Citation:
Aoyu Huang, Jun Xu, Yu Huang, Gui Chu, Mao Wang, Lili Wang, Yongqi Sun, Zhen Jiang, Xiaobo Zhu. Tailoring Electrode-Electrolyte Interfaces via a Simple Slurry Additive for Stable High-Voltage Lithium-Ion Batteries[J]. Acta Physico-Chimica Sinica,
;2025, 41(4): 100037.
doi:
10.3866/PKU.WHXB202408007
-
5 V-class LiNi0.5Mn1.5O4 (LNMO) cathode material is emerging as a promising cobalt-free alternative to meet the growing demand for affordable, high-performance lithium-ion batteries (LIBs). However, LNMO faces significant electrochemical challenges, particularly interfacial instability with commercial electrolytes due to its high operating potentials. This instability leads to the dissolution of transition metals and consequently electrode crosstalk, which severely deteriorates electrochemical performance. Surface coating is extensively investigated to reduce interfacial side reactions for enhanced cycling stability. Traditional methods typically require multiple steps, including dispersion, mixing, drying, and calcination, which can be time-consuming and complex. Additionally, the resulting ceramic coatings are often rigid and unevenly distributed due to lattice mismatches, potentially leading to poor interfacial contact and increased resistance. In this study, tetraethyl orthosilicate (TEOS) is proposed as a streamlined slurry additive to in situ form an ethoxy-functional polysiloxane (EPS) film on the surface of LNMO particles during electrode preparation. Post-mortem X-ray photoelectron spectroscopy (XPS) and inductively coupled plasma (ICP) analyses reveal the crucial role of the EPS film in addressing interfacial instability issues. First, the EPS film serves as an artificial cathode-electrolyte interface (CEI) with a robust Si―O―Si bonding network, which is less vulnerable under high potentials. Second, the remaining ethoxy-functional groups in EPS scavenge HF by forming stable Si―F bonds, thereby suppressing the detrimental transition metal dissolution and crosstalk. Transmission electron microscopy (TEM) and scanning electron microscopy (SEM) further confirm the stability of the EPS film and the enhanced structural stability of the modified LNMO. Galvanostatic intermittent titration technique (GITT) and electrochemical impedance spectroscopy (EIS) results demonstrate that EPS reduces the overall impedance and improves ion diffusion kinetics by forming stable electrode-electrolyte interfaces. As a result, compared to the baseline, the optimized LNMO cathode exhibits significantly improved cycling stability in both half cells (84.6% vs. 51.4% capacity retention after 1000 cycles) and full cells when paired with commercial graphite anodes (83.3% vs. 53.4% retention after 500 cycles). This strategy, further validated under elevated temperatures of 50 ℃ and in pouch-type cells, is expected to pave the way for the development of next-generation high-performance LIBs.
-
-
-
[1]
(1) Yoshino, A. Angew. Chem.-Int. Edit. 2012, 51, 5798. doi: 10.1002/anie.201105006
-
[2]
(2) Grey, C. P.; Hall, D. S. Nat. Commun. 2020, 11, 6279. doi: 10.1038/s41467-020-19991-4
-
[3]
