Citation: Pengyu Dong,  Yue Jiang,  Zhengchi Yang,  Licheng Liu,  Gu Li,  Xinyang Wen,  Zhen Wang,  Xinbo Shi,  Guofu Zhou,  Jun-Ming Liu,  Jinwei Gao. NbSe2纳米片优化钙钛矿太阳能电池的埋底界面[J]. Acta Physico-Chimica Sinica, ;2025, 41(3): 240702. doi: 10.3866/PKU.WHXB202407025 shu

NbSe2纳米片优化钙钛矿太阳能电池的埋底界面

  • Received Date: 26 July 2024
    Revised Date: 21 August 2024
    Accepted Date: 30 August 2024

    Fund Project: The project was supported by National Natural Science Foundation of China (52472193, 62105124), the Guangdong Basic and Applied Basic Research Foundation (2022A1515010264, 2022B1515120006), the Science and Technology Programs of Guangzhou (202201000008), and the China Postdoctoral Science Foundation (2022M721215).

  • 有机-无机金属卤化物钙钛矿太阳能电池(PSC)因其优异的光伏性能和低成本制造工艺成为下一代太阳能电池的有利候选者。其中,氧化锡(SnO2)具有优异电荷迁移率和电子提取效率,广泛用作钙钛矿太阳电池的电子传输层(ETL),相应的n-i-p型单结钙钛矿器件已获得高达26.21%的认证效率。SnO2层作为钙钛矿薄膜生长的基底,对钙钛矿埋底界面的形成和薄膜的结晶质量起着决定性作用。然而,由于SnO2和钙钛矿的热膨胀系数存在差异,在后续的退火过程不可避免地会在钙钛矿薄膜中产生残余应力导致晶格畸变,这严重影响了电池的光电性能和稳定性。针对残余应力释放问题,研究人员将不同的聚合物和小分子作为缓冲层应用于SnO2/钙钛矿界面,并取得了一些进展。而与这些绝缘材料相比,二维(2D)纳米片具有高载流子迁移率、宽带隙和优异光吸收性能等特性,是很有前景的界面材料。尤其,2D NbSe2纳米片具有溶液可加工性、高固有电导率以及干净光滑表面(即没有悬空键)等优点。因此,本工作在SnO2/钙钛矿界面引入2D NbSe2纳米片以释放钙钛矿薄膜中的残余拉伸应变,并构建更匹配的能级排列结构。最终,我们制备出了高质量的钙钛矿薄膜,并将钙钛矿太阳能电池效率从21.81%提高到24.05%。另外,文本的未封装电池在大气条件下老化1000 h后,仍保持了91%的初始效率。
  • 加载中
    1. [1]

      (1) Shi, P.; Ding, Y.; Ding, B.; Xing, Q.; Kodalle, T.; Sutter-Fella, C. M.; Yavuz, I.; Yao, C.; Fan, W.; Xu, J.; et al. Nature 2023, 620, 323. doi:10.1038/s41586-023-06208-z

    2. [2]

      (2) Yu, S.; Xiong, Z.; Zhou, H.; Zhang, Q.; Wang, Z.; Ma, F.; Qu, Z.; Zhao, Y.; Chu, X.; Zhang, X.; et al. Science 2023, 382, 1399. doi:10.1126/science.adj8858

    3. [3]

      (3) Li, Z.; Li, B.; Wu, X.; Sheppard, S. A.; Zhang, S.; Gao, D.; Long, N. J.; Zhu, Z. Science 2022, 376, 416. doi:10.1126/science.abm8566

    4. [4]

      (4) Wang, M.; Shi, Z.; Fei, C.; Deng, Z. J. D.; Yang, G.; Dunfield, S. P.; Fenning, D. P.; Huang, J. Nat. Energy 2023, 8, 1229. doi:10.1038/s41560-023-01362-0

    5. [5]

      (5) Liang, Z.; Zhang, Y.; Xu, H.; Chen, W.; Liu, B.; Zhang, J.; Zhang, H.; Wang, Z.; Kang, D.-H.; Zeng, J.; et al. Nature 2023, 624, 557. doi:10.1038/s41586-023-06784-0

    6. [6]

