Citation: Changjun You, Chunchun Wang, Mingjie Cai, Yanping Liu, Baikang Zhu, Shijie Li. Improved Photo-Carrier Transfer by an Internal Electric Field in BiOBr/N-rich C3N5 3D/2D S-Scheme Heterojunction for Efficiently Photocatalytic Micropollutant Removal[J]. Acta Physico-Chimica Sinica, ;2024, 40(11): 240701. doi: 10.3866/PKU.WHXB202407014 shu

Improved Photo-Carrier Transfer by an Internal Electric Field in BiOBr/N-rich C3N5 3D/2D S-Scheme Heterojunction for Efficiently Photocatalytic Micropollutant Removal

  • Corresponding author: Yanping Liu, liuyp@zjou.edu.cn Baikang Zhu, zszbk@126.com Shijie Li, lishijie@zjou.edu.cn
  • These authors contributed equally to this work.
  • Received Date: 14 July 2024
    Revised Date: 12 August 2024
    Accepted Date: 13 August 2024
    Available Online: 19 August 2024

    Fund Project: National Natural Science Foundation of China U1809214the Natural Science Foundation of Zhejiang Province of China LY20E080014the Natural Science Foundation of Zhejiang Province of China LTGN23E080001the Open Research Subject of Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control 2021Y02the Science and Technology Project of Zhoushan 2022C41011

  • Photocatalytic wastewater decontamination techniques hold eminent promise in mitigating environmental deterioration, yet the lack of distinctive photocatalysts prevents their further large-scale application. Herein, an S-scheme heterojunction photocatalyst BiOBr/C3N5 (BBN) was fabricated for efficiently dislodging micropollutants under visible light. Among the BBN samples, the optimal BBN-2 demonstrated exceptional activity in photocatalytic TC removal with a rate constant of 0.0139 min‒1, which surpassed that of pure BiOBr and C3N5 by 0.6 and 2.8 times, respectively. The spatially segregated photoredox sites and efficient photo-carrier separation propelled by an internal electric field are found to play a cardinal role in promoting photoreaction kinetics. Moreover, BBN-2 exhibited remarkable resistance to environmental interference and stability, retaining a high activity level after five runs. Through active radical detection, •O2, h+ and •OH were identified as the primary active species in the photocatalytic reaction process. This research would encourage the exploration of C3N5-based photocatalysts for environmental protection.
  • 加载中
    1. [1]

      Xu, H.; Jia, Y.; Sun, Z.; Su, J.; Liu, Q. S.; Zhou, Q.; Jiang, G. Eco-Environ. Health 2022, 1, 31. doi: 10.1016/j.eehl.2022.04.003  doi: 10.1016/j.eehl.2022.04.003

    2. [2]

      Li, X.; He, F.; Wang, Z.; Xing, B. Eco-Environ. Health 2022, 1, 181. doi: 10.1016/j.eehl.2022.10.001  doi: 10.1016/j.eehl.2022.10.001

    3. [3]

      Li, S.; Liu, Y.; Wu, Y.; Hu, J.; Zhang, Y.; Sun, Q.; Sun, W.; Geng, J.; Liu, X.; Jia, D.; et al. Natl. Sci. Open 2022, 1, 20220029. doi: 10.1360/nso/20220029  doi: 10.1360/nso/20220029

    4. [4]

      Mangla, D.; Annu; Sharma, A.; Ikram, S. J. Hazard Mater. 2022, 425, 127946. doi: 10.1016/j.jhazmat.2021.127946  doi: 10.1016/j.jhazmat.2021.127946

    5. [5]

      Loffler, P.; Escher, B. I.; Baduel, C.; Virta, M. P.; Lai, F. Y. Environ. Sci. Technol. 2023, 57, 9474. doi: 10.1021/acs.est.2c09854  doi: 10.1021/acs.est.2c09854

    6. [6]

      Leonel, A. G.; Mansur, H. S. Water Res. 2021, 190, 116693. doi: 10.1016/j.watres.2020.116693  doi: 10.1016/j.watres.2020.116693

    7. [7]

      Pulizzi, F.; Sun, W. Nat. Nanotechnol. 2018, 13, 633. doi: 10.1038/s41565-018-0238-4  doi: 10.1038/s41565-018-0238-4

    8. [8]

      Jassby, D.; Cath, T. Y.; Buisson, H. Nat. Nanotechnol. 2018, 13, 670. doi: 10.1038/s41565-018-0234-8  doi: 10.1038/s41565-018-0234-8

