Citation: XIAO Xiu-Feng, LIANG Jian-He, TANG Hai-Zhen, YANG Xiao-Juan, LIU Rong-Fang. Preparation and Characterization of TiO2 Nanotubes Array by Anodic Oxidation in Anionic Modified Glycerol-Based Electrolyte[J]. Chinese Journal of Inorganic Chemistry, ;2013, 29(3): 544-550. doi: 10.3969/j.issn.1001-4861.2013.00.004 shu

Preparation and Characterization of TiO2 Nanotubes Array by Anodic Oxidation in Anionic Modified Glycerol-Based Electrolyte

  • Received Date: 23 April 2012
    Available Online: 31 July 2012

    Fund Project: 国家自然科学基金(No.30970887,30600149) (No.30970887,30600149)卫生部科学研究基金(No.WKJ2008-02-037) (No.WKJ2008-02-037)福建省杰青项目(No.2011J06019) (No.2011J06019)教育部重点 项目(No.209061) (No.209061)福建省纳米材料重点实验室科学基金(No.NM10-03)资助项目。 (No.NM10-03)

  • High-order TiO2 nanotube arrays on titanium foils were prepared in glycerol-based electrolyte containing fluorine and water by electrochemical anodic oxidation in this work. The influence of different dianion additives, different oxidation duration and concentration of electrolyte additives on the effect of the morphology of TiO2 nanotube arrays were investigated. Results showed that the length of TiO2 nanotube arrays in the modified electrolyte were longer than the samples in the unmodified electrolyte. And with the growth of oxidation duration, the diameter of the nanotubes increased, the wall were thinner; moreover better and longer TiO2 nanotube arrays can be prepared in the glycerol-based electrolyte with the range of the concentration of (NH4)2TiF6.
  • 加载中
    1. [1]

      [1] Chen X, Mao S S. Chem. Rev., 2007,107:2891-2959

    2. [2]

      [2] Grimes C A, Mor G K, Varghese O K, et al. Sol. Energy Mater. Sol., Cells., 2006,90(14):2011-2075

    3. [3]

      [3] Macak J M, Tsuchiya H, Ghicov A, et al. Curr. Opin. Solid State Mater. Sci., 2007,11(1-2):3-18

    4. [4]

      [4] SUN Lan(孙岚), LI Jing(李静), ZHUANG Hui-Fang(庄惠芳), et al. Chinese J. Inorg. Chem.(Wuji Huaxue Xuebao), 2007, 23(11):1841-1850

    5. [5]

      [5] Grimes C A. J. Mater. Chem., 2007,17(15):1451-1457

    6. [6]

      [6] Park M W, Chun K Y. Mater. Lett., 2009,5(1):7-11

    7. [7]

      [7] Shankar K, Mor G K, Prakasam H E, et al. Nanotechnology, 2007,18(6):065707

    8. [8]

      [8] Paulose M, Mor G K, Varghese O K, et al. J. Photochem. Photobiol. A: Chem., 2006,178(1):8-15

    9. [9]

      [9] Raja K S, Misra M, Paramguru K. Mater. Lett., 2005,59(17): 2137-2141

    10. [10]

      [10] LIU You-Song(刘有松), ZHANG Bin(张斌), ZHU Lei(朱蕾), et al. Chinese J. Inorg. Chem.(Wuji Huaxue Xuebao), 2011, 27(8):1555-1563

    11. [11]

      [11] LI Dan-Dan(李丹丹), LIU Zhong-Qing(刘中清), YAN Xin (颜欣), et al. Chinese J. Inorg. Chem.(Wuji Huaxue Xuebao), 2011,27(7):1358-1362

    12. [12]

      [12] WU Qi(吴奇), SU Yu-Feng(苏钰丰), SUN Lan(孙岚), et al. Acta Phys.-Chim. Sin.(Wuli Huaxue Xuebao), 2012,28(3): 635-640

    13. [13]

      [13] Macak J M, Aldabergerova S, Ghicov A, et al. Phys. Status Solid (a), 2006,203(10):R67-R69

    14. [14]

      [14] Macak J M, Hildebrand H, Marten-Jahns U, et al. J. Electroanal. Chem., 2008,621(2):254-266

    15. [15]

      [15] Berger S, Macak J M, Kunze J, et al. Electrochem. Solid State Lett., 2008,11(7):C37-C40

    16. [16]

      [16] Macak J M, Albu S, Kim D H, et al. Electrochem. Solid-State Lett., 2007,10(7):28-31

    17. [17]

      [17] Macak J M, Schmuki P. Electrochim. Acta, 2006,52(3):1258-1264

    18. [18]

      [18] YING Yu-Xin(阴育新), JIN Zheng-Guo(靳正国), TANG Xin (谭欣), et al. Acta Phys.-Chim. Sin.(Wuli Huaxue Xuebao), 2008,24(11):2133-2138

