Citation: Hailian Tang,  Siyuan Chen,  Qiaoyun Liu,  Guoyi Bai,  Botao Qiao,  Fei Liu. Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions[J]. Acta Physico-Chimica Sinica, ;2025, 41(4): 100036. doi: 10.3866/PKU.WHXB202408004 shu

Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions

  • Corresponding author: Hailian Tang,  Botao Qiao,  Fei Liu, 
  • Received Date: 4 August 2024
    Revised Date: 14 September 2024
    Accepted Date: 2 October 2024

    Fund Project: The project was supported by the National Key R&D Program of China (2023YFA1506800), National Natural Science Foundation of China (21902040, 22108259), and Natural Science Foundation of Hebei Province (B2019201158).

  • The strong metal-support interaction (SMSI) is a widely recognized concept in heterogeneous catalysis, known for significantly enhancing catalyst stability and potentially modulating catalytic performance. However, because the SMSI effect is generally reversible, it tends to diminish under redox conditions opposite to those used for its construction. Consequently, its application is typically limited to conditions that are the same or similar to those under which it was formed. Herein, we report the application of oxidative SMSI (O-SMSI) constructed on hydroxyapatite-supported Rh catalyst (Rh/HAP) in a reductive reaction, the hydrogenation of furfuryl alcohol. In situ diffuse reflectance infrared Fourier transform spectroscopy of CO adsorption and electron microscopy measurements reveal that high-temperature oxidation treatment at 500 ℃ induced the occurrence of O-SMSI on the Rh/HAP catalyst, accompanied by the encapsulation of Rh particles by the support. Upon the O-SMSI, the Rh species were effectively stabilized on the support surface, with significant suppression of sintering and leaching during liquid-phase reactions. As a result, the catalyst showed stable furfuryl alcohol conversion and cyclopentanone selectivity during recycling tests. Furthermore, it was found that the O-SMSI and the associated encapsulation behavior on the Rh/HAP system were only partially reversible rather than completely reversible. Even after high-temperature reduction at up to 600 ℃, a portion of the SMSI effect remains, ensuring the stability of the catalysts in reductive reactions. This discovery greatly expands the application scope of SMSI catalysts and provides a new way to prepare stable hydrogenation catalysts.
  • 加载中
    1. [1]

      (1) Xu, M.; Peng, M.; Tang, H.; Zhou, W.; Qiao, B.; Ma, D. J. Am. Chem. Soc. 2024,146, 2290. doi: 10.1021/jacs.3c09102

    2. [2]

      (2) Wu, G.; Liu, Y.; Wang, J. Accounts Chem. Res. 2024, 56, 911. doi: 10.1021/acs.accounts.2c00727

    3. [3]

      (3) Tauster, S. J.; Fung, S. C.; Garten, R. L. J. Am. Chem. Soc. 1978, 100, 170. doi: 10.1021/ja00469a029

    4. [4]

      (4) Li, M.; Zhang, T.; Yang, S.-Z.; Sun, Y.; Zhang, J.; Polo-Garzon, F.; Siniard, K. M.; Yu, X.; Wu, Z.; Driscoll, D. M.; et al. ACS Catal. 2023,13, 6114. doi: 10.1021/acscatal.2c05730

    5. [5]

      (5) Dong, J.; Fu, Q.; Li, H.; Xiao, J.; Yang, B.; Zhang, B.; Bai, Y.; Song, T.; Zhang, R.; Gao, L.; et al. J. Am. Chem. Soc. 2020,142, 17167. doi: 10.1021/jacs.0c08139

    6. [6]

      (6) Siniard, K. M.; Li, M.; Yang, S. Z.; Zhang, J.; Polo-Garzon, F.; Wu, Z.; Yang, Z.; Dai, S. Angew. Chem.-Int. Edit. 2023, e202214322. doi: 10.1002/anie.202214322

    7. [7]

      (7) Wang, H.; Wang, L.; Lin, D.; Feng, X.; Niu, Y.; Zhang, B.; Xiao, F.-S. Nat. Catal. 2021, 4, 418. doi: 10.1038/s41929-021-00611-3

    8. [8]

      (8) Tang, H.; Su, Y.; Zhang, B.; Lee, A. F.; Isaacs, M. A.; Wilson, K.; Li, L.; Ren, Y.; Huang, J.; Haruta, M.; et al. Sci. Adv. 2017,3, e1700231. doi: 10.1126/sciadv.1700231