    9. [9]

      Hodges, B. C.; Cates, E. L.; Kim, J.-H. Nat. Nanotech. 2018, 13, 642. doi: 10.1038/s41565-018-0216-x  doi: 10.1038/s41565-018-0216-x

    10. [10]

      Long T.; Wang Z.; He Y.; Fang J.; Feng J.; Sun Q. J. Liaocheng Univ. (Nat. Sci. Ed. ) 2023, 36, 48. doi: 10.19728/j.issn1672-6634.2023030005  doi: 10.19728/j.issn1672-6634.2023030005

    11. [11]

      Šuligoj, A.; Korošec, R. C.; Žerjav, G.; Tušar, N. N.; Štangar, U. L. Topics Curr. Chem. 2022, 380, 51. doi: 10.1007/s41061-022-00409-2  doi: 10.1007/s41061-022-00409-2

    12. [12]

      Wang, T.; Wang, H. J.; Lin, J. S.; Yang, J. L.; Zhang, F. L.; Lin, X. M.; Zhang, Y. J.; Jin, S. Z.; Li, J. F. Chin. J. Struct. Chem. 2023, 42, 100066. doi: 10.1016/j.cjsc.2023.100066  doi: 10.1016/j.cjsc.2023.100066

    13. [13]

      Chen, L.; A. Maigbay, M.; Li, M.; Qiu, X. Q. Adv. Powder Mater. 2024, 3, 100150. doi: 10.1016/j.apmate.2023.100150  doi: 10.1016/j.apmate.2023.100150

    14. [14]

      Lee, J. H.; Hansora, D. P.; Lee, J. S. Chem 2023, 9, 1632. doi: 10.1016/j.chempr.2023.05.040  doi: 10.1016/j.chempr.2023.05.040

    15. [15]

      Andrei, V.; Roh, I.; Yang, P. Sci. Adv. 2023, 9, eade9044. doi: 10.1126/sciadv.ade9044  doi: 10.1126/sciadv.ade9044

    16. [16]

      Stanley, P. M.; Haimerl, J.; Shustova, N. B.; Fischer, R. A.; Warnan, J. Nat. Chem. 2022, 14, 1342. doi: 10.1038/s41557-022-01093-x  doi: 10.1038/s41557-022-01093-x

    17. [17]

      Nikoloudakis, E.; Loxpez-Duarte, I.; Georgios Charalambidis; Ladomenou, K.; Ince, M.; Coutsolelos, A. G. Chem. Soc. Rev. 2022, 51, 6965. doi: 10.1039/d2cs00183g  doi: 10.1039/d2cs00183g

    18. [18]

      Mateo, D.; Cerrillo, J. L.; Durini, S.; Gascon, J. Chem. Soc. Rev. 2021, 50, 2173. doi: 10.1039/d0cs00357c  doi: 10.1039/d0cs00357c

    19. [19]

      Koya, A. N.; Zhu, X.; Ohannesian, N.; Yanik, A. A.; Alabastri, A.; Proietti Zaccaria, R.; Krahne, R.; Shih, W.-C.; Garoli, D. ACS Nano 2021, 15, 6038. doi: 10.1021/acsnano.0c10945  doi: 10.1021/acsnano.0c10945

    20. [20]

      Moss, B.; Wang, Q.; Butler, K. T.; Grau-Crespo, R.; Selim, S.; Regoutz, A.; Hisatomi, T.; Godin, R.; Payne, D. J.; Kafizas, A.; et al. Nat. Mater. 2021, 20, 511. doi: 10.1038/s41563-020-00868-2  doi: 10.1038/s41563-020-00868-2

    21. [21]

      Goto, Y.; Hisatomi, T.; Wang, Q.; Higashi, T.; Ishikiriyama, K.; Maeda, T.; Sakata, Y.; Okunaka, S.; Tokudome, H.; Katayama, M.; et al. Joule 2017, 2, 509. doi: 10.1016/j.joule.2017.12.009  doi: 10.1016/j.joule.2017.12.009

    22. [22]

      Kosco, J.; Bidwell, M.; Cha, H.; Martin, T.; Howells, C. T.; Sachs, M.; Anjum, D. H.; Lopez, S. G.; Zou, L.; Wadsworth, A.; et al. Nat. Mater. 2020, 19, 559. doi: 10.1038/s41563-019-0591-1  doi: 10.1038/s41563-019-0591-1

    23. [23]