    19. [19]

      [19] Yin Y X, Jin Z G, Hou F, et al. J. Am. Ceram. Soc., 2007, 90(8):2384-2389

    20. [20]

      [20] Shankar K, Mor G K, Fitzgerald A, et al. J. Phys. Chem. C, 2007,111(1):21-26

  • 加载中
    1. [1]

      Shengjuan Huo Xiaoyan Zhang Xiangheng Li Xiangning Li Tianfang Chen Yuting Shen . Unveiling the Marvels of Titanium: Popularizing Multifunctional Colored Titanium Product Films. University Chemistry, 2024, 39(5): 184-192. doi: 10.3866/PKU.DXHX202310127

    2. [2]

      Xiufang Wang Donglin Zhao Kehua Zhang Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025

    3. [3]

      Zhuoyan Lv Yangming Ding Leilei Kang Lin Li Xiao Yan Liu Aiqin Wang Tao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 100038-. doi: 10.3866/PKU.WHXB202408015

    4. [4]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    5. [5]

      Jizhou Liu Chenbin Ai Chenrui Hu Bei Cheng Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006

    6. [6]

      Ke Li Chuang Liu Jingping Li Guohong Wang Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009

    7. [7]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    8. [8]

      Jiaxin Su Jiaqi Zhang Shuming Chai Yankun Wang Sibo Wang Yuanxing Fang . Optimizing Poly(heptazine imide) Photoanodes Using Binary Molten Salt Synthesis for Water Oxidation Reaction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408012-. doi: 10.3866/PKU.WHXB202408012

    9. [9]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    10. [10]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    11. [11]

      Fanxin Kong Hongzhi Wang Huimei Duan . Inhibition effect of sulfation on Pt/TiO2 catalysts in methane combustion. Chinese Journal of Structural Chemistry, 2024, 43(5): 100287-100287. doi: 10.1016/j.cjsc.2024.100287

    12. [12]

      Zhiqiang WangYajie GaoTianjun WangWei ChenZefeng RenXueming YangChuanyao Zhou . Photocatalyzed oxidation of water on oxygen pretreated rutile TiO2(110). Chinese Chemical Letters, 2025, 36(4): 110602-. doi: 10.1016/j.cclet.2024.110602

    13. [13]

      Linlu BaiWensen LiXiaoyu ChuHaochun YinYang QuEkaterina KozlovaZhao-Di YangLiqiang Jing . Effects of nanosized Au on the interface of zinc phthalocyanine/TiO2 for CO2 photoreduction. Chinese Chemical Letters, 2025, 36(2): 109931-. doi: 10.1016/j.cclet.2024.109931

    14. [14]

      Lihua HUANGJian HUA . Denitration performance of HoCeMn/TiO2 catalysts prepared by co-precipitation and impregnation methods. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 629-645. doi: 10.11862/CJIC.20230315

    15. [15]

      Hongye Bai Lihao Yu Jinfu Xu Xuliang Pang Yajie Bai Jianguo Cui Weiqiang Fan . Controllable Decoration of Ni-MOF on TiO2: Understanding the Role of Coordination State on Photoelectrochemical Performance. Chinese Journal of Structural Chemistry, 2023, 42(10): 100096-100096. doi: 10.1016/j.cjsc.2023.100096

    16. [16]

      Wenhao WangGuangpu ZhangQiufeng WangFancang MengHongbin JiaWei JiangQingmin Ji . Hybrid nanoarchitectonics of TiO2/aramid nanofiber membranes with softness and durability for photocatalytic dye degradation. Chinese Chemical Letters, 2024, 35(7): 109193-. doi: 10.1016/j.cclet.2023.109193

    17. [17]

      Mengli Xu Zhenmin Xu Zhenfeng Bian . Achieving Ullmann coupling reaction via photothermal synergy with ultrafine Pd nanoclusters supported on mesoporous TiO2. Chinese Journal of Structural Chemistry, 2024, 43(7): 100305-100305. doi: 10.1016/j.cjsc.2024.100305

    18. [18]

      Fei ZHOUXiaolin JIA . Co3O4/TiO2 composite photocatalyst: Preparation and synergistic degradation performance of toluene. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2232-2240. doi: 10.11862/CJIC.20240236

    19. [19]

      Jiatong LiLinlin ZhangPeng HuangChengjun Ge . Carbon bridge effects regulate TiO2–acrylate fluoroboron coatings for efficient marine antifouling. Chinese Chemical Letters, 2025, 36(2): 109970-. doi: 10.1016/j.cclet.2024.109970

    20. [20]

      Bo YANGGongxuan LÜJiantai MA . Corrosion inhibition of nickel-cobalt-phosphide in water by coating TiO2 layer. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 365-384. doi: 10.11862/CJIC.20240063

Metrics
  • PDF Downloads(536)
  • Abstract views(512)
  • HTML views(13)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return