Citation: XU Li, CHEN Yu, WU Jia-Huan, WEN Ban-Kang. DNA Interaction and Antitumor Activities of Ruthenium(Ⅱ) Polypyridyl Complex[J]. Chinese Journal of Inorganic Chemistry, ;2013, 29(3): 613-620. doi: 10.3969/j.issn.1001-4861.2013.00.107 shu

DNA Interaction and Antitumor Activities of Ruthenium(Ⅱ) Polypyridyl Complex

  • Received Date: 22 September 2012
    Available Online: 27 November 2012

    Fund Project: 2012年广东省大学生创新创业训练计划(No.1057312013)资助项目。 (No.1057312013)

  • The interactions of the Ru(Ⅱ) complex, [Ru(phen)2(Hecip)]2+ (phen=1,10-phenanthroline, Hecip=N-ethyl-4-([1,10]-phenanthroline[5,6-f]imidazol-2-yl)carbazole), with calf thymus DNA (CT DNA) were studied by using absorption spectroscopy, binding stoichiometry, viscosity measurement and photoactivated cleavage. A tight 2:1 complex is formed by the Ru(Ⅱ) polypyridyl complex and CT DNA with a binding constant exceeding 105 mol-1·L and with a binding mode of intercalation. Furthermore, the complex exhibits efficient DNA cleavage activity on UV (365 nm) irradiation via a mechanistic pathway involving formation of singlet oxygen as the reactive species. On the other hand, the cytotoxic activity of the complex was tested by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) method. The complex shows prominent anticancer activity against selected tumor cell lines with IC50 values lower than those of cisplatin. Further flow cytometry experiments show that the cytotoxic Ru(Ⅱ) complex can cause cell cycle arrest in the S phase.
  • 加载中
    1. [1]

      [1] Greguric I, Aldrich-Wright J R, Collins J G. J. Am. Chem. Soc., 1997,119:3621-3622

    2. [2]

      [2] Nair R B, Teng E S, Kirkland S L, et al. Inorg. Chem., 1998, 37:139-141

    3. [3]

      [3] Erkkila K E, Odom D T, Barton J K. Chem. Rev., 1999,99: 2777-2796

    4. [4]

      [4] Friedman A E, Chambron J C, Sauvage J P, et al. J. Am. Chem. Soc., 2004,126:8630-8631

    5. [5]

      [5] Zeglis B M, Barton J K. J. Am. Chem. Soc., 2006,128:5654-5655

    6. [6]

      [6] Liu Y, Hammitt R, Lutterman D A, et al. Inorg. Chem., 2007, 46:6011-6021

    7. [7]

      [7] Cosgrave L, Devocelle M, Forster R J, et al. Chem. Commun., 2010,46:103-105

    8. [8]

      [8] Tan C P, Wu S H, Lai S S, et al. Dalton Trans., 2011,40: 8611-8621

    9. [9]

      [9] Tan L F, Shen J L, Liu J, et al. Dalton Trans., 2012,41:4575-4587

    10. [10]

      [10] Liu Y J, Li Z Z, Liang Z H, et al. DNA Cell Biol., 2011,30: 839-848

    11. [11]

      [11] Tan C P, Lai S S, Wu S H, et al. J. Med. Chem., 2010,53: 7613-7624

    12. [12]

      [12] Schatzschneider U, Niesel J, Ott I, et al. ChemMedChem, 2008,3:1104-1109

    13. [13]

      [13] Van Dijken A, Bastiaansen J J A M, Kiggen N M M, et al. J. Am. Chem. Soc., 2004,126:7718-7727

    14. [14]

      [14] Grabowski Z R, Rotkiewicz K. Chem. Rev., 2003,103:3899-4032

    15. [15]

      [15] Zhang Y, Wang L, Wada T, et al. Macromol. Chem. Phys., 1996,197:1877-1888

    16. [16]

      [16] Wagner J, Pielichowski J, Hinsch A, et al. Synth. Met., 2004,146:159-165

    17. [17]

      [17] Xin H, Sun M, Wang K Z, et al. Chem. Phys. Lett., 2004, 388:55-57

    18. [18]

      [18] Liu F R, Wang K Z, Bai G Y, et al. Inorg. Chem., 2004,43: 1799-1806

    19. [19]