      Lu Y.; Zou X; Wang L.; Geng Y. J. Liaocheng Univ. (Nat. Sci. Ed. ) 2023, 36, 57. doi: 10.19728/j.issn1672-6634.2023040004  doi: 10.19728/j.issn1672-6634.2023040004

    24. [24]

      Jiao, L.; Jiang, H.-L. Chin. J. Catal. 2023, 45, 1. doi: 10.1016/S1872-2067(22)64193-7  doi: 10.1016/S1872-2067(22)64193-7

    25. [25]

      Jing, L. Q.; Xu, Y. G.; Xie, M.; Wu, C. C.; Zhao, H.; Wang, J.; Wang, H.; Yan, Y. B.; Zhong, N.; Li, H. M.; et al. J. Mater. Sci. Technol. 2024, 177, 10. doi: 10.1016/j.jmst.2023.07.064  doi: 10.1016/j.jmst.2023.07.064

    26. [26]

      Niu J.; Wang L.; Meng X.; Li C. J. Liaocheng Univ. (Nat. Sci. Ed. ) 2024, 37, 36. doi: 10.19728/j.issn1672-6634.2023050002  doi: 10.19728/j.issn1672-6634.2023050002

    27. [27]

      Zhang, L. X.; Qi, M. Y.; Tang, Z. R.; Xu, Y. J. Research 2023, 6, 0073. doi: 10.34133/research.0073  doi: 10.34133/research.0073

    28. [28]

      Li, B.; Wang, T.; Le, Q.; Qin, R.; Zhang, Y.; Zeng, H. C. Nano Mater. Sci. 2023, 5, 293. doi: 10.1016/j.nanoms.2022.05.001  doi: 10.1016/j.nanoms.2022.05.001

    29. [29]

      Huang, W.; Bo, T.; Zuo, S.; Wang, Y.; Chen, J.; Ould-Chikh, S.; Li, Y.; Zhou, W.; Zhang, J.; Zhang, H. SusMat 2022, 2, 466. doi: 10.1002/sus2.76  doi: 10.1002/sus2.76

    30. [30]

      Wang, Z.; Sun, Z.; Yin, H.; Wei, H.; Peng, Z.; Pang, Y. X.; Jia, G.; Zhao, H.; Pang, C. H.; Yin, Z. eScience 2023, 3, 100136. doi: 10.1016/j.esci.2023.100136  doi: 10.1016/j.esci.2023.100136

    31. [31]

      Zhou, W.; Jing, Q.; Li, J.; Chen, Y.; Hao, G.; Wang, L.-N. Acta Phys.-Chim.Sin. 2023, 39, 2211010. doi: 10.3866/PKU.WHXB202211010  doi: 10.3866/PKU.WHXB202211010

    32. [32]

      Chong, W.; Meng, R.; Liu, Z.; Liu, Q.; Hu, J.; Zhu, B.; Macharia, D. K.; Chen, Z.; Zhang, L. Adv. Fiber Mater. 2023, 5, 1063. doi: 10.1007/s42765-023-00276-6  doi: 10.1007/s42765-023-00276-6

    33. [33]

      Han, Z.; Lv, M.; Shi, X.; Li, G.; Zhao, J.; Zhao, X. Adv. Fiber Mater. 2023, 5, 266. doi: 10.1007/s42765-022-00220-0  doi: 10.1007/s42765-022-00220-0

    34. [34]

      Banoo, M.; Kaur, J.; Sah, A. K.; Roy, R. S.; Bhakar, M.; Kommula, B.; Sheet, G.; Gautam, U. K. ACS Appl. Mater. Interfaces 2023, 15, 32425. doi: 10.1021/acsami.3c04959  doi: 10.1021/acsami.3c04959

    35. [35]

      Kumar, A.; Rana, A.; Sharma, G.; Naushad, M.; Sillanpää, M.; Guo, C.; Katubi, K. M. M.; Alzahrani, F. M.; Dhiman, P.; Stadler, F. J. Chem. Eng. J. 2021, 423, 130173. doi: 10.1016/j.cej.2021.130173  doi: 10.1016/j.cej.2021.130173

    36. [36]

      Bera, S.; Ghosh, S.; Maiyalagan, T.; Basu, R. N. ACS Appl. Energy Mater. 2022, 5, 3821. doi: 10.1021/acsaem.2c00296  doi: 10.1021/acsaem.2c00296

    37. [37]

      Ahmadi, Y.; Kim, K. H. Renew. Sustain. Energy Rev. 2024, 189, 113948. doi: 10.1016/j.rser.2023.113948  doi: 10.1016/j.rser.2023.113948

