Citation: Aoyu Huang, Jun Xu, Yu Huang, Gui Chu, Mao Wang, Lili Wang, Yongqi Sun, Zhen Jiang, Xiaobo Zhu. Tailoring Electrode-Electrolyte Interfaces via a Simple Slurry Additive for Stable High-Voltage Lithium-Ion Batteries[J]. Acta Physico-Chimica Sinica, ;2025, 41(4): 240800. doi: 10.3866/PKU.WHXB202408007 shu

Tailoring Electrode-Electrolyte Interfaces via a Simple Slurry Additive for Stable High-Voltage Lithium-Ion Batteries

  • Corresponding author: Lili Wang, wangll@hfuu.edu.cn Xiaobo Zhu, xbzhu@csust.edu.cn
  • Received Date: 7 August 2024
    Revised Date: 30 August 2024
    Accepted Date: 30 August 2024

    Fund Project: the National Natural Science Foundation of China 52202210Natural Science Foundation of Hunan Province 2024JJ5024the Key Projects for the Excellent Talent Foundation of Education Department of Anhui Province 2024JJ5024

  • 5 Ⅴ-class LiNi0.5Mn1.5O4 (LNMO) cathode material is emerging as a promising cobalt-free alternative to meet the growing demand for affordable, high-performance lithium-ion batteries (LIBs). However, LNMO faces significant electrochemical challenges, particularly interfacial instability with commercial electrolytes due to its high operating potentials. This instability leads to the dissolution of transition metals and consequently electrode crosstalk, which severely deteriorates electrochemical performance. Surface coating is extensively investigated to reduce interfacial side reactions for enhanced cycling stability. Traditional methods typically require multiple steps, including dispersion, mixing, drying, and calcination, which can be time-consuming and complex. Additionally, the resulting ceramic coatings are often rigid and unevenly distributed due to lattice mismatches, potentially leading to poor interfacial contact and increased resistance. In this study, tetraethyl orthosilicate (TEOS) is proposed as a streamlined slurry additive to in situ form an ethoxy-functional polysiloxane (EPS) film on the surface of LNMO particles during electrode preparation. Post-mortem X-ray photoelectron spectroscopy (XPS) and inductively coupled plasma (ICP) analyses reveal the crucial role of the EPS film in addressing interfacial instability issues. First, the EPS film serves as an artificial cathode-electrolyte interface (CEI) with a robust Si―O―Si bonding network, which is less vulnerable under high potentials. Second, the remaining ethoxy-functional groups in EPS scavenge HF by forming stable Si―F bonds, thereby suppressing the detrimental transition metal dissolution and crosstalk. Transmission electron microscopy (TEM) and scanning electron microscopy (SEM) further confirm the stability of the EPS film and the enhanced structural stability of the modified LNMO. Galvanostatic intermittent titration technique (GITT) and electrochemical impedance spectroscopy (EIS) results demonstrate that EPS reduces the overall impedance and improves ion diffusion kinetics by forming stable electrode-electrolyte interfaces. As a result, compared to the baseline, the optimized LNMO cathode exhibits significantly improved cycling stability in both half cells (84.6% vs. 51.4% capacity retention after 1000 cycles) and full cells when paired with commercial graphite anodes (83.3% vs. 53.4% retention after 500 cycles). This strategy, further validated under elevated temperatures of 50 ℃ and in pouch-type cells, is expected to pave the way for the development of next-generation high-performance LIBs.
  • 加载中
    1. [1]

      Yoshino, A. Angew. Chem. -Int. Edit. 2012, 51, 5798. doi: 10.1002/anie.201105006  doi: 10.1002/anie.201105006

    2. [2]

      Grey, C. P.; Hall, D. S. Nat. Commun. 2020, 11, 6279. doi: 10.1038/s41467-020-19991-4  doi: 10.1038/s41467-020-19991-4

    3. [3]

      Zhu, X. B.; Lin, T. G.; Manning, E.; Zhang, Y. C.; Yu, M. M.; Zuo, B.; Wang, L. Z. J. Nanopart. Res. 2018, 20, 160. doi: 10.1007/s11051-018-4235-1  doi: 10.1007/s11051-018-4235-1

    4. [4]

      Ryu, H. -H.; Sun, H. H.; Myung, S. -T.; Yoon, C. S.; Sun, Y. -K. Energy Environ. Sci. 2021, 14, 844. doi: 10.1039/d0ee03581e  doi: 10.1039/d0ee03581e

    5. [5]