(3) Zhu, X. B.; Lin, T. G.; Manning, E.; Zhang, Y. C.; Yu, M. M.; Zuo, B.; Wang, L. Z. J. Nanopart. Res. 2018,20, 160. doi: 10.1007/s11051-018-4235-1
-
[4]
(4) Ryu, H.-H.; Sun, H. H.; Myung, S.-T.; Yoon, C. S.; Sun, Y.-K. Energy Environ. Sci. 2021, 14, 844. doi: 10.1039/d0ee03581e
-
[5]
(5) She, Q.; Xu, J.; Huang, A. Y.; Zhou, R.; Shao, Q.; Wang, J. Q.; Wang, Y.; Sun, Y. Q.; Zhu, X. B. Chem. Eng. Sci. 2024, 284, 119526. doi: 10.1016/j.ces.2023.119526
-
[6]
(6) Liang, G. M.; Peterson, V. K.; See, K. W.; Guo, Z. P.; Pang, W. K.J. Mater. Chem. A. 2020, 8, 15373. doi: 10.1039/d0ta02812f
-
[7]
(7) Yu, X. W.; Yu, W. A.; Manthiram, A. Small Methods 2021, 5, 2001196. doi: 10.1002/smtd.202001196
-
[8]
(8) Yao, W. L.; Chouchane, M.; Li, W. K.; Bai, S.; Liu, Z.; Li, L. T.; Chen, A. X.; Sayahpour, B.; Shimizu, R.; Raghavendran, G.; et al. Energy Environ. Sci. 2023,16, 1620. doi: 10.1039/d2ee03840d
-
[9]
(9) Tong, Z. Y.; Zhu, X. B. Next Energy 2024, 5, 100158. doi: 10.1016/j.nxener.2024.100158
-
[10]
(10) Amin, R.; Muralidharan, N.; Petla, R. K.; Ben Yahia, H.; Al-Hail, S. A. J.; Essehli, R.; Daniel, C.; Khaleel, M. A.; Belharouak, I. J. Power Sources 2020,467, 228318. doi: 10.1016/j.jpowsour.2020.228318
-
[11]
(11) Zhong, Q. M.; Bonakdarpour, A.; Zhang, M. J.; Gao, Y.; Dahn, J.J. Electrochem. Soc. 1997, 144, 205. doi: 10.1149/1.1837386
-
[12]
(12) Zhu, X. B.; Huang, A. Y.; Martens, I.; Vostrov, N.; Sun, Y. Q.; Richard, M. I.; Schülli, T. U.; Wang, L. Z. Adv. Mater. 2024,36, 2403482. doi: 10.1002/adma.202403482
-
[13]
(13) Li, J. C.; Ma, C.; Chi, M.; Liang, C. D.; Dudney, N. J. Adv. Energy Mater. 2015,5, 1401408. doi: 10.1002/aenm.201401408
-
[14]
(14) Ma, J.; Hu, P.; Cui, G. L.; Chen, L. Q. Chem. Mat. 2016, 28, 3578. doi: 10.1021/acs.chemmater.6b00948
-
[15]
(15) Jia, H.; Xu, W. Trends Chem. 2022, 4, 627. doi: 10.1016/j.trechm.2022.04.010
-
[16]
-
[17]
(17) Rinkel, B. L. D.; Hall, D. S.; Temprano, I.; Grey, C. P. J. Am. Chem. Soc. 2020,142, 15058. doi: 10.1021/jacs.0c06363
-
[18]
(18) Zhu, X. B.; Schulli, T.; Wang, L. Z. Chem. Res. Chin. Univ. 2020, 36, 24. doi: 10.1007/s40242-020-9103-8
-
[19]
(19) Jayawardana, C.; Rodrigo, N.; Parimalam, B.; Lucht, B. L. ACS Energy Lett. 2021,6, 3788. doi: 10.1021/acsenergylett.1c01657
-
[20]
(20) Zhan, C.; Wu, T. P.; Lu, J.; Amine, K. Energy Environ. Sci. 2018, 11, 243. doi: 10.1039/c7ee03122j
-
[21]
(21) Pieczonka, N. P. W.; Liu, Z. Y.; Lu, P.; Olson, K. L.; Moote, J.; Powell, B. R.; Kim, J.-H. J. Phys. Chem. C 2013, 117, 15947. doi: 10.1021/jp405158m
-
[22]
(22) Zhu, X. B.; She, Q.; Wang, M.; Wang, Z. L.; Hu, Y. X.; Yuan, D.; Sun, Y. Q.; Schülli, T. U.; Wang, L. Z. Adv. Funct. Mater. 2024, 34, 2311025. doi: 10.1002/adfm.202311025
-
[23]
(23) Zhu, X. B.; Sun, D.; Luo, B.; Hu, Y. X.; Wang, L. Z. Electrochim. Acta 2018,284, 30. doi: 10.1016/j.electacta.2018.07.153
-
[24]
(24) Xu, M.; Yang, M.; Chen, M. F.; Gu, L. H.; Luo, L. S.; Chen, S. Y.; Chen, J. Z.; Liu, B.; Han, X. J. Energy Chem. 2023, 76, 266. doi: 10.1016/j.jechem.2022.09.021
-
[25]
(25) Maiti, S.; Sclar, H.; Grinblat, J.; Talianker, M.; Elias, Y.; Wu, X. H.; Kondrakov, A.; Aurbach, D. Small Methods 2022, 6, 2200674. doi: 10.1002/smtd.202200674
-
[26]
