Citation: YIN Xi-Jun, LONG Neng-Bing, ZHANG Xiang-Zhou, HOU Lin-Xi. Preparation and Catalytic Property of Macroporous MgO/ZrO2 Composite Catalyst[J]. Chinese Journal of Inorganic Chemistry, ;2013, 29(4): 739-746. doi: 10.3969/j.issn.1001-4861.2013.00.098 shu

Preparation and Catalytic Property of Macroporous MgO/ZrO2 Composite Catalyst

  • Received Date: 6 October 2012
    Available Online: 28 November 2012

    Fund Project: 浙江省教育厅2012年度科研计划项目(No.Y201223742) (No.Y201223742)

  • A macroporous ZrO2 support was prepared by using a three-dimensional (3D) skeletal polymer through an in situ hydrolysis of Zirconium butoxide and a subsequent calcination at high temperature. Macroprocous MgO/ZrO2 composites were prepared by impregnation, calcination of magnesium nitrate solution. The composite materials were characterized by SEM, FTIR, XRD, TG-DSC. The results show that the macroporous zirconia supports have 3D ultrathin layer and the MgO nanoparticles cover on the 3D zirconia layer. The CO2-TPD curves indicate that the surface of zirconia supports has some weak alkaline sites and the sedimentation of MgO on the composite increases its alkalinity. The effect of preparation conditions on the catalytic activity was studied by using the transesterification of di-2-ethyl-hexyl carbonate from dimethyl carbonate and 2-ethyl-hexanol as the probe reaction. The results show that the macroporous MgO/ZrO2 solid base catalyst exhibits a better activity of transesterification. A better yield of the target product (65%) is obtained when the content of MgO is 50% and the calcination temperature is 600℃.
  • 加载中
    1. [1]

      [1] Sizgek G D, Sizgek E, Griffith C S, et al. Langmuir, 2008,24 (21):12323-12330

    2. [2]

      [2] Drisko G L, Luca V, Sizgek E, et al. Langmuir, 2009,25(9): 5286-5293

    3. [3]

      [3] Li H N, Zhang L, Dai H X, et al. Inorg. Chem., 2009,48(10): 4421-4434

    4. [4]

      [4] CUI Xiao-Yan(崔晓燕), DENG Wei(邓威). Chinese J. Chem. Adhe.(Huaxue Yu Nianhe), 2011,33(3):53-56

    5. [5]

      [5] LI Ting(李婷). Thesis for the Master of Harbin Technology University(哈尔滨工业大学硕士论文). 2011.

    6. [6]

      [6] Tian X K, Zeng Y L, Xiao T, et al. Microp. Mesop. Mater., 2011,143:357-361

    7. [7]

      [7] Ding Y Q, Sun H, Duan J Z, et al. Catal. Commun., 2011, 12:606-610

    8. [8]

      [8] Kitada A, Hasegawa G, Kobayash Y, et al. J. Am. Chem. Soc., 2012,134(26):10894-10898

    9. [9]

      [9] Drisko G L, Cao L, Kimling M C, et al. Appl. Mater. Interfaces, 2009,1(12):2893-2901

    10. [10]

      [10] Pablo M A, Massimiliano C, Ferdi S, et al. Angew. Chem. Int. Ed., 2006,45(48):8224-8227

    11. [11]

      [11] SHEN Yong(沈勇), WU Quan-Zhou(邬泉周), LI Yu-Guang (李玉光), et al. Acta Physico-Chimica Sinica(Wuli Huaxue Xuebao), 2006,22(9):1121-1125

    12. [12]

      [12] MA Fu(马富), LI Yun(李云), LUO Shi-Jie(罗时杰), et al. Chinese J. Rare Earths(Zhongguo Xitu Xuebao), 2006,24: 35-37

    13. [13]

      [13] SUN Rui-Qin(孙瑞琴), ZHOU Xu(周徐), SUN Lin-Bing(孙 林兵), et al. Chem. J. Chinese Universities(Gaodeng Xuexiao Huaxue Xuebao), 2007,28(12):2333-2337

    14. [14]

      [14] WEI Yi-Lun(魏一伦), CAO Yi(曹毅), ZHU Jian-Hua(朱建 华), et al. Chinese J. Inorg. Chem.(Wuji Huaxue Xuebao), 2003,19(3):233-238

    15. [15]

      [15] Liu S G, Huang S Y, Guan L X, et al. Microp. Mesop. Mater., 2007,102:304-309

    16. [16]

      [16] Liu S G, Ma J, Guan L X, et al. Microp. Mesop. Mater., 2009,117:466-471

    17. [17]

      [17] Zhang R F, Zhang L L. Polym. Bull., 2008,61:671-677

    18. [18]

      [18] LONG Neng-Bing(龙能兵), ZHANG Rui-Feng(张瑞丰). Chinese J. Inorg. Chem.(Wuji Huaxue Xuebao), 2009,25(7): 1153-1158

    19. [19]

      [19] LONG Neng-Bing(龙能兵), WANG Qiu-jin(王秋景), ZHANG Rui-Feng(张瑞丰). Acta. Mater. Comp. Sin.(Fuhe Cailiao Xuebao), 2011,28(5):119-125