      She, Q.; Xu, J.; Huang, A. Y.; Zhou, R.; Shao, Q.; Wang, J. Q.; Wang, Y.; Sun, Y. Q.; Zhu, X. B. Chem. Eng. Sci. 2024, 284, 119526. doi: 10.1016/j.ces.2023.119526  doi: 10.1016/j.ces.2023.119526

    6. [6]

      Liang, G. M.; Peterson, V. K.; See, K. W.; Guo, Z. P.; Pang, W. K. J. Mater. Chem. A. 2020, 8, 15373. doi: 10.1039/d0ta02812f  doi: 10.1039/d0ta02812f

    7. [7]

      Yu, X. W.; Yu, W. A.; Manthiram, A. Small Methods 2021, 5, 2001196. doi: 10.1002/smtd.202001196  doi: 10.1002/smtd.202001196

    8. [8]

      Yao, W. L.; Chouchane, M.; Li, W. K.; Bai, S.; Liu, Z.; Li, L. T.; Chen, A. X.; Sayahpour, B.; Shimizu, R.; Raghavendran, G.; et al. Energy Environ. Sci. 2023, 16, 1620. doi: 10.1039/d2ee03840d  doi: 10.1039/d2ee03840d

    9. [9]

      Tong, Z. Y.; Zhu, X. B. Next Energy 2024, 5, 100158. doi: 10.1016/j.nxener.2024.100158  doi: 10.1016/j.nxener.2024.100158

    10. [10]

      Amin, R.; Muralidharan, N.; Petla, R. K.; Ben Yahia, H.; Al-Hail, S. A. J.; Essehli, R.; Daniel, C.; Khaleel, M. A.; Belharouak, I. J. Power Sources 2020, 467, 228318. doi: 10.1016/j.jpowsour.2020.228318  doi: 10.1016/j.jpowsour.2020.228318

    11. [11]

      Zhong, Q. M.; Bonakdarpour, A.; Zhang, M. J.; Gao, Y.; Dahn, J. J. Electrochem. Soc. 1997, 144, 205. doi: 10.1149/1.1837386  doi: 10.1149/1.1837386

    12. [12]

      Zhu, X. B.; Huang, A. Y.; Martens, I.; Vostrov, N.; Sun, Y. Q.; Richard, M. I.; Schülli, T. U.; Wang, L. Z. Adv. Mater. 2024, 36, 2403482. doi: 10.1002/adma.202403482  doi: 10.1002/adma.202403482

    13. [13]

      Li, J. C.; Ma, C.; Chi, M.; Liang, C. D.; Dudney, N. J. Adv. Energy Mater. 2015, 5, 1401408. doi: 10.1002/aenm.201401408  doi: 10.1002/aenm.201401408

    14. [14]

      Ma, J.; Hu, P.; Cui, G. L.; Chen, L. Q. Chem. Mat. 2016, 28, 3578. doi: 10.1021/acs.chemmater.6b00948  doi: 10.1021/acs.chemmater.6b00948

    15. [15]

      Jia, H.; Xu, W. Trends Chem. 2022, 4, 627. doi: 10.1016/j.trechm.2022.04.010  doi: 10.1016/j.trechm.2022.04.010

    16. [16]

      Han, Z.; Zhang, D. F.; Wang, H. X.; Zheng, G. R.; Liu, M.; He, Y. B. Acta Phys. -Chim. Sin. 2024, 40, 2307034.  doi: 10.3866/PKU.WHXB202307034

    17. [17]

      Rinkel, B. L. D.; Hall, D. S.; Temprano, I.; Grey, C. P. J. Am. Chem. Soc. 2020, 142, 15058. doi: 10.1021/jacs.0c06363  doi: 10.1021/jacs.0c06363

    18. [18]

      Zhu, X. B.; Schulli, T.; Wang, L. Z. Chem. Res. Chin. Univ. 2020, 36, 24. doi: 10.1007/s40242-020-9103-8  doi: 10.1007/s40242-020-9103-8

    19. [19]

      Jayawardana, C.; Rodrigo, N.; Parimalam, B.; Lucht, B. L. ACS Energy Lett. 2021, 6, 3788. doi: 10.1021/acsenergylett.1c01657  doi: 10.1021/acsenergylett.1c01657

    20. [20]

      Zhan, C.; Wu, T. P.; Lu, J.; Amine, K. Energy Environ. Sci. 2018, 11, 243. doi: 10.1039/c7ee03122j  doi: 10.1039/c7ee03122j

