Citation: Aoyu Huang,  Jun Xu,  Yu Huang,  Gui Chu,  Mao Wang,  Lili Wang,  Yongqi Sun,  Zhen Jiang,  Xiaobo Zhu. Tailoring Electrode-Electrolyte Interfaces via a Simple Slurry Additive for Stable High-Voltage Lithium-Ion Batteries[J]. Acta Physico-Chimica Sinica, ;2025, 41(4): 100037. doi: 10.3866/PKU.WHXB202408007 shu

Tailoring Electrode-Electrolyte Interfaces via a Simple Slurry Additive for Stable High-Voltage Lithium-Ion Batteries

  • Corresponding author: Lili Wang,  Xiaobo Zhu, 
  • Received Date: 7 August 2024
    Revised Date: 30 August 2024
    Accepted Date: 30 August 2024

    Fund Project: The project was supported by the National Natural Science Foundation of China (52202210), the Natural Science Foundation of Hunan Province (2024JJ5024), and the Key Projects for the Excellent Talent Foundation of Education Department of Anhui Province (gxyqZD2021136).

  • 5 V-class LiNi0.5Mn1.5O4 (LNMO) cathode material is emerging as a promising cobalt-free alternative to meet the growing demand for affordable, high-performance lithium-ion batteries (LIBs). However, LNMO faces significant electrochemical challenges, particularly interfacial instability with commercial electrolytes due to its high operating potentials. This instability leads to the dissolution of transition metals and consequently electrode crosstalk, which severely deteriorates electrochemical performance. Surface coating is extensively investigated to reduce interfacial side reactions for enhanced cycling stability. Traditional methods typically require multiple steps, including dispersion, mixing, drying, and calcination, which can be time-consuming and complex. Additionally, the resulting ceramic coatings are often rigid and unevenly distributed due to lattice mismatches, potentially leading to poor interfacial contact and increased resistance. In this study, tetraethyl orthosilicate (TEOS) is proposed as a streamlined slurry additive to in situ form an ethoxy-functional polysiloxane (EPS) film on the surface of LNMO particles during electrode preparation. Post-mortem X-ray photoelectron spectroscopy (XPS) and inductively coupled plasma (ICP) analyses reveal the crucial role of the EPS film in addressing interfacial instability issues. First, the EPS film serves as an artificial cathode-electrolyte interface (CEI) with a robust Si―O―Si bonding network, which is less vulnerable under high potentials. Second, the remaining ethoxy-functional groups in EPS scavenge HF by forming stable Si―F bonds, thereby suppressing the detrimental transition metal dissolution and crosstalk. Transmission electron microscopy (TEM) and scanning electron microscopy (SEM) further confirm the stability of the EPS film and the enhanced structural stability of the modified LNMO. Galvanostatic intermittent titration technique (GITT) and electrochemical impedance spectroscopy (EIS) results demonstrate that EPS reduces the overall impedance and improves ion diffusion kinetics by forming stable electrode-electrolyte interfaces. As a result, compared to the baseline, the optimized LNMO cathode exhibits significantly improved cycling stability in both half cells (84.6% vs. 51.4% capacity retention after 1000 cycles) and full cells when paired with commercial graphite anodes (83.3% vs. 53.4% retention after 500 cycles). This strategy, further validated under elevated temperatures of 50 ℃ and in pouch-type cells, is expected to pave the way for the development of next-generation high-performance LIBs.
  • 加载中
    1. [1]

      (1) Yoshino, A. Angew. Chem.-Int. Edit. 2012, 51, 5798. doi: 10.1002/anie.201105006

    2. [2]

      (2) Grey, C. P.; Hall, D. S. Nat. Commun. 2020, 11, 6279. doi: 10.1038/s41467-020-19991-4

    3. [3]

      (3) Zhu, X. B.; Lin, T. G.; Manning, E.; Zhang, Y. C.; Yu, M. M.; Zuo, B.; Wang, L. Z. J. Nanopart. Res. 2018,20, 160. doi: 10.1007/s11051-018-4235-1

    4. [4]

      (4) Ryu, H.-H.; Sun, H. H.; Myung, S.-T.; Yoon, C. S.; Sun, Y.-K. Energy Environ. Sci. 2021, 14, 844. doi: 10.1039/d0ee03581e

    5. [5]

      (5) She, Q.; Xu, J.; Huang, A. Y.; Zhou, R.; Shao, Q.; Wang, J. Q.; Wang, Y.; Sun, Y. Q.; Zhu, X. B. Chem. Eng. Sci. 2024, 284, 119526. doi: 10.1016/j.ces.2023.119526

