Citation: Pengyu Dong, Yue Jiang, Zhengchi Yang, Licheng Liu, Gu Li, Xinyang Wen, Zhen Wang, Xinbo Shi, Guofu Zhou, Jun-Ming Liu, Jinwei Gao. NbSe2 Nanosheets Improved the Buried Interface for Perovskite Solar Cells[J]. Acta Physico-Chimica Sinica, ;2025, 41(3): 240702. doi: 10.3866/PKU.WHXB202407025 shu

NbSe2 Nanosheets Improved the Buried Interface for Perovskite Solar Cells

  • Corresponding author: Yue Jiang, yuejiang@m.scnu.edu.cn Zhen Wang, zhenwang@m.scnu.edu.cn Jinwei Gao, gaojinwei@m.scnu.edu.cn
  • Received Date: 26 July 2024
    Revised Date: 21 August 2024
    Accepted Date: 30 August 2024

    Fund Project: National Natural Science Foundation of China 52472193National Natural Science Foundation of China 62105124the Guangdong Basic and Applied Basic Research Foundation 2022A1515010264the Guangdong Basic and Applied Basic Research Foundation 2022B1515120006the Science and Technology Programs of Guangzhou 202201000008the China Postdoctoral Science Foundation 2022M721215

  • Organic-inorganic metal halide perovskite solar cells (PSCs) are favorable candidates for next-generation solar cells, due to their excellent photovoltaic performance and promising low-cost fabrication process. Particularly, tin oxide (SnO2), with excellent charge mobility and extraction efficiency, is widely used as electron transport layers (ETLs), and the efficiency of the corresponding n-i-p-type perovskites has been certified as high as 26.21% in single-junction devices. The SnO2 layer serves as the substrate for the growth of perovskite films, determining the crystalline quality and the buried interface of perovskite films. However, due to the different thermal expansion coefficient of SnO2 and perovskite, the subsequent perovskite annealing process leads to the residual stress at the buried interfaces and lattice distortion in the perovskite films, which seriously affects their optoelectronic performance and stability. To release this interfacial stress, researchers have made some progress by applying different polymers and small molecules to the SnO2/perovskite interface as a buffer layer. Among these, two-dimensional (2D) nanosheets with high carrier mobility, a wide bandgap range, and excellent optical absorption properties are promising, especially 2D NbSe2 nanosheets showing the advantages of solution-processability, high intrinsic conductivity and clean smooth surface, namely without dangling bonded atoms. Herein, 2D NbSe2 nanosheets have been introduced at the SnO2/perovskite interface to release the undesired residual tensile strain in perovskite films and to form a more matched interfacial energy level alignment. As a result, we have obtained a high-quality perovskite film and further an improved photovoltaic performance. The PCE has been increased from 21.81% to 24.05%. The unencapsulated cell maintained 91% of the initial efficiency after aging over 1000 h under atmospheric condition.
  • 加载中
    1. [1]

      Shi, P.; Ding, Y.; Ding, B.; Xing, Q.; Kodalle, T.; Sutter-Fella, C. M.; Yavuz, I.; Yao, C.; Fan, W.; Xu, J.; et al. Nature 2023, 620, 323. doi: 10.1038/s41586-023-06208-z  doi: 10.1038/s41586-023-06208-z

    2. [2]

      Yu, S.; Xiong, Z.; Zhou, H.; Zhang, Q.; Wang, Z.; Ma, F.; Qu, Z.; Zhao, Y.; Chu, X.; Zhang, X.; et al. Science 2023, 382, 1399. doi: 10.1126/science.adj8858  doi: 10.1126/science.adj8858

    3. [3]

      Li, Z.; Li, B.; Wu, X.; Sheppard, S. A.; Zhang, S.; Gao, D.; Long, N. J.; Zhu, Z. Science 2022, 376, 416. doi: 10.1126/science.abm8566  doi: 10.1126/science.abm8566

    4. [4]

      Wang, M.; Shi, Z.; Fei, C.; Deng, Z. J. D.; Yang, G.; Dunfield, S. P.; Fenning, D. P.; Huang, J. Nat. Energy 2023, 8, 1229. doi: 10.1038/s41560-023-01362-0  doi: 10.1038/s41560-023-01362-0