    21. [21]

      Pieczonka, N. P. W.; Liu, Z. Y.; Lu, P.; Olson, K. L.; Moote, J.; Powell, B. R.; Kim, J. -H. J. Phys. Chem. C 2013, 117, 15947. doi: 10.1021/jp405158m  doi: 10.1021/jp405158m

    22. [22]

      Zhu, X. B.; She, Q.; Wang, M.; Wang, Z. L.; Hu, Y. X.; Yuan, D.; Sun, Y. Q.; Schülli, T. U.; Wang, L. Z. Adv. Funct. Mater. 2024, 34, 2311025. doi: 10.1002/adfm.202311025  doi: 10.1002/adfm.202311025

    23. [23]

      Zhu, X. B.; Sun, D.; Luo, B.; Hu, Y. X.; Wang, L. Z. Electrochim. Acta 2018, 284, 30. doi: 10.1016/j.electacta.2018.07.153  doi: 10.1016/j.electacta.2018.07.153

    24. [24]

      Xu, M.; Yang, M.; Chen, M. F.; Gu, L. H.; Luo, L. S.; Chen, S. Y.; Chen, J. Z.; Liu, B.; Han, X. J. Energy Chem. 2023, 76, 266. doi: 10.1016/j.jechem.2022.09.021  doi: 10.1016/j.jechem.2022.09.021

    25. [25]

      Maiti, S.; Sclar, H.; Grinblat, J.; Talianker, M.; Elias, Y.; Wu, X. H.; Kondrakov, A.; Aurbach, D. Small Methods 2022, 6, 2200674. doi: 10.1002/smtd.202200674  doi: 10.1002/smtd.202200674

    26. [26]

      Kuenzel, M.; Kim, G. -T.; Zarrabeitia, M.; Lin, S. D.; Schuer, A. R.; Geiger, D.; Kaiser, U.; Bresser, D.; Passerini, S. Mater. Today 2020, 39, 127. doi: 10.1016/j.mattod.2020.04.003  doi: 10.1016/j.mattod.2020.04.003

    27. [27]

      Zhu, X. B.; Schülli, T. U.; Yang, X. W.; Lin, T. G.; Hu, Y. X.; Cheng, N. Y.; Fujii, H.; Ozawa, K.; Cowie, B.; Gu, Q. F. Nat. Commun. 2022, 13, 1565. doi: 10.1038/s41467-022-28963-9  doi: 10.1038/s41467-022-28963-9

    28. [28]

      Maiti, S.; Sclar, H.; Wu, X. H.; Grinblat, J.; Talianker, M.; Kondrakov, A.; Markovsky, B.; Aurbach, D. Energy Storage Mater. 2023, 56, 25. doi: 10.1016/j.ensm.2023.01.004  doi: 10.1016/j.ensm.2023.01.004

    29. [29]

      Zhang, S. D.; Liu, Y.; Qi, M. Y.; Cao, A. M. Acta Phys. -Chim. Sin. 2021, 37, 2011007.  doi: 10.3866/PKU.WHXB202011007

    30. [30]

      Pieczonka, N. P. W.; Borgel, V.; Ziv, B.; Leifer, N.; Dargel, V.; Aurbach, D.; Kim, J. H.; Liu, Z. Y.; Huang, X. S.; Krachkovskiy, S. A. Adv. Energy Mater. 2015, 5, 1501008. doi: 10.1002/aenm.201501008  doi: 10.1002/aenm.201501008

    31. [31]

      Ma, Y.; Wang, C. D.; Ma, J.; Xu, G. J.; Chen, Z.; Du, X. F.; Zhang, S.; Zhou, X. H.; Cui, G. L.; Chen, L. Q. Sci. China-Chem. 2021, 64, 92. doi: 10.1007/s11426-020-9879-8  doi: 10.1007/s11426-020-9879-8

    32. [32]

      Xu, G. J.; Pang, C. G.; Chen, B. B.; Ma, J.; Wang, X.; Chai, J. C.; Wang, Q. F.; An, W. Z.; Zhou, X. H.; Cui, G. L.; et al. Adv. Energy Mater. 2018, 8, 1701398. doi: 10.1002/aenm.201701398  doi: 10.1002/aenm.201701398

    33. [33]

      Tan, C. L.; Yang, J.; Pan, Q. C.; Li, Y.; Li, Y.; Cui, L. S.; Fan, X. P.; Zheng, F. H.; Wang, H. Q.; Li, Q. Y. Chem. Eng. J. 2021, 410, 128422. doi: 10.1016/j.cej.2021.128422  doi: 10.1016/j.cej.2021.128422