    9. [9]

      (9) Liu, X.; Liu, M.-H.; Luo, Y.-C.; Mou, C.-Y.; Lin, S. D.; Cheng, H.; Chen, J.-M.; Lee, J.-F.; Lin, T.-S. J. Am. Chem. Soc. 2012, 134, 10251. doi: 10.1021/ja3033235

    10. [10]

      (10) Tang, H.; Wei, J.; Liu, F.; Qiao, B.; Pan, X.; Li, L.; Liu, J.; Wang, J.; Zhang, T. J. Am. Chem. Soc. 2016, 138, 56. doi: 10.1021/jacs.5b11306

    11. [11]

      (11) Tang, H.; Su, Y.; Guo, Y.; Zhang, L.; Li, T.; Zang, K.; Liu, F.; Li, L.; Luo, J.; Qiao, B.; et al. Chem. Sci. 2018, 9, 6679. doi: 10.1039/c8sc01392f

    12. [12]

      (12) Song, T. Y.; Dong, J. H.; Li, R. T.; Xu, X. Y.; Hiroaki, M.; Yang, B.; Zhang, R. K.; Bai, Y. X.; Xin, H.; Lin, L.; et al. J. Phys. Chem. Lett. 2021,12, 4187. doi: 10.1021/acs.jpclett.1c00934

    13. [13]

      (13) Matsubu, J. C.; Zhang, S.; DeRita, L.; Marinkovic, N. S.; Chen, J. G.; Graham, G. W.; Pan, X.; Christophe, P. Nat. Chem. 2017, 9, 120. doi: 10.1038/NCHEM.2607

    14. [14]

      (14) Li, Z.; Cui, Y.; Wu, Z.; Milligan, C.; Zhou, L.; Mitchell, G.; Xu, B.; Shi, E.; Miller, J. T.; Ribeiro, F. H.; et al. Nat. Catal. 2018, 1, 349. doi: 10.1038/s41929-018-0067-8

    15. [15]

      (15) Lunkenbein, T.; Schumann, J.; Behrens, M.; Schlögl, R.; Willinger, M. G. Angew. Chem.-Int. Edit. 2015, 54, 4544. doi: 10.1002/anie.201411581

    16. [16]

      (16) Tauster, S. J.; Fung, S. C.; Baker, R. T. K.; Horsle, J. A. Science 1981, 211, 1120. doi: 10.1126/science.211.4487.1121

    17. [17]

      (17) Han, B.; Li, Q.; Jiang, X.; Guo, Y.; Jiang, Q.; Su, Y.; Li, L.; Qiao, B. Small 2022,18, 2204490. doi: 10.1002/smll.202204490

    18. [18]

      (18) Guo, Y.; Li, Y.; Du, X.; Li, L.; Jiang, Q.; Qiao, B. Nano Res. 2022, 15, 10037. doi: 10.1007/s12274-022-4376-5

    19. [19]

      (19) Han, B.; Guo, Y. L.; Huang, Y. K.; Xi, W.; Xu, J.; Luo, J.; Qi, H. F.; Ren, Y. J.; Liu, X. Y.; Qiao, B. T.; et al. Angew. Chem.-Int. Edit.2020, 59, 11824. doi: 10.1002/anie.202003208

    20. [20]

      (20) Tang, H. L.; Liu, F.; Wei, J. K.; Qiao, B. T.; Zhao, K. F.; Su, Y.; Jin, C. Z.; Li, L.; Liu, J. Y.; Wang, J. H.; et al. Angew. Chem.-Int. Edit. 2016, 55, 10606. doi: 10.1002/anie.201601823

    21. [21]

      (21) Renz, M.; Corma, A. Eur. J. Org. Chem. 2004, 2004, 2036. doi: 10.1002/ejoc.200300778

    22. [22]

      (22) Akashi, T.; Sato, S.; Takahashi, R.; Sodesawa, T.; Inui, K. Catal. Commun. 2003,4, 411. doi: 10.1016/s1566-7367(03)00095-5

    23. [23]

      (23) Mori, K.; Kanai, S.; Hara, T.; Mizugaki, T.; Ebitani, K.; Jitsukawa, K.; Kaneda, K. Chem. Mater. 2007, 19, 1249. doi: 10.1021/cm061388l

    24. [24]

      (24) Tauster, S. J.; Fung, S. C. J. Catal. 1978, 55, 29.