(26) Kuenzel, M.; Kim, G.-T.; Zarrabeitia, M.; Lin, S. D.; Schuer, A. R.; Geiger, D.; Kaiser, U.; Bresser, D.; Passerini, S. Mater. Today 2020,39, 127. doi: 10.1016/j.mattod.2020.04.003
-
[27]
(27) Zhu, X. B.; Schülli, T. U.; Yang, X. W.; Lin, T. G.; Hu, Y. X.; Cheng, N. Y.; Fujii, H.; Ozawa, K.; Cowie, B.; Gu, Q. F. Nat. Commun. 2022, 13, 1565. doi: 10.1038/s41467-022-28963-9
-
[28]
(28) Maiti, S.; Sclar, H.; Wu, X. H.; Grinblat, J.; Talianker, M.; Kondrakov, A.; Markovsky, B.; Aurbach, D. Energy Storage Mater. 2023,56, 25. doi: 10.1016/j.ensm.2023.01.004
-
[29]
-
[30]
(30) Pieczonka, N. P. W.; Borgel, V.; Ziv, B.; Leifer, N.; Dargel, V.; Aurbach, D.; Kim, J. H.; Liu, Z. Y.; Huang, X. S.; Krachkovskiy, S. A. Adv. Energy Mater. 2015,5, 1501008. doi: 10.1002/aenm.201501008
-
[31]
(31) Ma, Y.; Wang, C. D.; Ma, J.; Xu, G. J.; Chen, Z.; Du, X. F.; Zhang, S.; Zhou, X. H.; Cui, G. L.; Chen, L. Q. Sci. China-Chem. 2021, 64, 92. doi: 10.1007/s11426-020-9879-8
-
[32]
(32) Xu, G. J.; Pang, C. G.; Chen, B. B.; Ma, J.; Wang, X.; Chai, J. C.; Wang, Q. F.; An, W. Z.; Zhou, X. H.; Cui, G. L.; et al. Adv. Energy Mater. 2018,8, 1701398. doi: 10.1002/aenm.201701398
-
[33]
(33) Tan, C. L.; Yang, J.; Pan, Q. C.; Li, Y.; Li, Y.; Cui, L. S.; Fan, X. P.; Zheng, F. H.; Wang, H. Q.; Li, Q. Y. Chem. Eng. J. 2021, 410, 128422. doi: 10.1016/j.cej.2021.128422
-
[34]
(34) Zhang, J.; Li, J. P.; Cao, L. H.; Cheng, W. H.; Guo, Z. Y.; Zuo, X. X.; Wang, C.; Cheng, Y.-J.; Xia, Y. G.; Huang, Y. D. Nano Res. 2024, 17, 333. doi: 10.1007/s12274-023-5960-z
-
[35]
(35) Colombo, F.; Müller, M.; Weber, A.; Keim, N.; Jeschull, F.; Bauer, W.; Ehrenberg, H. Energy Adv. 2023, 2, 2093. doi: 10.1039/D3YA00246B
-
[36]
(36) Zhang, J.; Cao, L. H.; Li, J. P.; Yang, M.; Yu, J. X.; Cheng, Y.-J.; Huang, Y. D.; Xia, Y. G. Energy Storage Mater. 2024, 64, 103060. doi: 10.1016/j.ensm.2023.103060
-
[37]
(37) Yang, Z.; Li, Z. M.; Huang, Y. X.; Zhang, M. L.; Liu, C. F.; Zhang, D. Y.; Cao, G. Z. J. Power Sources 2020, 471, 228480. doi: 10.1016/j.jpowsour.2020.228480
-
[38]
(38) Wang, H.; Ge, W. J.; Li, W.; Wang, F.; Liu, W. J.; Qu, M.-Z.; Peng, G. C. ACS Appl. Mater. Interfaces 2016, 8, 18439. doi: 10.1021/acsami.6b04644
-
[39]
(39) Takeshita, S.; Ono, T. Angew. Chem.-Int. Edit. 2023, 62, e202306518. doi: 10.1002/anie.202306518
-
[40]
(40) Liu, R.; Yan, H. X.; Zhang, Y. B.; Yang, K. M.; Du, S. Chem. Eng. J. 2022,433, 133827. doi: 10.1016/j.cej.2021.133827
-
[41]
(41) Zhu, X. B.; Li, X. N.; Zhu, Y. C.; Jin, S. S.; Wang, Y.; Qian, Y. T. Electrochim. Acta2014, 121, 253. doi: 10.1016/j.electacta.2013.12.176
-
[42]
(42) Martens, I.; Vostrov, N.; Mirolo, M.; Colalongo, M.; Kus, P.; Richard, M.-I.; Wang, L. Z.; Zhu, X. B.; Schulli, T. U.; Drnec, J. ACS Mater. Lett. 2022,4, 2528. doi: 10.1021/acsmaterialslett.2c00787
-
[43]
(43) Piao, N.; Wang, P.-F.; Chen, L.; Deng, T.; Fan, X. L.; Wang, L.; He, X. M. Nano Energy
-
[44]
2023, 105, 108040. doi: 10.1016/j.nanoen.2022.108040
-
[45]
(44) Moorhead-Rosenberg, Z.; Huq, A.; Goodenough, J. B.; Manthiram, A. Chem. Mater. 2015, 27, 6934. doi: 10.1021/acs.chemmater.5b01356
-
[46]
(45) Gaberšček, M. Curr. Opin. Electrochem. 2022, 32, 100917. doi: 10.1016/j.coelec.2021.100917
-
[47]