    5. [5]

      Liang, Z.; Zhang, Y.; Xu, H.; Chen, W.; Liu, B.; Zhang, J.; Zhang, H.; Wang, Z.; Kang, D. -H.; Zeng, J.; et al. Nature 2023, 624, 557. doi: 10.1038/s41586-023-06784-0  doi: 10.1038/s41586-023-06784-0

    6. [6]

      Zhao, Y.; Ma, F.; Qu, Z.; Yu, S.; Shen, T.; Deng, H. -X.; Chu, X.; Peng, X.; Yuan, Y.; Zhang, X.; et al. Science 2022, 377, 531. doi: 10.1126/science.abp8873  doi: 10.1126/science.abp8873

    7. [7]

      Liu, C.; Yang, Y.; Chen, H.; Xu, J.; Liu, A.; Bati, A. S. R.; Zhu, H.; Grater, L.; Hadke, S. S.; Huang, C.; et al. Science 2023, 382, 810. doi: 10.1126/science.adk1633  doi: 10.1126/science.adk1633

    8. [8]

      Ahmed, Y.; Feng, X.; Gao, Y.; Ding, Y.; Long, C.; Haider, M.; Li, H.; Li, Z.; Huang, S.; Saidaminov, M. I.; et al. Acta Phys. -Chim. Sin. 2024, 40, 2303057.  doi: 10.3866/PKU.WHXB202303057

    9. [9]

      Wen, Y.; Li, J.; Gao, X.; Tian, C.; Zhu, H.; Yu, G.; Zhang, X.; Park, H.; Huang, F. Acta Phys. -Chim. Sin. 2023, 39, 2203048.  doi: 10.3866/PKU.WHXB202203048

    10. [10]

      Zhou, J.; Tan, L.; Liu, Y.; Li, H.; Liu, X.; Li, M.; Wang, S.; Zhang, Y.; Jiang, C.; Hua, R.; et al. Joule 2024, 8, 1691. doi: 10.1016/j.joule.2024.02.019  doi: 10.1016/j.joule.2024.02.019

    11. [11]

      Singh, M.; Ng, A.; Ren, Z.; Hu, H.; Lin, H. -C.; Chu, C. -W.; Li, G. Nano Energy 2019, 60, 275. doi: 10.1016/j.nanoen.2019.03.044  doi: 10.1016/j.nanoen.2019.03.044

    12. [12]

      Ning, L.; Zha, L.; Duan, R.; Gu, N.; Du, P.; Song, L.; Chen, W. -H.; Xiong, J. Chem. Eng. J. 2023, 471, 144279. doi: 10.1016/j.cej.2023.144279  doi: 10.1016/j.cej.2023.144279

    13. [13]

      Chen, J.; Zhang, J.; Huang, C.; Bi, Z.; Xu, X.; Yu, H. Chem. Eng. J. 2021, 410, 128436. doi: 10.1016/j.cej.2021.128436  doi: 10.1016/j.cej.2021.128436

    14. [14]

      Chen, S.; Xiao, X.; Chen, B.; Kelly, L. L.; Zhao, J.; Lin, Y.; Toney, M. F.; Huang, J. Sci. Adv. 2021, 7, eabb2412. doi: 10.1126/sciadv.abb2412  doi: 10.1126/sciadv.abb2412

    15. [15]

      Luo, C.; Zheng, G.; Gao, F.; Wang, X.; Zhan, C.; Gao, X.; Zhao, Q. Nat. Photonics 2023, 17, 856. doi: 10.1038/s41566-023-01247-4  doi: 10.1038/s41566-023-01247-4

    16. [16]

      Rolston, N.; Bush, K. A.; Printz, A. D.; Gold-Parker, A.; Ding, Y.; Toney, M. F.; McGehee, M. D.; Dauskardt, R. H. Adv. Energy Mater. 2018, 8, 1802139. doi: 10.1002/aenm.201802139  doi: 10.1002/aenm.201802139

    17. [17]

      Meng, Y.; Liu, C.; Cao, R.; Zhang, J.; Xie, L.; Yang, M.; Xie, L.; Wang, Y.; Yin, X.; Liu, C.; et al. Adv. Funct. Mater. 2023, 33, 2214788. doi: 10.1002/adfm.202214788  doi: 10.1002/adfm.202214788