    25. [25]

      (25) Vimont, A.; Thibault-Starzyk, F.; Daturi, M. Chem. Soc. Rev. 2010, 39, 4928. doi: 10.1039/b919543m

    26. [26]

      (26) Lamberti, C.; Zecchina, A.; Groppo, E.; Bordiga, S. Chem. Soc. Rev. 2010, 39, 4951. doi: 10.1039/c0cs00117a

    27. [27]

      (27) Li, L.; Wang, A. Q.; Qiao, B. T.; Lin, J.; Huang, Y. Q.; Wang, X. D.; Zhang, T. J. Catal. 2013, 299, 90. doi: 10.1016/j.jcat.2012.11.019

    28. [28]

      (28) Zhao, K.; Tang, H.; Qiao, B.; Li, L.; Wang, J. ACS Catal. 2015, 5, 3528. doi: 10.1021/cs5020496

    29. [29]

      (29) Lang, R.; Li, T.; Matsumura, D.; Miao, S.; Ren, Y.; Cui, Y. T.; Tan, Y.; Qiao, B.; Li, L.; Wang, A.; et al. Angew. Chem.-Int. Edit. 2016, 55, 16054. doi: 10.1002/anie.201607885

    30. [30]

      (30) Wu, J.; Qiao, L.-Y.; Zhou, Z.-F.; Cui, G.-J.; Zong, S.-S.; Xu, D.-J.; Ye, R.-P.; Chen, R.-P.; Si, R.; Yao, Y.-G. ACS Catal. 2019, 9, 932. doi: 10.1021/acscatal.8b03319

    31. [31]

      (31) Mou, J. L.; Chen, L. L.; Fan, J.; Zeng, L.; Jiang, X.; Jiao, Y.; Wang, J. L.; Chen, Y. Q. Acta Phys.-Chim. Sin. 2023, 39, 2302041. doi: 10.3866/PKU.WHXB202302041

    32. [32]

      (32) Marchionni, V.; Newton, M. A.; Kambolis, A.; Matam, S. K.; Weidenkaff, A.; Ferri, D. Catal. Today 2014, 229, 80. doi: 10.1016/j.cattod.2013.10.082

    33. [33]

      (33) Machida, M.; Minami, S.; Ikeue, K.; Hinokuma, S.; Nagao, Y.; Sato, T.; Nakahara, Y. Chem. Mater. 2014, 26, 5799. doi: 10.1021/cm503061g

    34. [34]

      (34) Machida, M.; Minami, S.; Hinokuma, S.; Yoshida, H.; Nagao, Y.; Sato, T.; Nakahara, Y. J. Phys. Chem. C 2014, 119, 373. doi: 10.1021/jp509649r

    35. [35]

      (35) Machida, M. Chem. Rec. 2016, 16, 2219. doi: 10.1002/tcr.201600037

    36. [36]

      (36) Gol’dshleger, N. F.; Azbel', B. I.; Isakov, Y. I.; Shpiro, E. S.; Minachev, K. M. J. Mol. Catal. A: Chem. 1996, 106, 159.

    37. [37]

      (37) Andersson, S. L. T.; Scurre, M. S. J. Catal. 1981, 71, 233.

  • 加载中
    1. [1]

      Jiaxi Xu Yuan Ma . Influence of Hyperconjugation on the Stability and Stable Conformation of Ethane, Hydrazine, and Hydrogen Peroxide. University Chemistry, 2024, 39(11): 374-377. doi: 10.3866/PKU.DXHX202402049

    2. [2]

      Shitao Fu Jianming Zhang Cancan Cao Zhihui Wang Chaoran Qin Jian Zhang Hui Xiong . Study on the Stability of Purple Cabbage Pigment. University Chemistry, 2024, 39(4): 367-372. doi: 10.3866/PKU.DXHX202401059

    3. [3]

      Bo YANGGongxuan LÜJiantai MA . Corrosion inhibition of nickel-cobalt-phosphide in water by coating TiO2 layer. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 365-384. doi: 10.11862/CJIC.20240063

    4. [4]

      Yihan Xue Xue Han Jie Zhang Xiaoru Wen . Efficient capacitive desalination over NCQDs decorated FeOOH composite. Acta Physico-Chimica Sinica, 2025, 41(7): 100072-. doi: 10.1016/j.actphy.2025.100072