    38. [38]

      Luo, C.; Long, Q.; Cheng, B.; Zhu, B.; Wang, L. Acta Phys.-Chim.Sin. 2023, 39, 2212026. doi: 10.3866/PKU.WHXB202212026  doi: 10.3866/PKU.WHXB202212026

    39. [39]

      Zu, X.; Zhao, Y.; Li, X.; Chen, R.; Shao, W.; Wang, Z.; Hu, J.; Zhu, J.; Pan, Y.; Sun, Y.; Xie, Y. Angew. Chem. Int. Ed. 2021, 60, 13840. doi: 10.1002/anie.202101894  doi: 10.1002/anie.202101894

    40. [40]

      Rahaman, M.; Andrei, V.; Wright, D.; Lam, E.; Pornrungroj, C.; Bhattacharjee, S.; Pichler, C. M.; Greer, H. F.; Baumberg, J. J.; Reisner, E. Nat. Energy 2022, 8, 629. doi: 10.1038/s41560-023-01262-3  doi: 10.1038/s41560-023-01262-3

    41. [41]

      Estrada-Pomares, J.; Ramos-Terrón, S.; Lasarte-Aragonés, G.; Lucena, R.; Cárdenas, S.; Rodríguez-Padrón, D.; Luque, R.; Miguel, G. d. J. Mater. Chem. A 2022, 10, 11298. doi: 10.1039/D1TA10323G  doi: 10.1039/D1TA10323G

    42. [42]

      Kumar, R.; Raizada, P.; Verma, N.; Hosseini-Bandegharaei, A.; Vijay Kumar Thakur; Le, Q. V.; Nguyen, V.-H.; Selvasembian, R.; Singh, P. J. Clean. Prod. 2021, 297, 126617. doi: 10.1016/j.jclepro.2021.126617  doi: 10.1016/j.jclepro.2021.126617

    43. [43]

      Jin, X.; Ye, L.; Xie, H.; Chen, G. Coordin. Chem. Rev. 2017, 349, 84. doi: 10.1016/j.ccr.2017.08.010  doi: 10.1016/j.ccr.2017.08.010

    44. [44]

      Shi, Y.; Yang, Z.; Shi, L.; Li, H.; Liu, X.; Zhang, X.; Cheng, J.; Liang, C.; Cao, S.; Guo, F.; et al. Environ. Sci. Technol. 2022, 56, 14478. doi: 10.1021/acs.est.2c03769  doi: 10.1021/acs.est.2c03769

    45. [45]

      Wu, J.; Li, X.; Shi, W.; Ling, P.; Sun, Y.; Jiao, X.; Gao, S.; Liang, L.; Xu, J.; Yan, W.; et al. Angew. Chem. Int. Ed. 2018, 130, 8855. doi: 10.1002/ange.201803514  doi: 10.1002/ange.201803514

    46. [46]

      Huo, Y.; Zhang, J.; Miao, M.; Jin, Y. Appl. Catal. B 2012, 111–112, 334. doi: 10.1016/j.apcatb.2011.10.016  doi: 10.1016/j.apcatb.2011.10.016

    47. [47]

      Imam, S. S.; Adnan, R.; Kaus, N. H. M. J. Environ. Chem. Eng. 2021, 9, 105404. doi: 10.1016/j.jece.2021.105404  doi: 10.1016/j.jece.2021.105404

    48. [48]

      Wang, C.; Rong, K.; Liu, Y.; Yang, F.; Li, S. Sci. China Mater. 2024, 67, 562. doi: 10.1007/s40843-023-2764-8  doi: 10.1007/s40843-023-2764-8

    49. [49]

      Yu, Q.; Chen, J.; Li, Y.; Wen, M.; Liu, H.; Li, G.; An, T. Chin. J. Catal. 2020, 41, 1603. doi: 10.1016/S1872-2067(19)63496-0  doi: 10.1016/S1872-2067(19)63496-0

    50. [50]

      Bi, J.; Zhang, Z.; Tian, J.; Huang, G. J. Colloid Interface Sci. 2024, 661, 761. doi: 10.1016/j.jcis.2024.01.213  doi: 10.1016/j.jcis.2024.01.213

    51. [51]

      Lee, D. E.; Mameda, N.; Reddy, K. P.; Abraham, B. M.; Jo, W. K.; Tonda, S. J. Mater. Sci. Technol. 2023, 161, 74. doi: 10.1016/j.jmst.2023.03.024  doi: 10.1016/j.jmst.2023.03.024