    6. [6]

      (6) Liang, G. M.; Peterson, V. K.; See, K. W.; Guo, Z. P.; Pang, W. K.J. Mater. Chem. A. 2020, 8, 15373. doi: 10.1039/d0ta02812f

    7. [7]

      (7) Yu, X. W.; Yu, W. A.; Manthiram, A. Small Methods 2021, 5, 2001196. doi: 10.1002/smtd.202001196

    8. [8]

      (8) Yao, W. L.; Chouchane, M.; Li, W. K.; Bai, S.; Liu, Z.; Li, L. T.; Chen, A. X.; Sayahpour, B.; Shimizu, R.; Raghavendran, G.; et al. Energy Environ. Sci. 2023,16, 1620. doi: 10.1039/d2ee03840d

    9. [9]

      (9) Tong, Z. Y.; Zhu, X. B. Next Energy 2024, 5, 100158. doi: 10.1016/j.nxener.2024.100158

    10. [10]

      (10) Amin, R.; Muralidharan, N.; Petla, R. K.; Ben Yahia, H.; Al-Hail, S. A. J.; Essehli, R.; Daniel, C.; Khaleel, M. A.; Belharouak, I. J. Power Sources 2020,467, 228318. doi: 10.1016/j.jpowsour.2020.228318

    11. [11]

      (11) Zhong, Q. M.; Bonakdarpour, A.; Zhang, M. J.; Gao, Y.; Dahn, J.J. Electrochem. Soc. 1997, 144, 205. doi: 10.1149/1.1837386

    12. [12]

      (12) Zhu, X. B.; Huang, A. Y.; Martens, I.; Vostrov, N.; Sun, Y. Q.; Richard, M. I.; Schülli, T. U.; Wang, L. Z. Adv. Mater. 2024,36, 2403482. doi: 10.1002/adma.202403482

    13. [13]

      (13) Li, J. C.; Ma, C.; Chi, M.; Liang, C. D.; Dudney, N. J. Adv. Energy Mater. 2015,5, 1401408. doi: 10.1002/aenm.201401408

    14. [14]

      (14) Ma, J.; Hu, P.; Cui, G. L.; Chen, L. Q. Chem. Mat. 2016, 28, 3578. doi: 10.1021/acs.chemmater.6b00948

    15. [15]

      (15) Jia, H.; Xu, W. Trends Chem. 2022, 4, 627. doi: 10.1016/j.trechm.2022.04.010

    16. [16]

    17. [17]

      (17) Rinkel, B. L. D.; Hall, D. S.; Temprano, I.; Grey, C. P. J. Am. Chem. Soc. 2020,142, 15058. doi: 10.1021/jacs.0c06363

    18. [18]

      (18) Zhu, X. B.; Schulli, T.; Wang, L. Z. Chem. Res. Chin. Univ. 2020, 36, 24. doi: 10.1007/s40242-020-9103-8

    19. [19]

      (19) Jayawardana, C.; Rodrigo, N.; Parimalam, B.; Lucht, B. L. ACS Energy Lett. 2021,6, 3788. doi: 10.1021/acsenergylett.1c01657

    20. [20]

      (20) Zhan, C.; Wu, T. P.; Lu, J.; Amine, K. Energy Environ. Sci. 2018, 11, 243. doi: 10.1039/c7ee03122j

    21. [21]

      (21) Pieczonka, N. P. W.; Liu, Z. Y.; Lu, P.; Olson, K. L.; Moote, J.; Powell, B. R.; Kim, J.-H. J. Phys. Chem. C 2013, 117, 15947. doi: 10.1021/jp405158m

    22. [22]

      (22) Zhu, X. B.; She, Q.; Wang, M.; Wang, Z. L.; Hu, Y. X.; Yuan, D.; Sun, Y. Q.; Schülli, T. U.; Wang, L. Z. Adv. Funct. Mater. 2024, 34, 2311025. doi: 10.1002/adfm.202311025

    23. [23]

      (23) Zhu, X. B.; Sun, D.; Luo, B.; Hu, Y. X.; Wang, L. Z. Electrochim. Acta 2018,284, 30. doi: 10.1016/j.electacta.2018.07.153

    24. [24]

      (24) Xu, M.; Yang, M.; Chen, M. F.; Gu, L. H.; Luo, L. S.; Chen, S. Y.; Chen, J. Z.; Liu, B.; Han, X. J. Energy Chem. 2023, 76, 266. doi: 10.1016/j.jechem.2022.09.021

    25. [25]