      [19] Lü Y Y, Gao L H, Han M J, et al. Eur. J. Inorg. Chem., 2006,430:430-436

    20. [20]

      [20] Xu L, Liu P X, Liao G L, et al. Aust. J. Chem., 2010,63:1-9

    21. [21]

      [21] Marmur J A. J. Mol. Biol., 1961,3:208-218

    22. [22]

      [22] Reichmann M E, Rice S A, Thomas C A, et al. J. Am. Chem. Soc., 1954,76:3047-3053

    23. [23]

      [23] Wolf A, Shimer Jr G H, Meehan T. Biochemistry, 1987,26: 6392-6396

    24. [24]

      [24] Chaires J B, Dattagupta N, Crothers D M. Biochemistry, 1982,21:3933-3940

    25. [25]

      [25] Cohen G, Eisenberg H. Biopolymers, 1969,8:45-55

    26. [26]

      [26] Job P. Ann. Chim., 1928,9:113-203

    27. [27]

      [27] Mosmann T. J. Immunol. Methods., 1983,65:55-63

    28. [28]

      [28] Tan L F, Song F C, Zou X Q, et al. DNA Cell Biol., 2011, 30:277-285

    29. [29]

      [29] Pyle A M, Rehmann J P, Meshoyrer R, et al. J. Am. Chem. Soc., 1989,111:3051-3058

    30. [30]

      [30] Han M J, Duan Z M, Wang K Z, et al. J. Phys. Chem. C., 2007,111:16577-16585

    31. [31]

      [31] Friedman A E, Chambron J C, Sauvage J P, et al. J. Am. Chem. Soc., 1990,112:4960-4962

    32. [32]

      [32] Tselepi-Kalouli E, Katsaros N. J. Inorg. Biochem., 1989,37: 271-282

    33. [33]

      [33] Liu J G, Zhang Q L, Shi X F, et al. Inorg. Chem., 2001,40: 5045-5050

    34. [34]

      [34] Satyanarayana S, Dabrowiak J C, Chaires J B. Biochemistry, 1992,31:9319-9324

    35. [35]

      [35] Satyanaryana S, Daborusak J C, Chaires J B. Biochem., 1993,32:2573-2584

    36. [36]

      [36] Cheng C C, Rokita S E, Burrows C J. Angew. Chem. Int. Ed. Engl., 1993,32:277-278

    37. [37]

      [37] Lesko S A, Lorentzen R J, Ts'o P O. Biochemistry, 1980,19: 3023-3028

    38. [38]

      [38] Nilsson R, Merkel P B, Kearns D R. Photochem. Photobiol., 1972,16:117-124

    39. [39]

      [39] Patra A K, Nethaji M, Chakravarty A R. J. Inorg. Biochem., 2007,101:233-244

    40. [40]

      [40] Deshpande M S, Kumbhar A A, Kumbhar A S, et al. Bioconjugate Chem., 2009,20:447-459

    41. [41]

      [41] Gao F, Chao H, Ji L N. Chem. Biodivers., 2008,5:1962-1979

    42. [42]

      [42] Yu H J, Chen Y, Yu L, et al. Eur. J. Med. Chem., 2012,55: 146-154

    43. [43]

      [43] Karna P, Sharp S M, Yates C, et al. Mol. Cancer., 2009,8: 93

  • 加载中
    1. [1]

      Hao WANGKun TANGJiangyang SHAOKezhi WANGYuwu ZHONG . Electro-copolymerized film of ruthenium catalyst and redox mediator for electrocatalytic water oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2193-2202. doi: 10.11862/CJIC.20240176

    2. [2]

      Ke QIAOYanlin LIShengli HUANGGuoyu YANG . Advancements in asymmetric catalysis employing chiral iridium (ruthenium) complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2091-2104. doi: 10.11862/CJIC.20240265

    3. [3]

      Changqing MIAOFengjiao CHENWenyu LIShujie WEIYuqing YAOKeyi WANGNi WANGXiaoyan XINMing FANG . Crystal structures, DNA action, and antibacterial activities of three tetranuclear lanthanide-based complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2455-2465. doi: 10.11862/CJIC.20240192

    4. [4]