    52. [52]

      Zhu, B.; Sun, J.; Zhao, Y.; Zhang, L.; Yu, J. Adv. Mater. 2024, 36, 2310600. doi: 10.1002/adma.202310600  doi: 10.1002/adma.202310600

    53. [53]

      Yu J.; Yao X.; Su P.; Wang S.; Zhang D.; Ge B.; Pu X. J. Liaocheng Univ. (Nat. Sci. Ed. ) 2024, 37, 52. doi: 10.19728/j.issn1672-6634.2023090011  doi: 10.19728/j.issn1672-6634.2023090011

    54. [54]

      Wang, L.; Bie, C.; Yu, J. Trends Chem. 2022, 4, 973. doi: 10.1016/j.trechm.2022.08.008  doi: 10.1016/j.trechm.2022.08.008

    55. [55]

      Dong, K.; Shen, C.; Yan, R.; Liu, Y.; Zhuang, C.; Li, S. Acta Phys.-Chim.Sin. 2024, 40, 2310013. doi: 10.3866/PKU.WHXB202310013  doi: 10.3866/PKU.WHXB202310013

    56. [56]

      Yousefi, S. R.; Ghanbari, M.; Amiri, O.; Marzhoseyni, Z.; Mehdizadeh, P.; Hajizadeh-Oghaz, M.; Salavati-Niasari, M. J. Am. Ceram. Soc. 2021, 104, 2952. doi: 10.1111/jace.17696  doi: 10.1111/jace.17696

    57. [57]

      Kumar, A.; Khosla, A.; Sharma, S. K.; Dhiman, P.; Sharma, G.; Gnanasekaran, L.; Naushad, M.; Stadler, F. J. Fuel 2023, 333, 126267. doi: 10.1016/j.fuel.2022.126267  doi: 10.1016/j.fuel.2022.126267

    58. [58]

      Chen, Y.; Wang, Z.; Zhang, Y.; Wei, P.; Xu, W.; Wang, H.; Yu, H.; Jia, J.; Zhang, K.; Peng, C. ACS Appl. Mater. Interfaces 2023, 15, 20027. doi: 10.1021/acsami.2c21049  doi: 10.1021/acsami.2c21049

    59. [59]

      Yu, W.; Bie, C. Acta Phys.-Chim.Sin. 2024, 40, 2307022. doi: 10.3866/PKU.WHXB202307022  doi: 10.3866/PKU.WHXB202307022

    60. [60]

      Deng, X.; Zhang, J.; Qi, K.; Liang, G.; Xu, F.; Yu, J. Nat. Commun. 2024, 15, 4807. doi: 10.1038/s41467-024-49004-7  doi: 10.1038/s41467-024-49004-7

    61. [61]

      Kim, I. Y.; Kim, S.; Jin, X.; Premkumar, S.; Chandra, G.; Lee, N.-S.; Mane, G. P.; Hwang, S.-J.; Umapathy, S.; Vinu, A. Angew. Chem. Int. Ed. 2018, 57, 17135. doi: 10.1002/ange.201811061  doi: 10.1002/ange.201811061

    62. [62]

      Kumar, P.; Vahidzadeh, E.; Thakur, U. K.; Kar, P.; Alam, K. M.; Goswami, A.; Mahdi, N.; Cui, K.; Bernard, G. M.; Michaelis, V. K.; et al. J. Am. Chem. Soc. 2019, 141, 5415. doi: 10.1021/jacs.9b00144  doi: 10.1021/jacs.9b00144

    63. [63]

      Monga, D.; Basu, S. J. Environ. Manage. 2023, 336, 117570. doi: 10.1016/j.jenvman.2023.117570  doi: 10.1016/j.jenvman.2023.117570

    64. [64]

      Wu, B.; Sun, T.; Liu, N.; Lu, L.; Zhang, R.; Shi, W.; Cheng, P. ACS Appl. Mater. Interfaces 2022, 14, 26742. doi: 10.1021/acsami.2c04729  doi: 10.1021/acsami.2c04729

    65. [65]

      Ng, S.-F.; Chen, X.; Foo, J. J.; Xiong, M.; Ong, W.-J. Chin. J. Catal. 2023, 47, 150. doi: 10.1016/S1872-2067(23)64417-1  doi: 10.1016/S1872-2067(23)64417-1

    66. [66]

