Citation: YIN Xi-Jun, LONG Neng-Bing, ZHANG Xiang-Zhou, HOU Lin-Xi. Preparation and Catalytic Property of Macroporous MgO/ZrO2 Composite Catalyst[J]. Chinese Journal of Inorganic Chemistry, ;2013, 29(4): 739-746. doi: 10.3969/j.issn.1001-4861.2013.00.098 shu

Preparation and Catalytic Property of Macroporous MgO/ZrO2 Composite Catalyst

  • Received Date: 6 October 2012
    Available Online: 28 November 2012

    Fund Project: 浙江省教育厅2012年度科研计划项目(No.Y201223742) (No.Y201223742)

  • A macroporous ZrO2 support was prepared by using a three-dimensional (3D) skeletal polymer through an in situ hydrolysis of Zirconium butoxide and a subsequent calcination at high temperature. Macroprocous MgO/ZrO2 composites were prepared by impregnation, calcination of magnesium nitrate solution. The composite materials were characterized by SEM, FTIR, XRD, TG-DSC. The results show that the macroporous zirconia supports have 3D ultrathin layer and the MgO nanoparticles cover on the 3D zirconia layer. The CO2-TPD curves indicate that the surface of zirconia supports has some weak alkaline sites and the sedimentation of MgO on the composite increases its alkalinity. The effect of preparation conditions on the catalytic activity was studied by using the transesterification of di-2-ethyl-hexyl carbonate from dimethyl carbonate and 2-ethyl-hexanol as the probe reaction. The results show that the macroporous MgO/ZrO2 solid base catalyst exhibits a better activity of transesterification. A better yield of the target product (65%) is obtained when the content of MgO is 50% and the calcination temperature is 600℃.
  • 加载中
    1. [1]

      [1] Sizgek G D, Sizgek E, Griffith C S, et al. Langmuir, 2008,24 (21):12323-12330

    2. [2]

      [2] Drisko G L, Luca V, Sizgek E, et al. Langmuir, 2009,25(9): 5286-5293

    3. [3]

      [3] Li H N, Zhang L, Dai H X, et al. Inorg. Chem., 2009,48(10): 4421-4434

    4. [4]

      [4] CUI Xiao-Yan(崔晓燕), DENG Wei(邓威). Chinese J. Chem. Adhe.(Huaxue Yu Nianhe), 2011,33(3):53-56

    5. [5]

      [5] LI Ting(李婷). Thesis for the Master of Harbin Technology University(哈尔滨工业大学硕士论文). 2011.

    6. [6]

      [6] Tian X K, Zeng Y L, Xiao T, et al. Microp. Mesop. Mater., 2011,143:357-361

    7. [7]

      [7] Ding Y Q, Sun H, Duan J Z, et al. Catal. Commun., 2011, 12:606-610

    8. [8]

      [8] Kitada A, Hasegawa G, Kobayash Y, et al. J. Am. Chem. Soc., 2012,134(26):10894-10898

    9. [9]

      [9] Drisko G L, Cao L, Kimling M C, et al. Appl. Mater. Interfaces, 2009,1(12):2893-2901

    10. [10]

      [10] Pablo M A, Massimiliano C, Ferdi S, et al. Angew. Chem. Int. Ed., 2006,45(48):8224-8227

    11. [11]

      [11] SHEN Yong(沈勇), WU Quan-Zhou(邬泉周), LI Yu-Guang (李玉光), et al. Acta Physico-Chimica Sinica(Wuli Huaxue Xuebao), 2006,22(9):1121-1125

    12. [12]

      [12] MA Fu(马富), LI Yun(李云), LUO Shi-Jie(罗时杰), et al. Chinese J. Rare Earths(Zhongguo Xitu Xuebao), 2006,24: 35-37

    13. [13]

      [13] SUN Rui-Qin(孙瑞琴), ZHOU Xu(周徐), SUN Lin-Bing(孙 林兵), et al. Chem. J. Chinese Universities(Gaodeng Xuexiao Huaxue Xuebao), 2007,28(12):2333-2337

    14. [14]

      [14] WEI Yi-Lun(魏一伦), CAO Yi(曹毅), ZHU Jian-Hua(朱建 华), et al. Chinese J. Inorg. Chem.(Wuji Huaxue Xuebao), 2003,19(3):233-238

    15. [15]

      [15] Liu S G, Huang S Y, Guan L X, et al. Microp. Mesop. Mater., 2007,102:304-309

    16. [16]

      [16] Liu S G, Ma J, Guan L X, et al. Microp. Mesop. Mater., 2009,117:466-471

    17. [17]

      [17] Zhang R F, Zhang L L. Polym. Bull., 2008,61:671-677

    18. [18]

