Citation: Zhuoyan Lv, Yangming Ding, Leilei Kang, Lin Li, Xiao Yan Liu, Aiqin Wang, Tao Zhang. Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst[J]. Acta Physico-Chimica Sinica, ;2025, 41(4): 240801. doi: 10.3866/PKU.WHXB202408015 shu

Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst

  • Corresponding author: Leilei Kang, leikang@dicp.ac.cn Xiao Yan Liu, xyliu2003@dicp.ac.cn
  • Received Date: 27 August 2024
    Revised Date: 25 September 2024
    Accepted Date: 2 October 2024

    Fund Project: the NSFC Center for Single-Atom Catalysis 22388102the Fundamental Research Funds for the Central Universities 20720220009the DNL Cooperation Fund, CAS DNL202002the DNL Cooperation Fund, CAS XLYC2007070the Strategic Priority Research Program of the Chinese Academy of Sciences XDB0540000

  • Direct epoxidation of propylene (DEP) by molecular oxygen is an ideal way to synthesize propylene oxide (PO), yet it remains quite challenging. We demonstrated here that the PO formation rate and selectivity could be enhanced simultaneously through photo-thermo-catalysis over the Cu/TiO2 catalyst. At 180 ℃, by introducing light, the PO formation rate increased more than 20-fold (from 8.2 to 180.6 μmol∙g−1∙h−1) and the corresponding selectivity improved more than 3-fold (from 8% to 27%), breaking the traditional perception that the semiconductors exhibit very low reactivity for this reaction. Kinetic study results showed that the apparent activation energy for PO formation could sharply decrease under light irradiation (from 95 to 40 kJ∙mol−1). In situ electron paramagnetic resonance (EPR), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, and diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) were applied to characterize the dynamics of the valence state of the copper oxide species and the activation intermediates of molecular oxygen. Evidence for the activation of oxygen, which could direct to the PO formation pathway, was captured. The light-driven electrons could promote the formation of active Cu+, which could form the side-on μ-peroxo Cu(Ⅱ)2 structure, weaken the O―O bond, and improve the PO formation rate and selectivity. This work paves a new way for designing semiconductor-supported photocatalysts for DEP reactions with molecular oxygen.
  • 加载中
    1. [1]

      Khatib, S. J.; Oyama, S. T. Catal. Rev. Sci. Eng. 2015, 57, 306. doi: 10.1080/01614940.2015.1041849  doi: 10.1080/01614940.2015.1041849

    2. [2]

      Teržan, J.; Huš, M.; Likozar, B.; Djinović, P. ACS Catal. 2020, 10, 13415. doi: 10.1021/acscatal.0c03340  doi: 10.1021/acscatal.0c03340

    3. [3]

      Pu, T.; Setiawan, A.; Mosevitzky Lis, B.; Zhu, M.; Ford, M. E.; Rangarajan, S.; Wachs, I. E. ACS Catal. 2022, 12, 4375. doi: 10.1021/acscatal.1c05939  doi: 10.1021/acscatal.1c05939

    4. [4]

      Guo, M.; Dongfang, N.; Iannuzzi, M.; van Bokhoven, J. A.; Artiglia, L. ACS Catal. 2024, 14, 10234. doi: 10.1021/acscatal.4c01566  doi: 10.1021/acscatal.4c01566

    5. [5]

      Thommes, T.; Reitzmann, A.; Kraushaar-Czarnetzki, B. Appl Catal A: Gen 2007, 318, 160. doi: 10.1016/j.apcata.2006.10.051  doi: 10.1016/j.apcata.2006.10.051

    6. [6]

      Gambo, Y.; Adamu, S.; Abdulrasheed, A. A.; Lucky, R. A.; Ba-Shammakh, M. S.; Hossain, M. M. Appl Catal A: Gen 2021, 609, 117914. doi: 016/j.apcata.2020.117914

    7. [7]

      Haruta M.; Huang J. Res. Chem. Intermediat. 2012, 38, 1. doi: 10.1007/s11164-011-0424-6  doi: 10.1007/s11164-011-0424-6

    8. [8]

      Zohour, B.; Noon, D.; Seubsai, A.; Senkan, S. Ind. Eng. Chem. Res. 2014, 53, 6243. doi: 10.1021/ie402416s  doi: 10.1021/ie402416s

    9. [9]

      Su, W. G.; Wang, S. G.; Ying, P. L.; Feng, Z. C.; Li, C. J. Catal. 2009, 268, 165. doi: 10.1016/j.jcat.2009.09.017  doi: 10.1016/j.jcat.2009.09.017