      (25) Maiti, S.; Sclar, H.; Grinblat, J.; Talianker, M.; Elias, Y.; Wu, X. H.; Kondrakov, A.; Aurbach, D. Small Methods 2022, 6, 2200674. doi: 10.1002/smtd.202200674

    26. [26]

      (26) Kuenzel, M.; Kim, G.-T.; Zarrabeitia, M.; Lin, S. D.; Schuer, A. R.; Geiger, D.; Kaiser, U.; Bresser, D.; Passerini, S. Mater. Today 2020,39, 127. doi: 10.1016/j.mattod.2020.04.003

    27. [27]

      (27) Zhu, X. B.; Schülli, T. U.; Yang, X. W.; Lin, T. G.; Hu, Y. X.; Cheng, N. Y.; Fujii, H.; Ozawa, K.; Cowie, B.; Gu, Q. F. Nat. Commun. 2022, 13, 1565. doi: 10.1038/s41467-022-28963-9

    28. [28]

      (28) Maiti, S.; Sclar, H.; Wu, X. H.; Grinblat, J.; Talianker, M.; Kondrakov, A.; Markovsky, B.; Aurbach, D. Energy Storage Mater. 2023,56, 25. doi: 10.1016/j.ensm.2023.01.004

    29. [29]

    30. [30]

      (30) Pieczonka, N. P. W.; Borgel, V.; Ziv, B.; Leifer, N.; Dargel, V.; Aurbach, D.; Kim, J. H.; Liu, Z. Y.; Huang, X. S.; Krachkovskiy, S. A. Adv. Energy Mater. 2015,5, 1501008. doi: 10.1002/aenm.201501008

    31. [31]

      (31) Ma, Y.; Wang, C. D.; Ma, J.; Xu, G. J.; Chen, Z.; Du, X. F.; Zhang, S.; Zhou, X. H.; Cui, G. L.; Chen, L. Q. Sci. China-Chem. 2021, 64, 92. doi: 10.1007/s11426-020-9879-8

    32. [32]

      (32) Xu, G. J.; Pang, C. G.; Chen, B. B.; Ma, J.; Wang, X.; Chai, J. C.; Wang, Q. F.; An, W. Z.; Zhou, X. H.; Cui, G. L.; et al. Adv. Energy Mater. 2018,8, 1701398. doi: 10.1002/aenm.201701398

    33. [33]

      (33) Tan, C. L.; Yang, J.; Pan, Q. C.; Li, Y.; Li, Y.; Cui, L. S.; Fan, X. P.; Zheng, F. H.; Wang, H. Q.; Li, Q. Y. Chem. Eng. J. 2021, 410, 128422. doi: 10.1016/j.cej.2021.128422

    34. [34]

      (34) Zhang, J.; Li, J. P.; Cao, L. H.; Cheng, W. H.; Guo, Z. Y.; Zuo, X. X.; Wang, C.; Cheng, Y.-J.; Xia, Y. G.; Huang, Y. D. Nano Res. 2024, 17, 333. doi: 10.1007/s12274-023-5960-z

    35. [35]

      (35) Colombo, F.; Müller, M.; Weber, A.; Keim, N.; Jeschull, F.; Bauer, W.; Ehrenberg, H. Energy Adv. 2023, 2, 2093. doi: 10.1039/D3YA00246B

    36. [36]

      (36) Zhang, J.; Cao, L. H.; Li, J. P.; Yang, M.; Yu, J. X.; Cheng, Y.-J.; Huang, Y. D.; Xia, Y. G. Energy Storage Mater. 2024, 64, 103060. doi: 10.1016/j.ensm.2023.103060

    37. [37]

      (37) Yang, Z.; Li, Z. M.; Huang, Y. X.; Zhang, M. L.; Liu, C. F.; Zhang, D. Y.; Cao, G. Z. J. Power Sources 2020, 471, 228480. doi: 10.1016/j.jpowsour.2020.228480

    38. [38]

      (38) Wang, H.; Ge, W. J.; Li, W.; Wang, F.; Liu, W. J.; Qu, M.-Z.; Peng, G. C. ACS Appl. Mater. Interfaces 2016, 8, 18439. doi: 10.1021/acsami.6b04644

    39. [39]

      (39) Takeshita, S.; Ono, T. Angew. Chem.-Int. Edit. 2023, 62, e202306518. doi: 10.1002/anie.202306518

    40. [40]

      (40) Liu, R.; Yan, H. X.; Zhang, Y. B.; Yang, K. M.; Du, S. Chem. Eng. J. 2022,433, 133827. doi: 10.1016/j.cej.2021.133827