    18. [18]

      Wu, J.; Cui, Y.; Yu, B.; Liu, K.; Li, Y.; Li, H.; Shi, J.; Wu, H.; Luo, Y.; Li, D.; et al. Adv. Funct. Mater. 2019, 29, 1905336. doi: 10.1002/adfm.201905336  doi: 10.1002/adfm.201905336

    19. [19]

      Bi, H.; Liu, B.; He, D.; Bai, L.; Wang, W.; Zang, Z.; Chen, J. Chem. Eng. J. 2021, 418, 129375. doi: 10.1016/j.cej.2021.129375  doi: 10.1016/j.cej.2021.129375

    20. [20]

      Zhou, Q.; Duan, J.; Yang, X.; Duan, Y.; Tang, Q. Angew. Chem. Int. Ed. 2020, 59, 21997. doi: 10.1002/anie.202010252  doi: 10.1002/anie.202010252

    21. [21]

      Murphy, D. W.; Di Salvo, F. J.; Hull, G. W., Jr.; Waszczak, J. V. Inorg. Chem. 1976, 15, 17. doi: 10.1021/ic50155a005  doi: 10.1021/ic50155a005

    22. [22]

      Novoselov, K. S.; Jiang, D.; Schedin, F.; Booth, T. J.; Khotkevich, V. V.; Morozov, S. V.; Geim, A. K. Proc. Natl. Acad. Sci. USA 2005, 102, 10451. doi: 10.1073/pnas.0502848102  doi: 10.1073/pnas.0502848102

    23. [23]

      Xi, X.; Wang, Z.; Zhao, W.; Park, J. -H.; Law, K. T.; Berger, H.; Forró, L.; Shan, J.; Mak, K. F. Nat. Phys. 2016, 12, 139. doi: 10.1038/nphys3538  doi: 10.1038/nphys3538

    24. [24]

      Novoselov, K. S.; Mishchenko, A.; Carvalho, A.; Castro Neto, A. H. Science 2016, 353, aac9439. doi: 10.1126/science.aac9439  doi: 10.1126/science.aac9439

    25. [25]

      Gu, X.; Cui, W.; Song, T.; Liu, C.; Shi, X.; Wang, S.; Sun, B. ChemSusChem 2014, 7, 416. doi: 10.1002/cssc.201300615  doi: 10.1002/cssc.201300615

    26. [26]

      Kang, B. -H.; Lee, D. -K.; Kim, D. -S.; Hur, O. -N.; Lee, C. -S.; Bae, J.; Park, S. -H. Appl. Surf. Sci. 2023, 637, 157954. doi: 10.1016/j.apsusc.2023.157954  doi: 10.1016/j.apsusc.2023.157954

    27. [27]

      Huang, Y. H.; Chen, R. S.; Zhang, J. R.; Huang, Y. S. Nanoscale 2015, 7, 18964. doi: 10.1039/C5NR05430C  doi: 10.1039/C5NR05430C

    28. [28]

      Staley, N. E.; Wu, J.; Eklund, P.; Liu, Y.; Li, L.; Xu, Z. Phys. Rev. B 2009, 80, 184505. doi: 10.1103/PhysRevB.80.184505  doi: 10.1103/PhysRevB.80.184505

    29. [29]

      Lee, C.; Yan, H.; Brus, L. E.; Heinz, T. F.; Hone, J.; Ryu, S. ACS Nano 2010, 4, 2695. doi: 10.1021/nn1003937  doi: 10.1021/nn1003937

    30. [30]

      Molina-Sánchez, A.; Wirtz, L. Phys. Rev. B 2011, 84, 155413. doi: 10.1103/PhysRevB.84.155413  doi: 10.1103/PhysRevB.84.155413

    31. [31]

      Luo, X.; Zhao, Y.; Zhang, J.; Xiong, Q.; Quek, S. Y. Phys. Rev. B 2013, 88, 075320. doi: 10.1103/PhysRevB.88.075320  doi: 10.1103/PhysRevB.88.075320

    32. [32]

      Manzeli, S.; Ovchinnikov, D.; Pasquier, D.; Yazyev, O. V.; Kis, A. Nat. Rev. Mater. 2017, 2, 17033. doi: 10.1038/natrevmats.2017.33  doi: 10.1038/natrevmats.2017.33

