectivity. Chinese Chemical Letters, 2024, 35(6): 109132-. doi: 10.1016/j.cclet.2023.109132

    7. [7]

      Linhui LiuWuwan XiongMingli FuJunliang WuZhenguo LiDaiqi YePeirong Chen . Efficient NOx abatement by passive adsorption over a Pd-SAPO-34 catalyst prepared by solid-state ion exchange. Chinese Chemical Letters, 2024, 35(4): 108870-. doi: 10.1016/j.cclet.2023.108870

    8. [8]

      Xueyu Lin Ruiqi Wang Wujie Dong Fuqiang Huang . 高性能双金属氧化物负极的理性设计及储锂特性. Acta Physico-Chimica Sinica, 2025, 41(3): 2311005-. doi: 10.3866/PKU.WHXB202311005

    9. [9]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    10. [10]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    11. [11]

      Shuangxi LiHuijun YuTianwei LanLiyi ShiDanhong ChengLupeng HanDengsong Zhang . NOx reduction against alkali poisoning over Ce(SO4)2-V2O5/TiO2 catalysts by constructing the Ce4+–SO42− pair sites. Chinese Chemical Letters, 2024, 35(5): 108240-. doi: 10.1016/j.cclet.2023.108240

    12. [12]

      Xin Han Zhihao Cheng Jinfeng Zhang Jie Liu Cheng Zhong Wenbin Hu . Design of Amorphous High-Entropy FeCoCrMnBS (Oxy) Hydroxides for Boosting Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2025, 41(4): 100033-. doi: 10.3866/PKU.WHXB202404023

    13. [13]

      Xiaotian ZHUFangding HUANGWenchang ZHUJianqing ZHAO . Layered oxide cathode for sodium-ion batteries: Surface and interface modification and suppressed gas generation effect. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 254-266. doi: 10.11862/CJIC.20240260

    14. [14]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    15. [15]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    16. [16]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    17. [17]

      Qianwen Han Tenglong Zhu Qiuqiu Lü Mahong Yu Qin Zhong . 氢电极支撑可逆固体氧化物电池性能及电化学不对称性优化. Acta Physico-Chimica Sinica, 2025, 41(1): 2309037-. doi: 10.3866/PKU.WHXB202309037

    18. [18]

      Xingyuan Lu Yutao Yao Junjing Gu Peifeng Su . Energy Decomposition Analysis and Its Application in the Many-Body Effect of Water Clusters. University Chemistry, 2025, 40(3): 100-107. doi: 10.12461/PKU.DXHX202405074

    19. [19]

      Junli Liu . Practice and Exploration of Research-Oriented Classroom Teaching in the Integration of Science and Education: a Case Study on the Synthesis of Sub-Nanometer Metal Oxide Materials and Their Application in Battery Energy Storage. University Chemistry, 2024, 39(10): 249-254. doi: 10.12461/PKU.DXHX202404023

    20. [20]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

Metrics
  • PDF Downloads(543)
  • Abstract views(493)
  • HTML views(18)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return