      (6) Zhao, Y.; Ma, F.; Qu, Z.; Yu, S.; Shen, T.; Deng, H.-X.; Chu, X.; Peng, X.; Yuan, Y.; Zhang, X.; et al. Science 2022, 377, 531. doi:10.1126/science.abp8873

    7. [7]

      (7) Liu, C.; Yang, Y.; Chen, H.; Xu, J.; Liu, A.; Bati, A. S. R.; Zhu, H.; Grater, L.; Hadke, S. S.; Huang, C.; et al. Science 2023, 382, 810. doi:10.1126/science.adk1633

    8. [8]

    9. [9]

    10. [10]

      (10) Zhou, J.; Tan, L.; Liu, Y.; Li, H.; Liu, X.; Li, M.; Wang, S.; Zhang, Y.; Jiang, C.; Hua, R.; et al. Joule 2024, 8, 1691. doi:10.1016/j.joule.2024.02.019

    11. [11]

      (11) Singh, M.; Ng, A.; Ren, Z.; Hu, H.; Lin, H.-C.; Chu, C.-W.; Li, G. Nano Energy 2019, 60, 275. doi:10.1016/j.nanoen.2019.03.044

    12. [12]

      (12) Ning, L.; Zha, L.; Duan, R.; Gu, N.; Du, P.; Song, L.; Chen, W.-H.; Xiong, J. Chem. Eng. J. 2023, 471, 144279. doi:10.1016/j.cej.2023.144279

    13. [13]

      (13) Chen, J.; Zhang, J.; Huang, C.; Bi, Z.; Xu, X.; Yu, H. Chem. Eng. J. 2021, 410, 128436. doi:10.1016/j.cej.2021.128436

    14. [14]

      (14) Chen, S.; Xiao, X.; Chen, B.; Kelly, L. L.; Zhao, J.; Lin, Y.; Toney, M. F.; Huang, J. Sci. Adv. 2021, 7, eabb2412. doi:10.1126/sciadv.abb2412

    15. [15]

      (15) Luo, C.; Zheng, G.; Gao, F.; Wang, X.; Zhan, C.; Gao, X.; Zhao, Q. Nat. Photonics 2023, 17, 856. doi:10.1038/s41566-023-01247-4

    16. [16]

      (16) Rolston, N.; Bush, K. A.; Printz, A. D.; Gold-Parker, A.; Ding, Y.; Toney, M. F.; McGehee, M. D.; Dauskardt, R. H. Adv. Energy Mater. 2018, 8, 1802139. doi:10.1002/aenm.201802139

    17. [17]

      (17) Meng, Y.; Liu, C.; Cao, R.; Zhang, J.; Xie, L.; Yang, M.; Xie, L.; Wang, Y.; Yin, X.; Liu, C.; et al. Adv. Funct. Mater. 2023, 33, 2214788. doi:10.1002/adfm.202214788

    18. [18]

      (18) Wu, J.; Cui, Y.; Yu, B.; Liu, K.; Li, Y.; Li, H.; Shi, J.; Wu, H.; Luo, Y.; Li, D.; et al. Adv. Funct. Mater. 2019, 29, 1905336. doi:10.1002/adfm.201905336

    19. [19]

      (19) Bi, H.; Liu, B.; He, D.; Bai, L.; Wang, W.; Zang, Z.; Chen, J. Chem. Eng. J. 2021, 418, 129375. doi:10.1016/j.cej.2021.129375

    20. [20]

      (20) Zhou, Q.; Duan, J.; Yang, X.; Duan, Y.; Tang, Q. Angew. Chem. Int. Ed. 2020, 59, 21997. doi:10.1002/anie.202010252

    21. [21]

      (21) Murphy, D. W.; Di Salvo, F. J.; Hull, G. W., Jr.; Waszczak, J. V. Inorg. Chem. 1976, 15, 17. doi:10.1021/ic50155a005

    22. [22]

      (22) Novoselov, K. S.; Jiang, D.; Schedin, F.; Booth, T. J.; Khotkevich, V. V.; Morozov, S. V.; Geim, A. K. Proc. Natl. Acad. Sci. USA 2005, 102, 10451. doi:10.1073/pnas.0502848102

    23. [23]