(46) Yu, F.-D.; Que, L.-F.; Xu, C.-Y.; Wang, M.-J.; Sun, G.; Duh, J.-G.; Wang, Z.-B. Nano Energy 2019, 59, 527. doi: 10.1016/j.nanoen.2019.03.012
-
[48]
(47) Zhu, X. B.; Wang, L. Z. EcoMat 2020, 2, e12043. doi: 10.1002/eom2.12043
-
[49]
(48) Lu, D. S.; Xu, M. Q.; Zhou, L.; Garsuch, A.; Lucht, B. L. J. Electrochem. Soc. 2013,160, A3138. doi: 10.1149/2.022305jes
-
[50]
(49) Jiang, H. R.; Zeng, C. H.; Zhu, W.; Luo, J. W.; Liu, Z. D.; Zhang, J. C.; Liu, R.; Xu, Y. H.; Chen, Y. A.; Hu, W. B. Nano Res. 2024, 17, 2671. doi: 10.1007/s12274-023-6076-1
-
[51]
(50) Cui, Z. H.; Zou, F.; Celio, H.; Manthiram, A. Adv. Funct. Mater. 2022,32, 2203779. doi: 10.1002/adfm.202203779
-
[52]
(51) Jiao, X. W.; Rao, L. L.; Yap, J. W.; Yu, C.-Y.; Kim, J.-H. J. Power Sources 2023,561, 232748. doi: 10.1016/j.jpowsour.2023.232748
-
[53]
(52) Tian, T.; Lu, L. L.; Yin, Y. C.; Tan, Y. H.; Zhang, T. W.; Li, F.; Yao, H. B. Small 2022, 18, 2106898. doi: 10.1002/smll.202106898
-
[54]
(53) Rath, P. C.; Wang, Y.-W.; Patra, J.; Umesh, B.; Yeh, T.-J.; Okada, S.; Li, J.; Chang, J.-K. Chem. Eng. J. 2021, 415, 128904. doi: 10.1016/j.cej.2021.128904
-
[55]
(54) Li, J. C.; Zhang, Q. L.; Xiao, X. C.; Cheng, Y.-T.; Liang, C. D.; Dudney, N. J. J. Am. Chem. Soc. 2015, 137, 13732. doi: 10.1021/jacs.5b06178
-
[56]
(55) Yoon, T.; Park, S.; Mun, J.; Ryu, J. H.; Choi, W.; Kang, Y.-S.; Park, J.-H.; Oh, S. M. J. Power Sources 2012, 215, 312. doi: 10.1016/j.jpowsour.2012.04.103
-
[57]
(56) Michalak, B.; Berkes, B. z. B.; Sommer, H.; Bergfeldt, T.; Brezesinski, T.; Janek, J. Anal. Chem. 2016, 88, 2877. doi: 10.1021/acs.analchem.5b04696
-
[58]
(57) Yoon, T.; Soon, J.; Lee, T. J.; Ryu, J. H.; Oh, S. M. J. Power Sources 2021,503, 230051. doi: 10.1016/j.jpowsour.2021.230051
-
[59]
(58) Tatara, R.; Karayaylali, P.; Yu, Y.; Zhang, Y.; Giordano, L.; Maglia, F.; Jung, R.; Schmidt, J. P.; Lund, I.; Shao-Horn, Y. J. Electrochem. Soc. 2019,166, A5090. doi: 10.1149/2.0121903jes
-
[60]
(59) Dos Santos, F. C.; Harb, S. V.; Menu, M.-J.; Turq, V.; Pulcinelli, S. H.; Santilli, C. V.; Hammer, P. RSC Adv. 2015, 5, 106754. doi: 10.1039/C5RA20885H
-
[1]
-
-
-
[1]
Jie WU , Zhihong LUO , Xiaoli CHEN , Fangfang XIONG , Li CHEN , Biao ZHANG , Bin SHI , Quansheng OUYANG , Jiaojing SHAO . Critical roles of AlPO4 coating in enhancing cycling stability and rate capability of high voltage LiNi0.5Mn1.5O4 cathode materials. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 948-958. doi: 10.11862/CJIC.20240400
-
[2]
Siyu Zhang , Kunhong Gu , Bing'an Lu , Junwei Han , Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028
-
[3]
Qingtang ZHANG , Xiaoyu WU , Zheng WANG , Xiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115
-
[4]
Junke LIU , Kungui ZHENG , Wenjing SUN , Gaoyang BAI , Guodong BAI , Zuwei YIN , Yao ZHOU , Juntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189
-
[5]
Xinpeng LIU , Liuyang ZHAO , Hongyi LI , Yatu CHEN , Aimin WU , Aikui LI , Hao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488
-
[6]
Yifeng Xu , Jiquan Liu , Bin Cui , Yan Li , Gang Xie , Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009
-
[7]
Qi Li , Pingan Li , Zetong Liu , Jiahui Zhang , Hao Zhang , Weilai Yu , Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030