      [18] LONG Neng-Bing(龙能兵), ZHANG Rui-Feng(张瑞丰). Chinese J. Inorg. Chem.(Wuji Huaxue Xuebao), 2009,25(7): 1153-1158

    19. [19]

      [19] LONG Neng-Bing(龙能兵), WANG Qiu-jin(王秋景), ZHANG Rui-Feng(张瑞丰). Acta. Mater. Comp. Sin.(Fuhe Cailiao Xuebao), 2011,28(5):119-125

    20. [20]

      [20] HOU Lin-Xi(侯琳熙), YIN Xi-Jun(尹锡俊), LONG Neng- Bing(龙能兵). Chinese J. Inorg. Chem.(Wuji Huaxue Xuebao), 2012,28(2):239-244

  • 加载中
    1. [1]

      Xiaosong PUHangkai WUTaohong LIHuijuan LIShouqing LIUYuanbo HUANGXuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030

    2. [2]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    3. [3]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    4. [4]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    5. [5]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    6. [6]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    7. [7]

      Wei HEJing XITianpei HENa CHENQuan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364

    8. [8]

      Qianwen Han Tenglong Zhu Qiuqiu Lü Mahong Yu Qin Zhong . 氢电极支撑可逆固体氧化物电池性能及电化学不对称性优化. Acta Physico-Chimica Sinica, 2025, 41(1): 2309037-. doi: 10.3866/PKU.WHXB202309037

    9. [9]

      Conghao Shi Ranran Wang Juli Jiang Leyong Wang . The Illustration on Stereoisomers of Macrocycles Containing Multiple Chiral Centers via Tröger Base-based Macrocycles. University Chemistry, 2024, 39(7): 394-397. doi: 10.3866/PKU.DXHX202311034

    10. [10]

      Jiaxin Su Jiaqi Zhang Shuming Chai Yankun Wang Sibo Wang Yuanxing Fang . Optimizing Poly(heptazine imide) Photoanodes Using Binary Molten Salt Synthesis for Water Oxidation Reaction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408012-. doi: 10.3866/PKU.WHXB202408012

    11. [11]

      Yurong Tang Yunren Shi Yi Xu Bo Qin Yanqin Xu Yunfei Cai . Innovative Experiment and Course Transformation Practice of Visible-Light-Mediated Photocatalytic Synthesis of Isoquinolinone. University Chemistry, 2024, 39(5): 296-306. doi: 10.3866/PKU.DXHX202311087

    12. [12]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    13. [13]

      Xiaotian ZHUFangding HUANGWenchang ZHUJianqing ZHAO . Layered oxide cathode for sodium-ion batteries: Surface and interface modification and suppressed gas generation effect. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 254-266. doi: 10.11862/CJIC.20240260

    14. [14]

      Lirui Shen Kun Liu Ying Yang Dongwan Li Wengui Chang . Synthesis and Application of Decanedioic Acid-N-Hydroxysuccinimide Ester: Exploration of Teaching Reform in Comprehensive Applied Chemistry Experiment. University Chemistry, 2024, 39(8): 212-220. doi: 10.3866/PKU.DXHX202312035

    15. [15]

      Baohua LÜYuzhen LI . Anisotropic photoresponse of two-dimensional layered α-In2Se3(2H) ferroelectric materials. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1911-1918. doi: 10.11862/CJIC.20240105

    16. [16]

      Runhua Chen Qiong Wu Jingchen Luo Xiaolong Zu Shan Zhu Yongfu Sun . 缺陷态二维超薄材料用于光/电催化CO2还原的基础与展望. Acta Physico-Chimica Sinica, 2025, 41(3): 2308052-. doi: 10.3866/PKU.WHXB202308052

    17. [17]

      Huayan Liu Yifei Chen Mengzhao Yang Jiajun Gu . 二维材料基超级电容器的容量与倍率性能提升策略. Acta Physico-Chimica Sinica, 2025, 41(6): 100063-. doi: 10.1016/j.actphy.2025.100063

    18. [18]

      Yifeng TANPing CAOKai MAJingtong LIYuheng WANG . Synthesis of pentaerythritol tetra(2-ethylthylhexoate) catalyzed by h-MoO3/SiO2. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2155-2162. doi: 10.11862/CJIC.20240147

    19. [19]

      Hailian Tang Siyuan Chen Qiaoyun Liu Guoyi Bai Botao Qiao Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004

    20. [20]

      Meng Lin Hanrui Chen Congcong Xu . Preparation and Study of Photo-Enhanced Electrocatalytic Oxygen Evolution Performance of ZIF-67/Copper(I) Oxide Composite: A Recommended Comprehensive Physical Chemistry Experiment. University Chemistry, 2024, 39(4): 163-168. doi: 10.3866/PKU.DXHX202308117

Metrics
  • PDF Downloads(250)
  • Abstract views(571)
  • HTML views(42)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return