      (23) Xi, X.; Wang, Z.; Zhao, W.; Park, J.-H.; Law, K. T.; Berger, H.; Forró, L.; Shan, J.; Mak, K. F. Nat. Phys. 2016, 12, 139. doi:10.1038/nphys3538

    24. [24]

      (24) Novoselov, K. S.; Mishchenko, A.; Carvalho, A.; Castro Neto, A. H. Science 2016, 353, aac9439. doi:10.1126/science.aac9439

    25. [25]

      (25) Gu, X.; Cui, W.; Song, T.; Liu, C.; Shi, X.; Wang, S.; Sun, B. ChemSusChem 2014, 7, 416. doi:10.1002/cssc.201300615

    26. [26]

      (26) Kang, B.-H.; Lee, D.-K.; Kim, D.-S.; Hur, O.-N.; Lee, C.-S.; Bae, J.; Park, S.-H. Appl. Surf. Sci. 2023, 637, 157954. doi:10.1016/j.apsusc.2023.157954

    27. [27]

      (27) Huang, Y. H.; Chen, R. S.; Zhang, J. R.; Huang, Y. S. Nanoscale 2015, 7, 18964. doi:10.1039/C5NR05430C

    28. [28]

      (28) Staley, N. E.; Wu, J.; Eklund, P.; Liu, Y.; Li, L.; Xu, Z. Phys. Rev. B 2009, 80, 184505. doi:10.1103/PhysRevB.80.184505

    29. [29]

      (29) Lee, C.; Yan, H.; Brus, L. E.; Heinz, T. F.; Hone, J.; Ryu, S. ACS Nano 2010, 4, 2695. doi:10.1021/nn1003937

    30. [30]

      (30) Molina-Sánchez, A.; Wirtz, L. Phys. Rev. B 2011, 84, 155413. doi:10.1103/PhysRevB.84.155413

    31. [31]

      (31) Luo, X.; Zhao, Y.; Zhang, J.; Xiong, Q.; Quek, S. Y. Phys. Rev. B 2013, 88, 075320. doi:10.1103/PhysRevB.88.075320

    32. [32]

      (32) Manzeli, S.; Ovchinnikov, D.; Pasquier, D.; Yazyev, O. V.; Kis, A. Nat. Rev. Mater. 2017, 2, 17033. doi:10.1038/natrevmats.2017.33

    33. [33]

      (33) Zhang, W.; Liu, H.; Qu, Y.; Cui, J.; Zhang, W.; Shi, T.; Wang, H.-L. Adv. Mater. 2024, 36, 2309193. doi:10.1002/adma.202309193

    34. [34]

      (34) Ma, C.; Kang, M.-C.; Lee, S.-H.; Kwon, S. J.; Cha, H.-W.; Yang, C.-W.; Park, N.-G. Joule 2022, 6, 2626. doi:10.1016/j.joule.2022.09.012

    35. [35]

      (35) Yang, H.; Hao, Y.; Ren, J.; Wu, Y.; Sun, Q.; Zhang, C.; Cui, Y.; Hao, Y. J. Mater. Chem. C 2023, 11, 8470. doi:10.1039/D3TC01076G

    36. [36]

      (36) Fu, J.; Zhang, J.; Zhang, T.; Yuan, L.; Zhang, Z.; Jiang, Z.; Huang, Z.; Wu, T.; Yan, K.; Zhang, L.; et al. ACS Nano 2023, 17, 2802. doi:10.1021/acsnano.2c11091

    37. [37]

      (37) Wang, H.; Zhu, C.; Liu, L.; Ma, S.; Liu, P.; Wu, J.; Shi, C.; Du, Q.; Hao, Y.; Xiang, S.; et al. Adv. Mater. 2019, 31, 1904408. doi:10.1002/adma.201904408

    38. [38]

      (38) Zheng, Z.; Li, F.; Gong, J.; Ma, Y.; Gu, J.; Liu, X.; Chen, S.; Liu, M. Adv. Mater. 2022, 34, 2109879. doi:10.1002/adma.202109879

    39. [39]

      (39) Li, X.; Ying, Z.; Zheng, J.; Wang, X.; Chen, Y.; Wu, M.; Xiao, C.; Sun, J.; Shou, C.; Yang, Z.; et al. Adv. Mater. 2023, 35, 2211962. doi:10.1002/adma.202211962