    10. [10]

      Zhu, W. M.; Zhang, Q. H.; Wang, Y. J. Phys. Chem. C 2008, 112, 7731. doi: 10.1021/jp800927y  doi: 10.1021/jp800927y

    11. [11]

      Zhan, C.; Wang, Q. X.; Zhou, L. Y.; Han, X.; Wanyan, Y. Y.; Chen, J. Y.; Zheng, Y. P.; Wang, Y.; Fu, G.; Xie, Z. X.; et al. J. Am. Chem. Soc. 2020, 142, 14134. doi: 10.1021/jacs.0c03882  doi: 10.1021/jacs.0c03882

    12. [12]

      Qadir, M. I.; Dupont, J. Angew. Chem. Int. Ed. 2023, 62. doi: 10.1002/anie.202301497  doi: 10.1002/anie.202301497

    13. [13]

      Wang, Z. J.; Song, H.; Liu, H.; Ye, J. Angew. Chem. Int. Ed. 2020, 59, 8016. doi: 10.1002/anie.201907443  doi: 10.1002/anie.201907443

    14. [14]

      Fang, S.; Hu, Y. H. Chem. Soc. Rev. 2022, 51, 3609. doi: 10.1039/d1cs00782c  doi: 10.1039/d1cs00782c

    15. [15]

      Pichat, P.; Herrmann, J.; Disdier, J.; Mozzanega, M. J. Phys. Chem. 1979, 83, 3122. doi: 10.1021/J100487A012  doi: 10.1021/J100487A012

    16. [16]

      Tanaka, T.; Yoshida, H.; Nakagawa, H.; Funabiki, T.; Yoshida, S. Catal. Today 1993, 16, 297. doi: 10.1016/0920-5861(93)80069-D  doi: 10.1016/0920-5861(93)80069-D

    17. [17]

      Tachikawa, T.; Tojo, S.; Fujitsuka, M.; Majima, T. Langmuir 2004, 20, 4236. doi: 10.1021/la0496439  doi: 10.1021/la0496439

    18. [18]

      Murata, C.; Yoshida, H.; Kumagai, J.; Hattori, T. J. Phys. Chem. B 2003, 107, 4364. doi: 10.1021/jp0277006  doi: 10.1021/jp0277006

    19. [19]

      Yoshida, H.; Shimizu, T.; Murata, C.; Hattori, T. J. Catal. 2003, 220, 226. doi: 10.1016/s0021-9517(03)00292-6  doi: 10.1016/s0021-9517(03)00292-6

    20. [20]

      Yoshida, H.; Tanaka, T.; Yamamoto, M.; Yoshida, T.; Funabiki, T.; Yoshida, S. J. Catal. 1997, 171, 351. doi: 10.1006/jcat.1997.1813  doi: 10.1006/jcat.1997.1813

    21. [21]

      Marimuthu, A.; Zhang, J.; Linic, S. Science 2013, 339, 1590. doi: 10.1126/science.1231631  doi: 10.1126/science.1231631

    22. [22]

      Lv, Z.; Kang, L.; Pan, X.; Su, Y.; Wang, H.; Li, L.; Liu, X. Y.; Wang, A.; Zhang, T. ACS Catal. 2024, 14, 10172. doi: 10.1021/acscatal.4c01749  doi: 10.1021/acscatal.4c01749

    23. [23]

      Kang, L.; Liu, X. Y.; Wang, A.; Li, L.; Ren, Y.; Li, X.; Pan, X.; Li, Y.; Zong, X.; Liu, H.; et al. Angew. Chem. Int. Ed. 2020, 59, 12909. doi: 10.1002/anie.202001701  doi: 10.1002/anie.202001701

    24. [24]

      Zhu, R.; Kang, L.; Li, L.; Pan, X.; Wang, H.; Su, Y.; Li, G.; Cheng, H.; Li, R.; Liu, X.; et al. Acta Phys. -Chim. Sin. 2023, 40, 2303003. doi: 10.3866/PKU.WHXB202303003  doi: 10.3866/PKU.WHXB202303003

    25. [25]

      Yang, J.; Liu, W.; Xu, M.; Liu, X.; Qi, H.; Zhang, L.; Yang, X.; Niu, S.; Zhou, D.; Liu, Y.; et al. J. Am. Chem. Soc. 2021, 143, 14530. doi: 10.1021/jacs.1c03788  doi: 10.1021/jacs.1c03788

    26. [26]