    33. [33]

      Zhang, W.; Liu, H.; Qu, Y.; Cui, J.; Zhang, W.; Shi, T.; Wang, H. -L. Adv. Mater. 2024, 36, 2309193. doi: 10.1002/adma.202309193  doi: 10.1002/adma.202309193

    34. [34]

      Ma, C.; Kang, M. -C.; Lee, S. -H.; Kwon, S. J.; Cha, H. -W.; Yang, C. -W.; Park, N. -G. Joule 2022, 6, 2626. doi: 10.1016/j.joule.2022.09.012  doi: 10.1016/j.joule.2022.09.012

    35. [35]

      Yang, H.; Hao, Y.; Ren, J.; Wu, Y.; Sun, Q.; Zhang, C.; Cui, Y.; Hao, Y. J. Mater. Chem. C 2023, 11, 8470. doi: 10.1039/D3TC01076G  doi: 10.1039/D3TC01076G

    36. [36]

      Fu, J.; Zhang, J.; Zhang, T.; Yuan, L.; Zhang, Z.; Jiang, Z.; Huang, Z.; Wu, T.; Yan, K.; Zhang, L.; et al. ACS Nano 2023, 17, 2802. doi: 10.1021/acsnano.2c11091  doi: 10.1021/acsnano.2c11091

    37. [37]

      Wang, H.; Zhu, C.; Liu, L.; Ma, S.; Liu, P.; Wu, J.; Shi, C.; Du, Q.; Hao, Y.; Xiang, S.; et al. Adv. Mater. 2019, 31, 1904408. doi: 10.1002/adma.201904408  doi: 10.1002/adma.201904408

    38. [38]

      Zheng, Z.; Li, F.; Gong, J.; Ma, Y.; Gu, J.; Liu, X.; Chen, S.; Liu, M. Adv. Mater. 2022, 34, 2109879. doi: 10.1002/adma.202109879  doi: 10.1002/adma.202109879

    39. [39]

      Li, X.; Ying, Z.; Zheng, J.; Wang, X.; Chen, Y.; Wu, M.; Xiao, C.; Sun, J.; Shou, C.; Yang, Z.; et al. Adv. Mater. 2023, 35, 2211962. doi: 10.1002/adma.202211962  doi: 10.1002/adma.202211962

    40. [40]

      Guo, J.; Meng, G.; Zhang, X.; Huang, H.; Shi, J.; Wang, B.; Hu, X.; Yuan, J.; Ma, W. Adv. Mater. 2023, 35, 2302839. doi: 10.1002/adma.202302839  doi: 10.1002/adma.202302839

    41. [41]

      Wang, Z.; Cai, B.; Ren, Y.; Wang, W.; Feng, L.; Zhang, S.; Wang, Y. ACS Appl. Mater. Interfaces 2020, 12, 19674. doi: 10.1021/acsami.0c03044  doi: 10.1021/acsami.0c03044

    42. [42]

      Liu, H.; Han, H.; Xu, J.; Pan, X.; Zhao, K.; Liu, S.; Yao, J. Adv. Mater. 2023, 35, 2300302. doi: 10.1002/adma.202300302  doi: 10.1002/adma.202300302

    43. [43]

      Zhu, C.; Niu, X.; Fu, Y.; Li, N.; Hu, C.; Chen, Y.; He, X.; Na, G.; Liu, P.; Zai, H.; et al. Nat. Commun. 2019, 10, 815. doi: 10.1038/s41467-019-08507-4  doi: 10.1038/s41467-019-08507-4

    44. [44]

      Dailey, M.; Li, Y.; Printz, A. D. ACS Omega 2021, 6, 30214. doi: 10.1021/acsomega.1c04814  doi: 10.1021/acsomega.1c04814

    45. [45]

      Kim, M.; Jeong, J.; Lu, H.; Lee, T. K.; Eickemeyer, F. T.; Liu, Y.; Choi, I. W.; Choi, S. J.; Jo, Y.; Kim, H. -B.; et al. Science 2022, 375, 302. doi: 10.1126/science.abh1885  doi: 10.1126/science.abh1885