    34. [34]

      Zhang, J.; Li, J. P.; Cao, L. H.; Cheng, W. H.; Guo, Z. Y.; Zuo, X. X.; Wang, C.; Cheng, Y. -J.; Xia, Y. G.; Huang, Y. D. Nano Res. 2024, 17, 333. doi: 10.1007/s12274-023-5960-z  doi: 10.1007/s12274-023-5960-z

    35. [35]

      Colombo, F.; Müller, M.; Weber, A.; Keim, N.; Jeschull, F.; Bauer, W.; Ehrenberg, H. Energy Adv. 2023, 2, 2093. doi: 10.1039/D3YA00246B  doi: 10.1039/D3YA00246B

    36. [36]

      Zhang, J.; Cao, L. H.; Li, J. P.; Yang, M.; Yu, J. X.; Cheng, Y. -J.; Huang, Y. D.; Xia, Y. G. Energy Storage Mater. 2024, 64, 103060. doi: 10.1016/j.ensm.2023.103060  doi: 10.1016/j.ensm.2023.103060

    37. [37]

      Yang, Z.; Li, Z. M.; Huang, Y. X.; Zhang, M. L.; Liu, C. F.; Zhang, D. Y.; Cao, G. Z. J. Power Sources 2020, 471, 228480. doi: 10.1016/j.jpowsour.2020.228480  doi: 10.1016/j.jpowsour.2020.228480

    38. [38]

      Wang, H.; Ge, W. J.; Li, W.; Wang, F.; Liu, W. J.; Qu, M. -Z.; Peng, G. C. ACS Appl. Mater. Interfaces 2016, 8, 18439. doi: 10.1021/acsami.6b04644  doi: 10.1021/acsami.6b04644

    39. [39]

      Takeshita, S.; Ono, T. Angew. Chem. -Int. Edit. 2023, 62, e202306518. doi: 10.1002/anie.202306518  doi: 10.1002/anie.202306518

    40. [40]

      Liu, R.; Yan, H. X.; Zhang, Y. B.; Yang, K. M.; Du, S. Chem. Eng. J. 2022, 433, 133827. doi: 10.1016/j.cej.2021.133827  doi: 10.1016/j.cej.2021.133827

    41. [41]

      Zhu, X. B.; Li, X. N.; Zhu, Y. C.; Jin, S. S.; Wang, Y.; Qian, Y. T. Electrochim. Acta 2014, 121, 253. doi: 10.1016/j.electacta.2013.12.176  doi: 10.1016/j.electacta.2013.12.176

    42. [42]

      Martens, I.; Vostrov, N.; Mirolo, M.; Colalongo, M.; Kus, P.; Richard, M. -I.; Wang, L. Z.; Zhu, X. B.; Schulli, T. U.; Drnec, J. ACS Mater. Lett. 2022, 4, 2528. doi: 10.1021/acsmaterialslett.2c00787  doi: 10.1021/acsmaterialslett.2c00787

    43. [43]

      Piao, N.; Wang, P. -F.; Chen, L.; Deng, T.; Fan, X. L.; Wang, L.; He, X. M. Nano Energy 2023, 105, 108040. doi: 10.1016/j.nanoen.2022.108040  doi: 10.1016/j.nanoen.2022.108040

    44. [44]

      Moorhead-Rosenberg, Z.; Huq, A.; Goodenough, J. B.; Manthiram, A. Chem. Mater. 2015, 27, 6934. doi: 10.1021/acs.chemmater.5b01356  doi: 10.1021/acs.chemmater.5b01356

    45. [45]

      Gaberšček, M. Curr. Opin. Electrochem. 2022, 32, 100917. doi: 10.1016/j.coelec.2021.100917  doi: 10.1016/j.coelec.2021.100917

    46. [46]

      Yu, F. -D.; Que, L. -F.; Xu, C. -Y.; Wang, M. -J.; Sun, G.; Duh, J. -G.; Wang, Z. -B. Nano Energy 2019, 59, 527. doi: 10.1016/j.nanoen.2019.03.012  doi: 10.1016/j.nanoen.2019.03.012

    47. [47]

      Zhu, X. B.; Wang, L. Z. EcoMat 2020, 2, e12043. doi: 10.1002/eom2.12043  doi: 10.1002/eom2.12043

    48. [48]