    41. [41]

      (41) Zhu, X. B.; Li, X. N.; Zhu, Y. C.; Jin, S. S.; Wang, Y.; Qian, Y. T. Electrochim. Acta2014, 121, 253. doi: 10.1016/j.electacta.2013.12.176

    42. [42]

      (42) Martens, I.; Vostrov, N.; Mirolo, M.; Colalongo, M.; Kus, P.; Richard, M.-I.; Wang, L. Z.; Zhu, X. B.; Schulli, T. U.; Drnec, J. ACS Mater. Lett. 2022,4, 2528. doi: 10.1021/acsmaterialslett.2c00787

    43. [43]

      (43) Piao, N.; Wang, P.-F.; Chen, L.; Deng, T.; Fan, X. L.; Wang, L.; He, X. M. Nano Energy

    44. [44]

      2023, 105, 108040. doi: 10.1016/j.nanoen.2022.108040

    45. [45]

      (44) Moorhead-Rosenberg, Z.; Huq, A.; Goodenough, J. B.; Manthiram, A. Chem. Mater. 2015, 27, 6934. doi: 10.1021/acs.chemmater.5b01356

    46. [46]

      (45) Gaberšček, M. Curr. Opin. Electrochem. 2022, 32, 100917. doi: 10.1016/j.coelec.2021.100917

    47. [47]

      (46) Yu, F.-D.; Que, L.-F.; Xu, C.-Y.; Wang, M.-J.; Sun, G.; Duh, J.-G.; Wang, Z.-B. Nano Energy 2019, 59, 527. doi: 10.1016/j.nanoen.2019.03.012

    48. [48]

      (47) Zhu, X. B.; Wang, L. Z. EcoMat 2020, 2, e12043. doi: 10.1002/eom2.12043

    49. [49]

      (48) Lu, D. S.; Xu, M. Q.; Zhou, L.; Garsuch, A.; Lucht, B. L. J. Electrochem. Soc. 2013,160, A3138. doi: 10.1149/2.022305jes

    50. [50]

      (49) Jiang, H. R.; Zeng, C. H.; Zhu, W.; Luo, J. W.; Liu, Z. D.; Zhang, J. C.; Liu, R.; Xu, Y. H.; Chen, Y. A.; Hu, W. B. Nano Res. 2024, 17, 2671. doi: 10.1007/s12274-023-6076-1

    51. [51]

      (50) Cui, Z. H.; Zou, F.; Celio, H.; Manthiram, A. Adv. Funct. Mater. 2022,32, 2203779. doi: 10.1002/adfm.202203779

    52. [52]

      (51) Jiao, X. W.; Rao, L. L.; Yap, J. W.; Yu, C.-Y.; Kim, J.-H. J. Power Sources 2023,561, 232748. doi: 10.1016/j.jpowsour.2023.232748

    53. [53]

      (52) Tian, T.; Lu, L. L.; Yin, Y. C.; Tan, Y. H.; Zhang, T. W.; Li, F.; Yao, H. B. Small 2022, 18, 2106898. doi: 10.1002/smll.202106898

    54. [54]

      (53) Rath, P. C.; Wang, Y.-W.; Patra, J.; Umesh, B.; Yeh, T.-J.; Okada, S.; Li, J.; Chang, J.-K. Chem. Eng. J. 2021, 415, 128904. doi: 10.1016/j.cej.2021.128904

    55. [55]

      (54) Li, J. C.; Zhang, Q. L.; Xiao, X. C.; Cheng, Y.-T.; Liang, C. D.; Dudney, N. J. J. Am. Chem. Soc. 2015, 137, 13732. doi: 10.1021/jacs.5b06178

    56. [56]

      (55) Yoon, T.; Park, S.; Mun, J.; Ryu, J. H.; Choi, W.; Kang, Y.-S.; Park, J.-H.; Oh, S. M. J. Power Sources 2012, 215, 312. doi: 10.1016/j.jpowsour.2012.04.103

    57. [57]

      (56) Michalak, B.; Berkes, B. z. B.; Sommer, H.; Bergfeldt, T.; Brezesinski, T.; Janek, J. Anal. Chem. 2016, 88, 2877. doi: 10.1021/acs.analchem.5b04696

    58. [58]

      (57) Yoon, T.; Soon, J.; Lee, T. J.; Ryu, J. H.; Oh, S. M. J. Power Sources 2021,503, 230051. doi: 10.1016/j.jpowsour.2021.230051

    59. [59]