      Qin Hou Jiayi Hou Aiju Shi Xingliang Xu Yuanhong Zhang Yijing Li Juying Hou Yanfang Wang . Preparation of Cuprous Iodide Coordination Polymer and Fluorescent Detection of Nitrite: A Comprehensive Chemical Design Experiment. University Chemistry, 2024, 39(8): 221-229. doi: 10.3866/PKU.DXHX202312056

    5. [5]

      Xiaowei TANGShiquan XIAOJingwen SUNYu ZHUXiaoting CHENHaiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173

    6. [6]

      Qilu DULi ZHAOPeng NIEBo XU . Synthesis and characterization of osmium-germyl complexes stabilized by triphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1088-1094. doi: 10.11862/CJIC.20240006

    7. [7]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    8. [8]

      Wei Li Ze Chang Meihui Yu Ying Zhang . Curriculum Ideological and Political Design of Piezoelectricity Measurement Experiments of Coordination Compounds. University Chemistry, 2024, 39(2): 77-82. doi: 10.3866/PKU.DXHX202308004

    9. [9]

      Ji Qi Jianan Zhu Yanxu Zhang Jiahao Yang Chunting Zhang . Visible Color Change of Copper (II) Complexes in Reversible SCSC Transformation: The Effect of Structure on Color. University Chemistry, 2024, 39(3): 43-57. doi: 10.3866/PKU.DXHX202307050

    10. [10]

      Cunling Ye Xitong Zhao Hongfang Wang Zhike Wang . A Formula for the Calculation of Complex Concentrations Arising from Side Reactions and Its Applications. University Chemistry, 2024, 39(4): 382-386. doi: 10.3866/PKU.DXHX202310043

    11. [11]

      Keweiyang Zhang Zihan Fan Liyuan Xiao Haitao Long Jing Jing . Unveiling Crystal Field Theory: Preparation, Characterization, and Performance Assessment of Nickel Macrocyclic Complexes. University Chemistry, 2024, 39(5): 163-171. doi: 10.3866/PKU.DXHX202310084

    12. [12]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    13. [13]

      Wenjing ZHANGXiaoqing WANGZhipeng LIU . Recent developments of inorganic metal complex-based photothermal materials and their applications in photothermal therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2356-2372. doi: 10.11862/CJIC.20240254

    14. [14]

      Qingjun PANZhongliang GONGYuwu ZHONG . Advances in modulation of the excited states of photofunctional iron complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 45-58. doi: 10.11862/CJIC.20240365

    15. [15]

      Linjie ZHUXufeng LIU . Electrocatalytic hydrogen evolution performance of tetra-iron complexes with bridging diphosphine ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 321-328. doi: 10.11862/CJIC.20240207

    16. [16]

      Hong Wu Yuxi Wang Hongyan Feng Xiaokui Wang Bangkun Jin Xuan Lei Qianghua Wu Hongchun Li . Application of Computational Chemistry in the Determination of Magnetic Susceptibility of Metal Complexes. University Chemistry, 2025, 40(3): 116-123. doi: 10.12461/PKU.DXHX202405141

    17. [17]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    18. [18]

      Liang TANGJingfei NIKang XIAOXiangmei LIU . Synthesis and X-ray imaging application of lanthanide-organic complex-based scintillators. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1892-1902. doi: 10.11862/CJIC.20240139

    19. [19]

      Yongpo Zhang Xinfeng Li Yafei Song Mengyao Sun Congcong Yin Chunyan Gao Jinzhong Zhao . Synthesis of Chlorine-Bridged Binuclear Cu(I) Complexes Based on Conjugation-Driven Cu(II) Oxidized Secondary Amines. University Chemistry, 2024, 39(5): 44-51. doi: 10.3866/PKU.DXHX202309092

    20. [20]

      Jinfeng Chu Yicheng Wang Ji Qi Yulin Liu Yan Li Lan Jin Lei He Yufei Song . Comprehensive Chemical Experiment Design: Convenient Preparation and Characterization of an Oxygen-Bridged Trinuclear Iron(III) Complex. University Chemistry, 2024, 39(7): 299-306. doi: 10.3866/PKU.DXHX202310105

Metrics
  • PDF Downloads(0)
  • Abstract views(372)
  • HTML views(82)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return