-
[8]
Yuting ZHANG , Zunyi LIU , Ning LI , Dongqiang ZHANG , Shiling ZHAO , Yu ZHAO . Nickel vanadate anode material with high specific surface area through improved co-precipitation method: Preparation and electrochemical properties. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2163-2174. doi: 10.11862/CJIC.20240204
-
[9]
Xueyu Lin , Ruiqi Wang , Wujie Dong , Fuqiang Huang . 高性能双金属氧化物负极的理性设计及储锂特性. Acta Physico-Chimica Sinica, 2025, 41(3): 2311005-. doi: 10.3866/PKU.WHXB202311005
-
[10]
Yuanchao LI , Weifeng HUANG , Pengchao LIANG , Zifang ZHAO , Baoyan XING , Dongliang YAN , Li YANG , Songlin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252
-
[11]
Jiandong Liu , Zhijia Zhang , Mikhail Kamenskii , Filipp Volkov , Svetlana Eliseeva , Jianmin Ma . Research Progress on Cathode Electrolyte Interphase in High-Voltage Lithium Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 100011-. doi: 10.3866/PKU.WHXB202308048
-
[12]
Jiaxuan Zuo , Kun Zhang , Jing Wang , Xifei Li . 锂离子电池Ni-Co-Mn基正极材料前驱体的形核调控及机制. Acta Physico-Chimica Sinica, 2025, 41(1): 2404042-. doi: 10.3866/PKU.WHXB202404042
-
[13]
Zhenming Xu , Mingbo Zheng , Zhenhui Liu , Duo Chen , Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022
-
[14]
Jiahe LIU , Gan TANG , Kai CHEN , Mingda ZHANG . Effect of low-temperature electrolyte additives on low-temperature performance of lithium cobaltate batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 719-728. doi: 10.11862/CJIC.20250023
-
[15]
Zhihuan XU , Qing KANG , Yuzhen LONG , Qian YUAN , Cidong LIU , Xin LI , Genghuai TANG , Yuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447
-
[16]
Hengyi ZHU , Liyun JU , Haoyue ZHANG , Jiaxin DU , Yutong XIE , Li SONG , Yachao JIN , Mingdao ZHANG . Efficient regeneration of waste LiNi0.5Co0.2Mn0.3O2 cathode toward high-performance Li-ion battery. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 625-638. doi: 10.11862/CJIC.20240358
-
[17]
Xinlong WANG , Zhenguo CHENG , Guo WANG , Xiaokuen ZHANG , Yong XIANG , Xinquan WANG . Enhancement of the fragile interface of high voltage LiCoO2 by surface gradient permeation of trace amounts of Mg/F. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 571-580. doi: 10.11862/CJIC.20230259
-
[18]
Zhaoxuan ZHU , Lixin WANG , Xiaoning TANG , Long LI , Yan SHI , Jiaojing SHAO . Application of poly(vinyl alcohol) conductive hydrogel electrolytes in zinc ion batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 893-902. doi: 10.11862/CJIC.20240368
-
[19]
Jianbao Mei , Bei Li , Shu Zhang , Dongdong Xiao , Pu Hu , Geng Zhang . Enhanced Performance of Ternary NASICON-Type Na3.5-xMn0.5V1.5-xZrx(PO4)3/C Cathodes for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(12): 2407023-. doi: 10.3866/PKU.WHXB202407023
-
[20]
Tao Jiang , Yuting Wang , Lüjin Gao , Yi Zou , Bowen Zhu , Li Chen , Xianzeng Li . Experimental Design for the Preparation of Composite Solid Electrolytes for Application in All-Solid-State Batteries: Exploration of Comprehensive Chemistry Laboratory Teaching. University Chemistry, 2024, 39(2): 371-378. doi: 10.3866/PKU.DXHX202308057
-
[1]
Metrics
- PDF Downloads(3)
- Abstract views(439)
- HTML views(67)