      Liu, X.; Wang, A.; Li, L.; Zhang, T.; Mou, C. -Y.; Lee, J. -F. J. Catal. 2011, 278, 288. doi: 10.1016/j.jcat.2010.12.016  doi: 10.1016/j.jcat.2010.12.016

    27. [27]

      Torres, D.; Lopez, N.; Illas, F.; Lambert, R. M. Angew. Chem. Int. Ed. 2007, 46, 2055. doi: 10.1002/anie.200603803  doi: 10.1002/anie.200603803

    28. [28]

      Huang, Y.; Liu, Z.; Gao, G.; Xiao, G.; Du, A.; Bottle, S.; Sarina, S.; Zhu, H. ACS Catal. 2017, 7, 4975. doi: 10.1021/acscatal.7b01180  doi: 10.1021/acscatal.7b01180

    29. [29]

      Li, D.; Zhao, Y.; Miao, Y.; Zhou, C.; Zhang, L. -P.; Wu, L. -Z.; Zhang, T. Adv. Mater. 2022, 34, 2207793. doi: 10.1002/adma.202207793  doi: 10.1002/adma.202207793

    30. [30]

      Hikov, T.; Schroeter, M. K.; Khodeir, L.; Chemseddine, A.; Muhler, M.; Fischer, R. A. Phys. Chem. Chem. Phys. 2006, 8, 1550. doi: 10.1039/b512113b  doi: 10.1039/b512113b

    31. [31]

      Liu, Y.; Zhang, B.; Luo, L.; Chen, X.; Wang, Z.; Wu, E.; Su, D.; Huang, W. Angew. Chem. Int. Ed. 2015, 54, 15260. doi: 10.1002/anie.201509115  doi: 10.1002/anie.201509115

    32. [32]

      Luo, L.; Gong, Z.; Xu, Y.; Ma, J.; Liu, H.; Xing, J.; Tang, J. J. Am. Chem. Soc. 2021, 144, 740. doi: 10.1021/jacs.1c09141  doi: 10.1021/jacs.1c09141

    33. [33]

      Zhang, Y.; Zhao, J.; Wang, H.; Xiao, B.; Zhang, W.; Zhao, X.; Lv, T.; Thangamuthu, M.; Zhang, J.; Guo, Y.; et al. Nat. Commun. 2022, 13, doi: 10.1038/s41467-021-27698-3  doi: 10.1038/s41467-021-27698-3

    34. [34]

      Bello, I.; Chang, W. H.; Lau, W. M. J. Appl. Phys. 1994, 75, 3092. doi: 10.1063/1.356160  doi: 10.1063/1.356160

    35. [35]

      Li, W.; Wu, G.; Hu, W.; Dang, J.; Wang, C.; Weng, X.; da Silva, I.; Manuel, P.; Yang, S.; Guan, N.; et al. J. Am. Chem. Soc. 2022, 144, 4260. doi: 10.1021/jacs.2c00792  doi: 10.1021/jacs.2c00792

    36. [36]

      He, J. L.; Zhai, Q. G.; Zhang, Q. H.; Deng, W. P.; Wang, Y. J. Catal. 2013, 299, 53. doi: 10.1016/j.jcat.2012.11.032  doi: 10.1016/j.jcat.2012.11.032

    37. [37]

      Wang, Y. N.; Ma, W. H.; Wang, D. Y.; Zhong, Q. Chem. Eng. J. 2017, 307, 1047. doi: 10.1016/j.cej.2016.09.035  doi: 10.1016/j.cej.2016.09.035

    38. [38]

      Xiong, W.; Gu, X. -K.; Zhang, Z.; Chai, P.; Zang, Y.; Yu, Z.; Li, D.; Zhang, H.; Liu, Z.; Huang, W. Nat. Commun. 2021, 12, 5921. doi: 10.1038/s41467-021-26257-0  doi: 10.1038/s41467-021-26257-0

    39. [39]

      Wang, A.; Zhang, L.; Yu, Z.; Zhang, S.; Li, L.; Ren, Y.; Yang, J.; Liu, X.; Liu, W.; Yang, X.; et al. J. Am. Chem. Soc. 2023, 146, 695. doi: 10.1021/jacs.3c10551  doi: 10.1021/jacs.3c10551

    40. [40]

      Huang, M.; Zhang, S.; Wu, B.; Wei, Y.; Yu, X.; Gan, Y.; Lin, T.; Yu, F.; Sun, F.; Jiang, Z.; et al. ACS Catal. 2022, 12, 9515. doi: 10.1021/acscatal.2c02424  doi: 10.1021/acscatal.2c02424

