Citation: WU Dan-Ni, WU Xiao-Mei, ZENG Xiao-Qin, LI Fei, SU Xin, ZOU Jian-Xin, DING Wen-Jiang. Electrochemical Studies of Substituted Cu2Mo6S8-nSen for Rechargeable Magnesium Battery[J]. Chinese Journal of Inorganic Chemistry, ;2013, 29(6): 1103-1108. doi: 10.3969/j.issn.1001-4861.2013.00.177 shu

Electrochemical Studies of Substituted Cu2Mo6S8-nSen for Rechargeable Magnesium Battery

  • Received Date: 18 December 2012
    Available Online: 11 February 2013

    Fund Project: 国家自然科学基金 (No.51274140) (No.51274140)高等学校博士点基金课题(20110073130001)资助项目。 (20110073130001)

  • The Chevrel Phase materials Cu2Mo6S8-nSen (n=0,0.5,1.5) were synthesized by molten salt methods. Their crystal structures and the electrochemical properties were studied by a combination of X-ray diffraction (XRD), scanning electron microscopy (SEM), cyclic voltammetry test (CV), galvanostatic charge-discharge test and electrochemical impedance spectroscopy (EIS). XRD analysis showed that Se-substituted Cu2Mo6S8-nSen was still Chevrel Phase, however the lattice parameters became larger, and SEM pictures viewed the particle size was small. The studies of the electrochemical properties suggested that the shape of voltammetric peaks in the region 0.5~0.8 V changed, the steady specific capacity increased to 103.5 mAh·g-1 and the cycling performance were improved because of Se substituted in Cu2Mo6S8. All these proved the reversible intercalation of Mg ions into these hosts were facilitated.
  • 加载中
    1. [1]

      [1] Gregory T D, Hoffman R J, Wubterton R J. J. Electrochem. Soc., 1990,137:775-780

    2. [2]

      [2] SHEN Jian(沈健), PENG Bo(彭博), TAO Zhan-Liang (陶占良), et al. Prog. Chem. (Huaxue Jinzhan), 2010,22(2/3): 515-521

    3. [3]

      [3] FENG Zhen-Zhen(冯真真). Thesis for the Doctorate of Shanghai Jiaotong University(上海交通大学博士论文). 2008.

    4. [4]

      [4] Novak P, Imhof R, Haas O. Electrochim. Acta, 1999,45:351 -367

    5. [5]

      [5] Aurbach D, Weissman I, Gofer Y, et al. Chem. Rec., 2003,3: 61-73

    6. [6]

      [6] Makino K, Katayama Y, Miura T, et al. J. Power Sources, 2002,112:85-89

    7. [7]

      [7] FENG Zhen-Zhen(冯真真), NULI Yan-Na(努丽燕娜), YANG Jun(杨军). Acta Phys.-Chim. Sin.(Wuli Huaxue Xuebao), 2007,23(3):327-331

    8. [8]

      [8] LI Yun(李云), NuLI Yan-Na(努丽燕娜), YANG Jun(杨军), et al. Chin. J. Power Sources(Dianyuan Jishu), 2010,34(10): 1031-1034

    9. [9]

      [9] NULI Yan-Na(努丽燕娜), YANG Jun(杨军), ZHENG Yu-Pei (郑育培), et al. J. Inorg. Mater.(Wuji Cailiao Xuebao), 2011,26(2):129-133

    10. [10]

      [10] GAO Xiu-Ling(高秀玲), JIAO Li-Fang(焦丽芳), YUAN Huan- Tang(袁华堂), et al. Electrochem. (Dianhuaxue), 2005,11: 337- 339

    11. [11]

      [11] YUAN Huan-Tang(袁华堂), CAO Jian-Sheng(曹建胜), WANG Yi-Jing(王一菁), et al. Chem. J. Chinese Universities(Gaodeng Xuexiao Huaxue Xuebao), 2001, 22:16-18

    12. [12]

      [12] ZHAO Ming(赵敏), JIAO Li-Fang(焦丽芳), YUAN Huan- Tang(袁华堂), et al. Acta Sci. Natura. Univ. Nankaiensis (NanKai Daxue Xuebao: Ziran Kexue Ban), 2006,39(3):39-42

    13. [13]

      [13] Cheverl R, Sergent M, Prigent J, et al. Solid. State. Chem., 1971,3:515-519

    14. [14]

      [14] Aurbach D, Lu Z, Schechteretal A, et al. Nature, 2000,407: 724-726

    15. [15]

      [15] Levi E, Lancry E, Mitelman A, et al. Chem. Mater., 2006, 18:5492-5503

    16. [16]

      [16] Levi E, Lancry E, Mitelman A, et al. Chem. Mater., 2006,18: 3705-3714

    17. [17]

      [17] Levi E, Lancry E, Mitelman A, et al. Inorg. Chem., 2008,47: 1975-1983

    18. [18]

      [18] Lancry E, Levi E, Gofer Y, et al. Chem. Mater., 2004,16: 2832-2838

    19. [19]

      [19] Mitelman A. Lithium-Ion Batteries: Materials and Devices 210th ECS Meeting. Levi E, Lancry E., Cancum,Mexico: Electrochem. Soc. Inc, 2007:109-115

    20. [20]

      [20] Levi E, Mitelman A, Aurbach D, et al. Chem. Mater., 2007, 19:5131- 5142

    21. [21]

      [21] Mitelman A, Levi M D, Lancry E, et al. Chem. Comm., 2007: 4212-4214

    22. [22]

      [22] LI Fei(李斐), WU Xiao-Mei(吴晓梅), ZENG Xiao-Qin (曾小勤), et al. Chinese J. Inorg. Chem.(Wuji Huaxue Xuebao), 2012,28:1310-1314

    23. [23]