    5. [5]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    6. [6]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    7. [7]

      Jie WUZhihong LUOXiaoli CHENFangfang XIONGLi CHENBiao ZHANGBin SHIQuansheng OUYANGJiaojing SHAO . Critical roles of AlPO4 coating in enhancing cycling stability and rate capability of high voltage LiNi0.5Mn1.5O4 cathode materials. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 948-958. doi: 10.11862/CJIC.20240400

    8. [8]

      Rui HUANGShengjie LIUQingyuan WUNanfeng ZHENG . Enhanced selectivity of catalytic hydrogenation of halogenated nitroaromatics by interfacial effects. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 201-212. doi: 10.11862/CJIC.20240356

    9. [9]

      Xuyang Wang Jiapei Zhang Lirui Zhao Xiaowen Xu Guizheng Zou Bin Zhang . Theoretical Study on the Structure and Stability of Copper-Ammonia Coordination Ions. University Chemistry, 2024, 39(3): 384-389. doi: 10.3866/PKU.DXHX202309065

    10. [10]

      Xiaoning TANGJunnan LIUXingfu YANGJie LEIQiuyang LUOShu XIAAn XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191

    11. [11]

      Yingtong Shi Guotong Xu Guizeng Liang Di Lan Siyuan Zhang Yanru Wang Daohao Li Guanglei Wu . PEG-VN modified PP separator for high-stability and high-efficiency lithium-sulfur batteries. Acta Physico-Chimica Sinica, 2025, 41(7): 100082-. doi: 10.1016/j.actphy.2025.100082

    12. [12]

      Xuewei BACheng CHENGHuaikang ZHANGDeqing ZHANGShuhua LI . Preparation and luminescent performance of Sr1-xZrSi2O7xDy3+ phosphor with high thermal stability. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 357-364. doi: 10.11862/CJIC.20240096

    13. [13]

      Renqing Lü Shutao Wang Fang Wang Guoping Shen . Computational Chemistry Aided Organic Chemistry Teaching: A Case of Comparison of Basicity and Stability of Diazine Isomers. University Chemistry, 2025, 40(3): 76-82. doi: 10.12461/PKU.DXHX202404119

    14. [14]

      Baitong Wei Jinxin Guo Xigong Liu Rongxiu Zhu Lei Liu . Theoretical Study on the Structure, Stability of Hydrocarbon Free Radicals and Selectivity of Alkane Chlorination Reaction. University Chemistry, 2025, 40(3): 402-407. doi: 10.12461/PKU.DXHX202406003

    15. [15]

      Zeyi Yan Ruitao Liu Xinyu Qi Yuxiang Zhang Lulu Sun Xiangyuan Li Anchao Feng . Exploration of Suspension Polymerization: Preparation and Fluorescence Stability of Perovskite Polystyrene Microbeads. University Chemistry, 2025, 40(4): 72-79. doi: 10.12461/PKU.DXHX202405110

    16. [16]

      Jiaxun Wu Mingde Li Li Dang . The R eaction of Metal Selenium Complexes with Olefins as a Tutorial Case Study for Analyzing Molecular Orbital Interaction Modes. University Chemistry, 2025, 40(3): 108-115. doi: 10.12461/PKU.DXHX202405098

    17. [17]

      Huiying Xu Minghui Liang Zhi Zhou Hui Gao Wei Yi . Application of Quantum Chemistry Computation and Visual Analysis in Teaching of Weak Interactions. University Chemistry, 2025, 40(3): 199-205. doi: 10.12461/PKU.DXHX202407011

    18. [18]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    19. [19]

      Weihan Zhang Menglu Wang Ankang Jia Wei Deng Shuxing Bai . 表面硫物种对钯-硫纳米片加氢性能的影响. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-. doi: 10.3866/PKU.WHXB202309043

    20. [20]

      Liuyun Chen Wenju Wang Tairong Lu Xuan Luo Xinling Xie Kelin Huang Shanli Qin Tongming Su Zuzeng Qin Hongbing Ji . Soft template-induced deep pore structure of Cu/Al2O3 for promoting plasma-catalyzed CO2 hydrogenation to DME. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-. doi: 10.1016/j.actphy.2025.100054

Metrics
  • PDF Downloads(1)
  • Abstract views(433)
  • HTML views(71)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return