    40. [40]

      (40) Guo, J.; Meng, G.; Zhang, X.; Huang, H.; Shi, J.; Wang, B.; Hu, X.; Yuan, J.; Ma, W. Adv. Mater. 2023, 35, 2302839. doi:10.1002/adma.202302839

    41. [41]

      (41) Wang, Z.; Cai, B.; Ren, Y.; Wang, W.; Feng, L.; Zhang, S.; Wang, Y. ACS Appl. Mater. Interfaces 2020, 12, 19674. doi:10.1021/acsami.0c03044

    42. [42]

      (42) Liu, H.; Han, H.; Xu, J.; Pan, X.; Zhao, K.; Liu, S.; Yao, J. Adv. Mater. 2023, 35, 2300302. doi:10.1002/adma.202300302

    43. [43]

      (43) Zhu, C.; Niu, X.; Fu, Y.; Li, N.; Hu, C.; Chen, Y.; He, X.; Na, G.; Liu, P.; Zai, H.; et al. Nat. Commun. 2019, 10, 815. doi:10.1038/s41467-019-08507-4

    44. [44]

      (44) Dailey, M.; Li, Y.; Printz, A. D. ACS Omega 2021, 6, 30214. doi:10.1021/acsomega.1c04814

    45. [45]

      (45) Kim, M.; Jeong, J.; Lu, H.; Lee, T. K.; Eickemeyer, F. T.; Liu, Y.; Choi, I. W.; Choi, S. J.; Jo, Y.; Kim, H.-B.; et al. Science 2022, 375, 302. doi:10.1126/science.abh1885

    46. [46]

      (46) Bredar, A. R. C.; Chown, A. L.; Burton, A. R.; Farnum, B. H. ACS Appl. Energy Mater. 2020, 3, 66. doi:10.1021/acsaem.9b01965

    47. [47]

      (47) Yang, Z.; Jiang, Y.; Wang, Y.; Li, G.; You, Q.; Wang, Z.; Gao, X.; Lu, X.; Shi, X.; Zhou, G.; et al. Small 2023, 9, 2307186. doi:10.1002/smll.202307186

    48. [48]

      (48) Li, G.; Wang, Z.; Wang, Y.; Yang, Z.; Dong, P.; Feng, Y.; Jiang, Y.; Feng, S.-P.; Zhou, G.; Liu, J.-M.; et al. Small 2023, 19, 2301323. doi:10.1002/smll.202301323

    49. [49]

      (49) Guo, H.; Chen, H.; Zhang, H.; Huang, X.; Yang, J.; Wang, B.; Li, Y.; Wang, L.; Niu, X.; Wang, Z. Nano Energy 2019, 59, 1. doi:10.1016/j.nanoen.2019.01.059

    50. [50]

      (50) Singh, R.; Giri, A.; Pal, M.; Thiyagarajan, K.; Kwak, J.; Lee, J.-J.; Jeong, U.; Cho, K. J. Mater. Chem. A 2019, 7, 7151. doi:10.1039/C8TA12254G

    51. [51]

      (51) Wang, Y.; Yang, C.; Wang, Z.; Li, G.; Yang, Z.; Wen, X.; Hu, X.; Jiang, Y.; Feng, S.-P.; Chen, Y.; et al. Small 2023, 14, 2306954. doi:10.1002/smll.202306954

  • 加载中
    1. [1]

      Huayan Liu Yifei Chen Mengzhao Yang Jiajun Gu . Strategies for enhancing capacity and rate performance of two-dimensional material-based supercapacitors. Acta Physico-Chimica Sinica, 2025, 41(6): 100063-. doi: 10.1016/j.actphy.2025.100063

    2. [2]

      Mengfei He Chao Chen Yue Tang Si Meng Zunfa Wang Liyu Wang Jiabao Xing Xinyu Zhang Jiahui Huang Jiangbo Lu Hongmei Jing Xiangyu Liu Hua Xu . Epitaxial Growth of Nonlayered 2D MnTe Nanosheets with Thickness-Tunable Conduction for p-Type Field Effect Transistor and Superior Contact Electrode. Acta Physico-Chimica Sinica, 2025, 41(2): 100016-. doi: 10.3866/PKU.WHXB202310029