      Lu, D. S.; Xu, M. Q.; Zhou, L.; Garsuch, A.; Lucht, B. L. J. Electrochem. Soc. 2013, 160, A3138. doi: 10.1149/2.022305jes  doi: 10.1149/2.022305jes

    49. [49]

      Jiang, H. R.; Zeng, C. H.; Zhu, W.; Luo, J. W.; Liu, Z. D.; Zhang, J. C.; Liu, R.; Xu, Y. H.; Chen, Y. A.; Hu, W. B. Nano Res. 2024, 17, 2671. doi: 10.1007/s12274-023-6076-1  doi: 10.1007/s12274-023-6076-1

    50. [50]

      Cui, Z. H.; Zou, F.; Celio, H.; Manthiram, A. Adv. Funct. Mater. 2022, 32, 2203779. doi: 10.1002/adfm.202203779  doi: 10.1002/adfm.202203779

    51. [51]

      Jiao, X. W.; Rao, L. L.; Yap, J. W.; Yu, C. -Y.; Kim, J. -H. J. Power Sources 2023, 561, 232748. doi: 10.1016/j.jpowsour.2023.232748  doi: 10.1016/j.jpowsour.2023.232748

    52. [52]

      Tian, T.; Lu, L. L.; Yin, Y. C.; Tan, Y. H.; Zhang, T. W.; Li, F.; Yao, H. B. Small 2022, 18, 2106898. doi: 10.1002/smll.202106898  doi: 10.1002/smll.202106898

    53. [53]

      Rath, P. C.; Wang, Y. -W.; Patra, J.; Umesh, B.; Yeh, T. -J.; Okada, S.; Li, J.; Chang, J. -K. Chem. Eng. J. 2021, 415, 128904. doi: 10.1016/j.cej.2021.128904  doi: 10.1016/j.cej.2021.128904

    54. [54]

      Li, J. C.; Zhang, Q. L.; Xiao, X. C.; Cheng, Y. -T.; Liang, C. D.; Dudney, N. J. J. Am. Chem. Soc. 2015, 137, 13732. doi: 10.1021/jacs.5b06178  doi: 10.1021/jacs.5b06178

    55. [55]

      Yoon, T.; Park, S.; Mun, J.; Ryu, J. H.; Choi, W.; Kang, Y. -S.; Park, J. -H.; Oh, S. M. J. Power Sources 2012, 215, 312. doi: 10.1016/j.jpowsour.2012.04.103  doi: 10.1016/j.jpowsour.2012.04.103

    56. [56]

      Michalak, B.; Berkes, B. z. B.; Sommer, H.; Bergfeldt, T.; Brezesinski, T.; Janek, J. Anal. Chem. 2016, 88, 2877. doi: 10.1021/acs.analchem.5b04696  doi: 10.1021/acs.analchem.5b04696

    57. [57]

      Yoon, T.; Soon, J.; Lee, T. J.; Ryu, J. H.; Oh, S. M. J. Power Sources 2021, 503, 230051. doi: 10.1016/j.jpowsour.2021.230051  doi: 10.1016/j.jpowsour.2021.230051

    58. [58]

      Tatara, R.; Karayaylali, P.; Yu, Y.; Zhang, Y.; Giordano, L.; Maglia, F.; Jung, R.; Schmidt, J. P.; Lund, I.; Shao-Horn, Y. J. Electrochem. Soc. 2019, 166, A5090. doi: 10.1149/2.0121903jes  doi: 10.1149/2.0121903jes

    59. [59]

      Dos Santos, F. C.; Harb, S. V.; Menu, M. -J.; Turq, V.; Pulcinelli, S. H.; Santilli, C. V.; Hammer, P. RSC Adv. 2015, 5, 106754. doi: 10.1039/C5RA20885H  doi: 10.1039/C5RA20885H

  • 加载中
    1. [1]

      Jie WUZhihong LUOXiaoli CHENFangfang XIONGLi CHENBiao ZHANGBin SHIQuansheng OUYANGJiaojing SHAO . Critical roles of AlPO4 coating in enhancing cycling stability and rate capability of high voltage LiNi0.5Mn1.5O4 cathode materials. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 948-958. doi: 10.11862/CJIC.20240400

    2. [2]

      Jingshuo ZhangYue ZhaiZiyun ZhaoJiaxing HeWei WeiJing XiaoShichao WuQuan-Hong Yang . Research Progress of Functional Binders in Silicon-Based Anodes for Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(6): 2306006-0. doi: 10.3866/PKU.WHXB202306006