    46. [46]

      Bredar, A. R. C.; Chown, A. L.; Burton, A. R.; Farnum, B. H. ACS Appl. Energy Mater. 2020, 3, 66. doi: 10.1021/acsaem.9b01965  doi: 10.1021/acsaem.9b01965

    47. [47]

      Yang, Z.; Jiang, Y.; Wang, Y.; Li, G.; You, Q.; Wang, Z.; Gao, X.; Lu, X.; Shi, X.; Zhou, G.; et al. Small 2023, 9, 2307186. doi: 10.1002/smll.202307186  doi: 10.1002/smll.202307186

    48. [48]

      Li, G.; Wang, Z.; Wang, Y.; Yang, Z.; Dong, P.; Feng, Y.; Jiang, Y.; Feng, S. -P.; Zhou, G.; Liu, J. -M.; et al. Small 2023, 19, 2301323. doi: 10.1002/smll.202301323  doi: 10.1002/smll.202301323

    49. [49]

      Guo, H.; Chen, H.; Zhang, H.; Huang, X.; Yang, J.; Wang, B.; Li, Y.; Wang, L.; Niu, X.; Wang, Z. Nano Energy 2019, 59, 1. doi: 10.1016/j.nanoen.2019.01.059  doi: 10.1016/j.nanoen.2019.01.059

    50. [50]

      Singh, R.; Giri, A.; Pal, M.; Thiyagarajan, K.; Kwak, J.; Lee, J. -J.; Jeong, U.; Cho, K. J. Mater. Chem. A 2019, 7, 7151. doi: 10.1039/C8TA12254G  doi: 10.1039/C8TA12254G

    51. [51]

      Wang, Y.; Yang, C.; Wang, Z.; Li, G.; Yang, Z.; Wen, X.; Hu, X.; Jiang, Y.; Feng, S. -P.; Chen, Y.; et al. Small 2023, 14, 2306954. doi:10.1002/smll.202306954  doi: 10.1002/smll.202306954

  • 加载中
    1. [1]

      Yameen AhmedXiangxiang FengYuanji GaoYang DingCaoyu LongMustafa HaiderHengyue LiZhuan LiShicheng HuangMakhsud I. SaidaminovJunliang Yang . Interface Modification by Ionic Liquid for Efficient and Stable FAPbI3 Perovskite Solar Cells. Acta Physico-Chimica Sinica, 2024, 40(6): 2303057-0. doi: 10.3866/PKU.WHXB202303057

    2. [2]

      Chunling QinShuang ChenHassanien GomaaMohamed A. ShenashenSherif A. El-SaftyQian LiuCuihua AnXijun LiuQibo DengNing Hu . Regulating HER and OER Performances of 2D Materials by the External Physical Fields. Acta Physico-Chimica Sinica, 2024, 40(9): 2307059-0. doi: 10.3866/PKU.WHXB202307059

    3. [3]

      Huayan LiuYifei ChenMengzhao YangJiajun Gu . Strategies for enhancing capacity and rate performance of two-dimensional material-based supercapacitors. Acta Physico-Chimica Sinica, 2025, 41(6): 100063-0. doi: 10.1016/j.actphy.2025.100063

    4. [4]

      Mengfei HeChao ChenYue TangSi MengZunfa WangLiyu WangJiabao XingXinyu ZhangJiahui HuangJiangbo LuHongmei JingXiangyu LiuHua Xu . Epitaxial Growth of Nonlayered 2D MnTe Nanosheets with Thickness-Tunable Conduction for p-Type Field Effect Transistor and Superior Contact Electrode. Acta Physico-Chimica Sinica, 2025, 41(2): 2310029-0. doi: 10.3866/PKU.WHXB202310029

    5. [5]

      Jia Zhou Huaying Zhong . Experimental Design of Computational Materials Science Combined with Machine Learning. University Chemistry, 2025, 40(3): 171-177. doi: 10.12461/PKU.DXHX202406004

    6. [6]

      Yushan CaiFang-Xing Xiao . Revisiting MXenes-based Photocatalysis Landscape: Progress, Challenges, and Future Perspectives. Acta Physico-Chimica Sinica, 2024, 40(8): 2306048-0. doi: 10.3866/PKU.WHXB202306048