    41. [41]

      Rana, S.; Pandey, B.; Dey, A.; Haque, R.; Rajaraman, G.; Maiti, D. ChemCatChem 2016, 8, 3367. doi: 10.1002/cctc.201600843  doi: 10.1002/cctc.201600843

    42. [42]

      Ren, L.; Dai, W.; Yang, X.; Cao, Y.; Xie, Z.; Fan, K. Chin. J. Catal. 2006, 27, 115. doi: 10.1016/s1872-2067(06)60009-0  doi: 10.1016/s1872-2067(06)60009-0

    43. [43]

      Solomon, E.; Ginsbach, J.; Heppner, D.; Kieber, M.; Kjaergaard, C.; Smeets, P.; Tian, L.; Woertink, J. Faraday Discuss. 2011, 148, 11. doi: 10.1039/c005500j  doi: 10.1039/c005500j

    44. [44]

      Chen, P.; Root, D.; Cecelia, C.; Kiyoshi, F.; Solomon, E. J. Am. Chem. Soc. 2002, 125, 466. doi: 10.1021/ja020969i  doi: 10.1021/ja020969i

    45. [45]

      Woertinka, J.; Smeetsa, P.; Groothaertb, M.; Vancea, M.; Selsb, B.; Schoonheydtb, R.; Solomona, E. Proc. Natl. Acad. Sci. U. S. A. 2009, 106, 18908. doi: 10.1073/pnas.0910461106  doi: 10.1073/pnas.0910461106

    46. [46]

      Li, X.; Qiao, Y.; Guo, S.; Xu, Z.; Zhu, H.; Zhang, X.; Yuan, Y.; He, P.; Ishida, M.; Zhou, H. Adv. Mater. 2018, 30, 1705197. doi: 10.1002/adma.201705197  doi: 10.1002/adma.201705197

    47. [47]

      Dong, J. -C.; Zhang, X. -G.; Briega-Martos, V.; Jin, X.; Yang, J.; Chen, S.; Yang, Z. -L.; Wu, D. -Y.; Feliu, J. M.; Williams, C. T.; et al. Nat. Energy 2018, 4, 60. doi: 10.1038/s41560-018-0292-z  doi: 10.1038/s41560-018-0292-z

    48. [48]

      Denisov, I., Makris, T.; Sligar, S.; Kincaid, J. J. Phys. Chem. A 2008, 112, 13172. doi: 10.1021/jp8017875  doi: 10.1021/jp8017875

    49. [49]

      Bordiga, S.; Damin, A.; Bonino, F.; Ricchiardi, G.; Lamberti, C.; Zecchina, A. Angew. Chem. Int. Ed. 2002, 114, 4928. doi: 10.1002/ange.200290031  doi: 10.1002/ange.200290031

    50. [50]

      Gordon, C. P.; Engler, H.; Tragl, A. S.; Plodinec, M.; Lunkenbein, T.; Berkessel, A.; Teles, J. H.; Parvulescu, A. -N.; Coperet, C. Nature 2020, 586, 708. doi: 10.1038/s41586-020-2826-3  doi: 10.1038/s41586-020-2826-3

    51. [51]

      Song, Y. Y.; Wang, G. C. J. Phys. Chem. C 2018, 122, 21500. doi: 10.1021/acs.jpcc.8b07044  doi: 10.1021/acs.jpcc.8b07044

    52. [52]

      Fernandez, E.; Boronat, M.; Corma, A. J. Phys. Chem. C 2020, 124, 21549. doi: 10.1021/acs.jpcc.0c0629  doi: 10.1021/acs.jpcc.0c0629

    53. [53]

      Sun, B.; Wang, G. -C. J. Phys. Chem. C 2024, 128, 13829. doi: 10.1021/acs.jpcc.4c03206  doi: 10.1021/acs.jpcc.4c03206

  • 加载中
    1. [1]

      Jianan HongChenyu XuYan LiuChangqi LiMenglin WangYanwei Zhang . Decoding the interfacial competition between hydrogen evolution and CO2 reduction via edge-active-site modulation in photothermal catalysis. Acta Physico-Chimica Sinica, 2025, 41(9): 100099-0. doi: 10.1016/j.actphy.2025.100099

    2. [2]

      Lina GuoRuizhe LiChuang SunXiaoli LuoYiqiu ShiHong YuanShuxin OuyangTierui Zhang . Effect of Interlayer Anions in Layered Double Hydroxides on the Photothermocatalytic CO2 Methanation of Derived Ni-Al2O3 Catalysts. Acta Physico-Chimica Sinica, 2025, 41(1): 100002-0. doi: 10.3866/PKU.WHXB202309002

    3. [3]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    4. [4]

      Yajin LiHuimin LiuLan MaJiaxiong LiuDehua He . Photothermal Synthesis of Glycerol Carbonate via Glycerol Carbonylation with CO2 over Au/Co3O4-ZnO Catalyst. Acta Physico-Chimica Sinica, 2024, 40(9): 2308005-0. doi: 10.3866/PKU.WHXB202308005

    5. [5]

      CCS Chemistry | 超分子活化底物自由基促进高效选择性光催化氧化

      . CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.