    3. [3]

      Siyu ZhangKunhong GuBing'an LuJunwei HanJiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-0. doi: 10.3866/PKU.WHXB202309028

    4. [4]

      Liangliang SongHaoyan LiangShunqing LiBao QiuZhaoping Liu . Challenges and strategies on high-manganese Li-rich layered oxide cathodes for ultrahigh-energy-density batteries. Acta Physico-Chimica Sinica, 2025, 41(8): 100085-0. doi: 10.1016/j.actphy.2025.100085

    5. [5]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    6. [6]

      Chenyue HuangHongfei ZhengNing QinCanpei WangLiguang WangJun Lu . Single-Crystal Nickel-Rich Cathode Materials: Challenges and Strategies. Acta Physico-Chimica Sinica, 2024, 40(9): 2308051-0. doi: 10.3866/PKU.WHXB202308051

    7. [7]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    8. [8]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    9. [9]

      Yifeng Xu Jiquan Liu Bin Cui Yan Li Gang Xie Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009

    10. [10]

      Xintong ZhuBin CaoChong YanCheng TangAibing ChenQiang Zhang . Advances in coating strategies for graphite anodes in lithium-ion batteries. Acta Physico-Chimica Sinica, 2025, 41(9): 100096-0. doi: 10.1016/j.actphy.2025.100096

    11. [11]

      Qi LiPingan LiZetong LiuJiahui ZhangHao ZhangWeilai YuXianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-0. doi: 10.3866/PKU.WHXB202311030

    12. [12]

      Ying LiYushen ZhaoKai ChenXu LiuTingfeng YiLi-Feng Chen . Rational Design of Cross-Linked N-Doped C-Sn Nanofibers as Free-Standing Electrodes towards High-Performance Li-Ion Battery Anodes. Acta Physico-Chimica Sinica, 2024, 40(3): 2305007-0. doi: 10.3866/PKU.WHXB202305007

    13. [13]

      Yuting ZHANGZunyi LIUNing LIDongqiang ZHANGShiling ZHAOYu ZHAO . Nickel vanadate anode material with high specific surface area through improved co-precipitation method: Preparation and electrochemical properties. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2163-2174. doi: 10.11862/CJIC.20240204

    14. [14]

      Xueyu LinRuiqi WangWujie DongFuqiang Huang . Rational Design of Bimetallic Oxide Anodes for Superior Li+ Storage. Acta Physico-Chimica Sinica, 2025, 41(3): 2311005-0. doi: 10.3866/PKU.WHXB202311005

    15. [15]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    16. [16]

      Zhuo HanDanfeng ZhangHaixian WangGuorui ZhengMing LiuYanbing He . Research Progress and Prospect on Electrolyte Additives for Interface Reconstruction of Long-Life Ni-Rich Lithium Batteries. Acta Physico-Chimica Sinica, 2024, 40(9): 2307034-0. doi: 10.3866/PKU.WHXB202307034

    17. [17]

      Yu PengJiawei ChenYue YinYongjie CaoMochou LiaoCongxiao WangXiaoli DongYongyao Xia . Tailored cathode electrolyte interphase via ethylene carbonate-free electrolytes enabling stable and wide-temperature operation of high-voltage LiCoO2. Acta Physico-Chimica Sinica, 2025, 41(8): 100087-0. doi: 10.1016/j.actphy.2025.100087

    18. [18]

      Jiaxuan ZuoKun ZhangJing WangXifei Li . Nucleation Regulation and Mechanism of Precursors for Nickel Cobalt Manganese-based Cathode Materials in Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(1): 100009-0. doi: 10.3866/PKU.WHXB202404042

    19. [19]

      Jiandong LiuZhijia ZhangKamenskii MikhailVolkov FilippEliseeva SvetlanaJianmin Ma . Research Progress on Cathode Electrolyte Interphase in High-Voltage Lithium Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 2308048-0. doi: 10.3866/PKU.WHXB202308048

    20. [20]

      Jiandong LiuXin LiDaxiong WuHuaping WangJunda HuangJianmin Ma . Anion-Acceptor Electrolyte Additive Strategy for Optimizing Electrolyte Solvation Characteristics and Electrode Electrolyte Interphases for Li||NCM811 Battery. Acta Physico-Chimica Sinica, 2024, 40(6): 2306039-0. doi: 10.3866/PKU.WHXB202306039

Metrics
  • PDF Downloads(4)
  • Abstract views(858)
  • HTML views(90)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return