    3. [3]

      Jia Zhou Huaying Zhong . Experimental Design of Computational Materials Science Combined with Machine Learning. University Chemistry, 2025, 40(3): 171-177. doi: 10.12461/PKU.DXHX202406004

    4. [4]

      Yixuan Gao Lingxing Zan Wenlin Zhang Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091

    5. [5]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

    6. [6]

      Jizhou Liu Chenbin Ai Chenrui Hu Bei Cheng Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006

    7. [7]

      Xiaoyao YINWenhao ZHUPuyao SHIZongsheng LIYichao WANGNengmin ZHUYang WANGWeihai SUN . Fabrication of all-inorganic CsPbBr3 perovskite solar cells with SnCl2 interface modification. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 469-479. doi: 10.11862/CJIC.20240309

    8. [8]

      Yikai Wang Xiaolin Jiang Haoming Song Nan Wei Yifan Wang Xinjun Xu Cuihong Li Hao Lu Yahui Liu Zhishan Bo . 氰基修饰的苝二酰亚胺衍生物作为膜厚不敏感型阴极界面材料用于高效有机太阳能电池. Acta Physico-Chimica Sinica, 2025, 41(3): 2406007-. doi: 10.3866/PKU.WHXB202406007

    9. [9]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    10. [10]

      Baohua LÜYuzhen LI . Anisotropic photoresponse of two-dimensional layered α-In2Se3(2H) ferroelectric materials. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1911-1918. doi: 10.11862/CJIC.20240105

    11. [11]

      Runhua Chen Qiong Wu Jingchen Luo Xiaolong Zu Shan Zhu Yongfu Sun . 缺陷态二维超薄材料用于光/电催化CO2还原的基础与展望. Acta Physico-Chimica Sinica, 2025, 41(3): 2308052-. doi: 10.3866/PKU.WHXB202308052

    12. [12]

      Xinxin JINGWeiduo WANGHesu MOPeng TANZhigang CHENZhengying WULinbing SUN . Research progress on photothermal materials and their application in solar desalination. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1033-1064. doi: 10.11862/CJIC.20230371

    13. [13]

      Yipeng Zhou Chenxin Ran Zhongbin Wu . Metacognitive Enhancement in Diversifying Ideological and Political Education within Graduate Course: A Case Study on “Solar Cell Performance Enhancement Technology”. University Chemistry, 2024, 39(6): 151-159. doi: 10.3866/PKU.DXHX202312096

    14. [14]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    15. [15]

      Ran HUOZhaohui ZHANGXi SULong CHEN . Research progress on multivariate two dimensional conjugated metal organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2063-2074. doi: 10.11862/CJIC.20240195

    16. [16]

      Huanhuan XIEYingnan SONGLei LI . Two-dimensional single-layer BiOI nanosheets: Lattice thermal conductivity and phonon transport mechanism. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 702-708. doi: 10.11862/CJIC.20240281

    17. [17]

      Haiyu Zhu Zhuoqun Wen Wen Xiong Xingzhan Wei Zhi Wang . Accurate and efficient prediction of Schottky barrier heights in 2D semimetal/silicon heterojunctions. Acta Physico-Chimica Sinica, 2025, 41(7): 100078-. doi: 10.1016/j.actphy.2025.100078

    18. [18]

      Kun Rong Cuilian Wen Jiansen Wen Xiong Li Qiugang Liao Siqing Yan Chao Xu Xiaoliang Zhang Baisheng Sa Zhimei Sun . Hierarchical MoS2/Ti3C2Tx heterostructure with excellent photothermal conversion performance for solar-driven vapor generation. Acta Physico-Chimica Sinica, 2025, 41(6): 100053-. doi: 10.1016/j.actphy.2025.100053

    19. [19]

      Wei HEJing XITianpei HENa CHENQuan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364

    20. [20]

      Yongzhi LIHan ZHANGGangding WANGYanwei SUILei HOUYaoyu WANG . A two-dimensional metal-organic framework for the determination of nitrofurantoin and nitrofurazone in aqueous solution. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 245-253. doi: 10.11862/CJIC.20240307

Metrics
  • PDF Downloads(0)
  • Abstract views(82)
  • HTML views(0)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return