      (58) Tatara, R.; Karayaylali, P.; Yu, Y.; Zhang, Y.; Giordano, L.; Maglia, F.; Jung, R.; Schmidt, J. P.; Lund, I.; Shao-Horn, Y. J. Electrochem. Soc. 2019,166, A5090. doi: 10.1149/2.0121903jes

    60. [60]

      (59) Dos Santos, F. C.; Harb, S. V.; Menu, M.-J.; Turq, V.; Pulcinelli, S. H.; Santilli, C. V.; Hammer, P. RSC Adv. 2015, 5, 106754. doi: 10.1039/C5RA20885H

  • 加载中
    1. [1]

      Jie WUZhihong LUOXiaoli CHENFangfang XIONGLi CHENBiao ZHANGBin SHIQuansheng OUYANGJiaojing SHAO . Critical roles of AlPO4 coating in enhancing cycling stability and rate capability of high voltage LiNi0.5Mn1.5O4 cathode materials. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 948-958. doi: 10.11862/CJIC.20240400

    2. [2]

      Siyu Zhang Kunhong Gu Bing'an Lu Junwei Han Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028

    3. [3]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    4. [4]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    5. [5]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    6. [6]

      Yifeng Xu Jiquan Liu Bin Cui Yan Li Gang Xie Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009

    7. [7]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    8. [8]

      Yuting ZHANGZunyi LIUNing LIDongqiang ZHANGShiling ZHAOYu ZHAO . Nickel vanadate anode material with high specific surface area through improved co-precipitation method: Preparation and electrochemical properties. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2163-2174. doi: 10.11862/CJIC.20240204

    9. [9]

      Xueyu Lin Ruiqi Wang Wujie Dong Fuqiang Huang . 高性能双金属氧化物负极的理性设计及储锂特性. Acta Physico-Chimica Sinica, 2025, 41(3): 2311005-. doi: 10.3866/PKU.WHXB202311005

    10. [10]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    11. [11]

      Jiandong Liu Zhijia Zhang Mikhail Kamenskii Filipp Volkov Svetlana Eliseeva Jianmin Ma . Research Progress on Cathode Electrolyte Interphase in High-Voltage Lithium Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 100011-. doi: 10.3866/PKU.WHXB202308048

    12. [12]

      Jiaxuan Zuo Kun Zhang Jing Wang Xifei Li . 锂离子电池Ni-Co-Mn基正极材料前驱体的形核调控及机制. Acta Physico-Chimica Sinica, 2025, 41(1): 2404042-. doi: 10.3866/PKU.WHXB202404042

    13. [13]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

    14. [14]

      Jiahe LIUGan TANGKai CHENMingda ZHANG . Effect of low-temperature electrolyte additives on low-temperature performance of lithium cobaltate batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 719-728. doi: 10.11862/CJIC.20250023

    15. [15]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    16. [16]

      Hengyi ZHULiyun JUHaoyue ZHANGJiaxin DUYutong XIELi SONGYachao JINMingdao ZHANG . Efficient regeneration of waste LiNi0.5Co0.2Mn0.3O2 cathode toward high-performance Li-ion battery. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 625-638. doi: 10.11862/CJIC.20240358

    17. [17]

      Xinlong WANGZhenguo CHENGGuo WANGXiaokuen ZHANGYong XIANGXinquan WANG . Enhancement of the fragile interface of high voltage LiCoO2 by surface gradient permeation of trace amounts of Mg/F. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 571-580. doi: 10.11862/CJIC.20230259

    18. [18]

      Zhaoxuan ZHULixin WANGXiaoning TANGLong LIYan SHIJiaojing SHAO . Application of poly(vinyl alcohol) conductive hydrogel electrolytes in zinc ion batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 893-902. doi: 10.11862/CJIC.20240368

    19. [19]

      Jianbao Mei Bei Li Shu Zhang Dongdong Xiao Pu Hu Geng Zhang . Enhanced Performance of Ternary NASICON-Type Na3.5-xMn0.5V1.5-xZrx(PO4)3/C Cathodes for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(12): 2407023-. doi: 10.3866/PKU.WHXB202407023

    20. [20]

      Tao Jiang Yuting Wang Lüjin Gao Yi Zou Bowen Zhu Li Chen Xianzeng Li . Experimental Design for the Preparation of Composite Solid Electrolytes for Application in All-Solid-State Batteries: Exploration of Comprehensive Chemistry Laboratory Teaching. University Chemistry, 2024, 39(2): 371-378. doi: 10.3866/PKU.DXHX202308057

Metrics
  • PDF Downloads(3)
  • Abstract views(439)
  • HTML views(67)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return