    6. [6]

      Zhuoya WANGLe HEZhiquan LINYingxi WANGLing LI . Multifunctional nanozyme Prussian blue modified copper peroxide: Synthesis and photothermal enhanced catalytic therapy of self-provided hydrogen peroxide. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2445-2454. doi: 10.11862/CJIC.20240194

    7. [7]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    8. [8]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    9. [9]

      Zhiquan ZhangBaker RhimiZheyang LiuMin ZhouGuowei DengWei WeiLiang MaoHuaming LiZhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029

    10. [10]

      Lili Jiang Shaoyu Zheng Xuejiao Liu Xiaomin Xie . Copper-Catalyzed Oxidative Coupling Reactions for the Synthesis of Aryl Sulfones: A Fundamental and Exploratory Experiment for Undergraduate Teaching. University Chemistry, 2025, 40(7): 267-276. doi: 10.12461/PKU.DXHX202408004

    11. [11]

      Ke LiChuang LiuJingping LiGuohong WangKai Wang . Architecting Inorganic/Organic S-Scheme Heterojunction of Bi4Ti3O12 Coupling with g-C3N4 for Photocatalytic H2O2 Production from Pure Water. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-0. doi: 10.3866/PKU.WHXB202403009

    12. [12]

      Lijun Yue Siya Liu Peng Liu . 不同晶相纳米MnO2的制备及其对生物乙醇选择性氧化催化性能的测试——一个科研转化的综合化学实验. University Chemistry, 2025, 40(8): 225-232. doi: 10.12461/PKU.DXHX202410005

    13. [13]

      Tao Wen Tao Zhang Changguo Sun Jinyu Liu . Preparation of Dess-Martin Reagent and Its Application in Oxidizing Cyclohexanol. University Chemistry, 2024, 39(5): 20-26. doi: 10.3866/PKU.DXHX202309055

    14. [14]

      Minna Ma Yujin Ouyang Yuan Wu Mingwei Yuan Lijuan Yang . Green Synthesis of Medical Chemiluminescence Reagents by Photocatalytic Oxidation. University Chemistry, 2024, 39(5): 134-143. doi: 10.3866/PKU.DXHX202310093

    15. [15]

      Xue-Peng Zhang Yuchi Long Yushu Pan Jiding Wang Baoyu Bai Rui Ding . 定量构效关系方法学习探索:以钴卟啉活化氧气为例. University Chemistry, 2025, 40(8): 345-359. doi: 10.12461/PKU.DXHX202410107

    16. [16]

      Ye WangRuixiang GeXiang LiuJing LiHaohong Duan . An Anion Leaching Strategy towards Metal Oxyhydroxides Synthesis for Electrocatalytic Oxidation of Glycerol. Acta Physico-Chimica Sinica, 2024, 40(7): 2307019-0. doi: 10.3866/PKU.WHXB202307019

    17. [17]

      Liu LinZemin SunHuatian ChenLian ZhaoMingyue SunYitao YangZhensheng LiaoXinyu WuXinxin LiCheng Tang . Recent Advances in Electrocatalytic Two-Electron Water Oxidation for Green H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(4): 2305019-0. doi: 10.3866/PKU.WHXB202305019

    18. [18]

      Ruolin CHENGYue WANGXiyao NIUHuagen LIANGLing LIUShijian LU . Efficient photothermal catalytic CO2 cycloaddition over W18O49/rGO composites. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1276-1284. doi: 10.11862/CJIC.20240424

    19. [19]

      Guojie Xu Fang Yu Yunxia Wang Meng Sun . Introduction to Metal-Catalyzed β-Carbon Elimination Reaction of Cyclopropenones. University Chemistry, 2024, 39(8): 169-173. doi: 10.3866/PKU.DXHX202401060

    20. [20]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

Metrics
  • PDF Downloads(7)
  • Abstract views(827)
  • HTML views(89)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return