      [23] Suresh G S, Levi M D, Aurbach D. Electrochimica. Acta, 2008,53:3889-3896

    24. [24]

      [24] Johnson D C, Tarascon J M, Sienko M J. Inorg. Chem., 1983, 22:3773

    25. [25]

      [25] Levi M D, Lancry E, Levi E, et al. Solid State Ionics, 2005, 176:1695-1699

    26. [26]

      [26] Levi M D, Gizbar H, Lancry E, et al. J. Electroanal. Chem., 2004,569:211-223

    27. [27]

      [27] Aurbach D, Levi M D, Levi E. Solid State Ionics, 2008,179: 742-751

  • 加载中
    1. [1]

      Pengyang FANShan FANQinjin DAIXiaoying ZHENGWei DONGMengxue WANGXiaoxiao HUANGYong ZHANG . Preparation and performance of rich 1T-MoS2 nanosheets for high-performance aqueous zinc ion battery cathode materials. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 675-682. doi: 10.11862/CJIC.20240339

    2. [2]

      Yuyao WangZhitao CaoZeyu DuXinxin CaoShuquan Liang . Research Progress of Iron-based Polyanionic Cathode Materials for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100035-0. doi: 10.3866/PKU.WHXB202406014

    3. [3]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    4. [4]

      Liangliang SongHaoyan LiangShunqing LiBao QiuZhaoping Liu . Challenges and strategies on high-manganese Li-rich layered oxide cathodes for ultrahigh-energy-density batteries. Acta Physico-Chimica Sinica, 2025, 41(8): 100085-0. doi: 10.1016/j.actphy.2025.100085

    5. [5]

      Lingbang QiuJiangmin JiangLibo WangLang BaiFei ZhouGaoyu ZhouQuanchao ZhuangYanhua CuiIn Situ Electrochemical Impedance Spectroscopy Monitoring of the High-Temperature Double-Discharge Mechanism of Nb12WO33 Cathode Material for Long-Life Thermal Batteries. Acta Physico-Chimica Sinica, 2025, 41(5): 100040-0. doi: 10.1016/j.actphy.2024.100040

    6. [6]

      Jianbao MeiBei LiShu ZhangDongdong XiaoPu HuGeng Zhang . Enhanced Performance of Ternary NASICON-Type Na3.5−xMn0.5V1.5−xZrx (PO4)3/C Cathodes for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(12): 2407023-0. doi: 10.3866/PKU.WHXB202407023

    7. [7]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    8. [8]

      Xiangyu CAOJiaying ZHANGYun FENGLinkun SHENXiuling ZHANGJuanzhi YAN . Synthesis and electrochemical properties of bimetallic-doped porous carbon cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 509-520. doi: 10.11862/CJIC.20240270

    9. [9]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    10. [10]

      Shan ZhaoXu LiuHaotian GuoZonglin LiuPengfei WangJie ShuTingfeng Yi . Synergistic design of high-entropy P2/O3 biphasic cathodes for high-performance sodium-ion batteries. Acta Physico-Chimica Sinica, 2026, 42(1): 100129-0. doi: 10.1016/j.actphy.2025.100129

    11. [11]

      Doudou QinJunyang DingChu LiangQian LiuLigang FengYang LuoGuangzhi HuJun LuoXijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-0. doi: 10.3866/PKU.WHXB202310034

    12. [12]

      Xiaotian ZHUFangding HUANGWenchang ZHUJianqing ZHAO . Layered oxide cathode for sodium-ion batteries: Surface and interface modification and suppressed gas generation effect. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 254-266. doi: 10.11862/CJIC.20240260

    13. [13]

      Jiaxuan ZuoKun ZhangJing WangXifei Li . Nucleation Regulation and Mechanism of Precursors for Nickel Cobalt Manganese-based Cathode Materials in Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(1): 100009-0. doi: 10.3866/PKU.WHXB202404042

    14. [14]

      Zilin HuYaoshen NiuXiaohui RongYongsheng Hu . Suppression of Voltage Decay through Ni3+ Barrier in Anionic-Redox Active Cathode for Na-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(6): 2306005-0. doi: 10.3866/PKU.WHXB202306005

    15. [15]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

    16. [16]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    17. [17]

      Ke QiuFengmei WangMochou LiaoKerun ZhuJiawei ChenWei ZhangYongyao XiaXiaoli DongFei Wang . A Fumed SiO2-based Composite Hydrogel Polymer Electrolyte for Near-Neutral Zinc-Air Batteries. Acta Physico-Chimica Sinica, 2024, 40(3): 2304036-0. doi: 10.3866/PKU.WHXB202304036

    18. [18]

      Binbin LiuYang ChenTianci JiaChen ChenZhanghao WuYuhui LiuYuhang ZhaiTianshu MaChanglei Wang . Hydroxyl-functionalized molecular engineering mitigates 2D phase barriers for efficient wide-bandgap and all-perovskite tandem solar cells. Acta Physico-Chimica Sinica, 2026, 42(1): 100128-0. doi: 10.1016/j.actphy.2025.100128

    19. [19]

      Tao WangQin DongCunpu LiZidong Wei . Sulfur Cathode Electrocatalysis in Lithium-Sulfur Batteries: A Comprehensive Understanding. Acta Physico-Chimica Sinica, 2024, 40(2): 2303061-0. doi: 10.3866/PKU.WHXB202303061

    20. [20]

      Chenyue HuangHongfei ZhengNing QinCanpei WangLiguang WangJun Lu . Single-Crystal Nickel-Rich Cathode Materials: Challenges and Strategies. Acta Physico-Chimica Sinica, 2024, 40(9): 2308051-0. doi: 10.3866/PKU.WHXB202308051

Metrics
  • PDF Downloads(270)
  • Abstract views(627)
  • HTML views(48)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return