    7. [7]

      Yixuan Gao Lingxing Zan Wenlin Zhang Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091

    8. [8]

      Nengmin ZHUWenhao ZHUXiaoyao YINSongzhi ZHENGHao LIZeyuan WANGWenhao WEIXuanheng CHENWeihai SUN . Preparation of high-performance CsPbBr3 perovskite solar cells by the aqueous solution solvent method. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1131-1140. doi: 10.11862/CJIC.20240419

    9. [9]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

    10. [10]

      Xiaoyao YINWenhao ZHUPuyao SHIZongsheng LIYichao WANGNengmin ZHUYang WANGWeihai SUN . Fabrication of all-inorganic CsPbBr3 perovskite solar cells with SnCl2 interface modification. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 469-479. doi: 10.11862/CJIC.20240309

    11. [11]

      Mingxuan QiLanyu JinHonghe YaoZipeng XuTeng ChengQi ChenCheng ZhuYang Bai . Recent progress on electrical failure and stability of perovskite solar cells under reverse bias. Acta Physico-Chimica Sinica, 2025, 41(8): 100088-0. doi: 10.1016/j.actphy.2025.100088

    12. [12]

      Ying LiangYuheng DengShilv YuJiahao ChengJiawei SongJun YaoYichen YangWanlei ZhangWenjing ZhouXin ZhangWenjian ShenGuijie LiangBin LiYong PengRun HuWangnan Li . Machine learning-guided antireflection coatings architectures and interface modification for synergistically optimizing efficient and stable perovskite solar cells. Acta Physico-Chimica Sinica, 2025, 41(9): 100098-0. doi: 10.1016/j.actphy.2025.100098

    13. [13]

      Jizhou LiuChenbin AiChenrui HuBei ChengJianjun Zhang . Accelerated Interfacial Electron Transfer in Perovskite Solar Cell by Ammonium Hexachlorostannate Modification and fs-TAS Investigation. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-0. doi: 10.3866/PKU.WHXB202402006

    14. [14]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    15. [15]

      Ruonan LiShijie LiangYunhua XuCuifen ZhangZheng TangBaiqiao LiuWeiwei Li . Chlorine-Substituted Double-Cable Conjugated Polymers with Near-Infrared Absorption for Low Energy Loss Single-Component Organic Solar Cells. Acta Physico-Chimica Sinica, 2024, 40(8): 2307037-0. doi: 10.3866/PKU.WHXB202307037

    16. [16]

      Yikai WangXiaolin JiangHaoming SongNan WeiYifan WangXinjun XuCuihong LiHao LuYahui LiuZhishan Bo . Thickness-Insensitive, Cyano-Modified Perylene Diimide Derivative as a Cathode Interlayer Material for High-Efficiency Organic Solar Cells. Acta Physico-Chimica Sinica, 2025, 41(3): 2406007-0. doi: 10.3866/PKU.WHXB202406007

    17. [17]

      Baohua LÜYuzhen LI . Anisotropic photoresponse of two-dimensional layered α-In2Se3(2H) ferroelectric materials. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1911-1918. doi: 10.11862/CJIC.20240105

    18. [18]

      Runhua ChenQiong WuJingchen LuoXiaolong ZuShan ZhuYongfu Sun . Defective Ultrathin Two-Dimensional Materials for Photo-/Electrocatalytic CO2 Reduction: Fundamentals and Perspectives. Acta Physico-Chimica Sinica, 2025, 41(3): 2308052-0. doi: 10.3866/PKU.WHXB202308052

    19. [19]

      Xiaoli CHENZhihong LUOYuzhu XIONGAihua WANGXue CHENJiaojing SHAO . Inhibitory effect of the interlayer of two-dimensional vermiculite on the polysulfide shuttle in lithium-sulfur batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1661-1671. doi: 10.11862/CJIC.20250075

    20. [20]

      Yawen GuoDawei LiYang GaoCuihong Li . Recent Progress on Stability of Organic Solar Cells Based on Non-Fullerene Acceptors. Acta Physico-Chimica Sinica, 2024, 40(6): 2306050-0. doi: 10.3866/PKU.WHXB202306050

Metrics
  • PDF Downloads(0)
  • Abstract views(132)
  • HTML views(0)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return