    20. [20]

      [20] HOU Lin-Xi(侯琳熙), YIN Xi-Jun(尹锡俊), LONG Neng- Bing(龙能兵). Chinese J. Inorg. Chem.(Wuji Huaxue Xuebao), 2012,28(2):239-244

  • 加载中
    1. [1]

      Xiaosong PUHangkai WUTaohong LIHuijuan LIShouqing LIUYuanbo HUANGXuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030

    2. [2]

      Ruifeng CHENChao XUJianting JIANGTianshe YANG . Gold nanorod/zinc oxide/mesoporous silica nanoplatform: A triple-modal platform for synergistic anticancer therapy. Chinese Journal of Inorganic Chemistry, 2025, 41(11): 2272-2282. doi: 10.11862/CJIC.20250117

    3. [3]

      Qiang ZhangYuanbiao HuangRong Cao . Imidazolium-Based Materials for CO2 Electroreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306040-0. doi: 10.3866/PKU.WHXB202306040

    4. [4]

      Yanhui GuoLi WeiZhonglin WenChaorong QiHuanfeng Jiang . Recent Progress on Conversion of Carbon Dioxide into Carbamates. Acta Physico-Chimica Sinica, 2024, 40(4): 2307004-0. doi: 10.3866/PKU.WHXB202307004

    5. [5]

      Xiaofei LiuHe WangLi TaoWeimin RenXiaobing LuWenzhen Zhang . Electrocarboxylation of Benzylic Phosphates and Phosphinates with Carbon Dioxide. Acta Physico-Chimica Sinica, 2024, 40(9): 2307008-0. doi: 10.3866/PKU.WHXB202307008

    6. [6]

      Hui-Ying ChenHao-Lin ZhuPei-Qin LiaoXiao-Ming Chen . Integration of Ru(Ⅱ)-Bipyridyl and Zinc(Ⅱ)-Porphyrin Moieties in a Metal-Organic Framework for Efficient Overall CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306046-0. doi: 10.3866/PKU.WHXB202306046

    7. [7]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    8. [8]

      Zhiquan ZhangBaker RhimiZheyang LiuMin ZhouGuowei DengWei WeiLiang MaoHuaming LiZhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029

    9. [9]

      Hailang JIAPengcheng JIHongcheng LI . Preparation and performance of nickel doped ruthenium dioxide electrocatalyst for oxygen evolution. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1632-1640. doi: 10.11862/CJIC.20240398

    10. [10]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    11. [11]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    12. [12]

      Jianan HongChenyu XuYan LiuChangqi LiMenglin WangYanwei Zhang . Decoding the interfacial competition between hydrogen evolution and CO2 reduction via edge-active-site modulation in photothermal catalysis. Acta Physico-Chimica Sinica, 2025, 41(9): 100099-0. doi: 10.1016/j.actphy.2025.100099

    13. [13]

      Bizhu ShaoHuijun DongYunnan GongJianhua MeiFengshi CaiJinbiao LiuDichang ZhongTongbu Lu . Metal-Organic Framework-Derived Nickel Nanoparticles for Efficient CO2 Electroreduction in Wide Potential Windows. Acta Physico-Chimica Sinica, 2024, 40(4): 2305026-0. doi: 10.3866/PKU.WHXB202305026

    14. [14]

      Yan KongWei WeiLekai XuChen Chen . Electrochemical Synthesis of Organonitrogen Compounds from N-integrated CO2 Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2307049-0. doi: 10.3866/PKU.WHXB202307049

    15. [15]

      Jiayin Hu Yafei Guo Long Li Tianlong Deng . Teaching Innovation of Salt-Water System Phase Diagrams under the “Dual Carbon” Background: Introducing the Pressurized CO2 Carbonization Phase Equilibria. University Chemistry, 2025, 40(11): 31-36. doi: 10.12461/PKU.DXHX202412031

    16. [16]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    17. [17]

      Wei HEJing XITianpei HENa CHENQuan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364

    18. [18]

      Haoran Zhang Yaxin Jin Peng Kang Sheng Zhang . The Convergence and Innovative Application of Artificial Intelligence in Scientific Research: A Case Study of Electrocatalytic Carbon Dioxide Reduction in the Context of the Dual-Carbon Strategy. University Chemistry, 2025, 40(9): 148-155. doi: 10.12461/PKU.DXHX202412099

    19. [19]

      Yuying JIANGJia LUOZhan GAO . Development status and prospects of solid oxide cell high entropy electrode catalysts. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1719-1730. doi: 10.11862/CJIC.20250124

    20. [20]

      Qianwen HanTenglong ZhuQiuqiu LüMahong YuQin Zhong . Performance and Electrochemical Asymmetry Optimization of Hydrogen Electrode Supported Reversible Solid Oxide Cell. Acta Physico-Chimica Sinica, 2025, 41(1): 100005-0. doi: 10.3866/PKU.WHXB202309037

Metrics
  • PDF Downloads(250)
  • Abstract views(758)
  • HTML views(45)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return