      Huang, H.; Verhaeghe, D.; Weng, B.; Ghosh, B.; Zhang, H.; Hofkens, J.; Steele, J. A.; Roeffaers, M. B. J. Angew. Chem. Int. Ed. 2022, 134, e202203261. doi: 10.1002/ange.202203261  doi: 10.1002/ange.202203261

    67. [67]

      Li, H.; Zhou, Y.; Tu, W.; Ye, J.; Zou, Z. Adv. Funct. Mater. 2015, 25, 998. doi: 10.1002/adfm.201401636  doi: 10.1002/adfm.201401636

    68. [68]

      Afroz, K.; Moniruddin, M.; Bakranov, N.; Kudaibergenovbc, S.; Nuraje, N. J. Mater. Chem. A 2018, 6, 21696. doi: 10.1039/C8TA04165B  doi: 10.1039/C8TA04165B

    69. [69]

      Marschall, R. Adv. Funct. Mater. 2014, 24, 2421. doi: 10.1002/adfm.201303214.  doi: 10.1002/adfm.201303214

    70. [70]

      Kumar, A.; Krishnan, V. Adv. Funct. Mater. 2021, 31, 2009807. doi: 10.1002/adfm.202009807  doi: 10.1002/adfm.202009807

    71. [71]

      Han, T.; Cao, X.; Chen, H.-C.; Ma, J.; Yu, Y.; Li, Y.; Xu, W.; Sun, K.; Huang, A.; Chen, Z.; et al. Angew. Chem. Int. Ed. 2023, 62, e202313325. doi: 10.1002/anie.202313325  doi: 10.1002/anie.202313325

    72. [72]

      Dutta, V.; Sudhaik, A.; Raizada, P.; Singh, A.; Ahamad, T.; Thakur, S.; Le, Q. V.; Nguyen, V.-H.; Singh, P. J. Mater. Sci. Technol. 2024, 162, 11. doi: 10.1016/j.jmst.2023.03.037  doi: 10.1016/j.jmst.2023.03.037

    73. [73]

      Liu, C.; Mao, S.; Shi, M.; Wang, F.; Xia, M.; Chen, Q.; Ju, X. J. Hazard. Mater. 2021, 420, 126613. doi: 10.1016/j.jhazmat.2021.126613  doi: 10.1016/j.jhazmat.2021.126613

    74. [74]

      Zhang, L.; Wu, Y.; Tsubaki, N.; Jin, Z. Acta Phys.-Chim.Sin. 2023, 39, 2302051. doi: 10.3866/PKU.WHXB202302051  doi: 10.3866/PKU.WHXB202302051

    75. [75]

      Shang, W.; Liu, W.; Cai, X.; Hu, J.; Guo, J.; Xin, C.; Li, Y.; Zhang, N.; Wang, N.; Hao, C.; Shi, Y. Adv. Powder Mater. 2023, 2, 100094. doi: 10.1016/j.apmate.2022.100094  doi: 10.1016/j.apmate.2022.100094

    76. [76]

      Zhuang, C.; Chang, Y.; Li, W.; Li, S.; Xu, P.; Zhang, H.; Zhang, Y.; Zhang, C.; Gao, J.; Chen, G.; Zhang, T.; Kang, Z.; Han, X. ACS Nano 2024, 18, 5206. doi: 10.1021/acsnano.4c00217  doi: 10.1021/acsnano.4c00217

    77. [77]

      Selvaraj, V.; Ong, W.-J.; Pandikumar, A. Coordin. Chem. Rev. 2022, 464, 214541. doi: 10.1016/j.ccr.2022.214541  doi: 10.1016/j.ccr.2022.214541

    78. [78]

      Li, Y.; Li, Z.; Liu, E. J. J. Liaocheng Univ. (Nat. Sci. Ed. ) 2023, 36, 1. doi: 10.19728/j.issn1672-6634.2022090001.  doi: 10.19728/j.issn1672-6634.2022090001

    79. [79]

      Bariki, R.; Pradhan, S. K.; Panda, S.; Nayak, S. K.; Pati, A. R.; Mishra, B. G. Langmuir 2023, 39, 7707. doi: 10.1021/acs.langmuir.3c00519  doi: 10.1021/acs.langmuir.3c00519

    80. [80]

      Wadsworth, A.; Hamid, Z.; Kosco, J.; Gasparini, N.; McCulloch, I. Adv. Mater. 2020, 32, 2001763. doi: 10.1002/adma.202001763  doi: 10.1002/adma.202001763

    81. [81]

      Mandal, S.; Adhikari, S.; Choi, S.; Lee, Y.; Kim, D.-H. Chem. Eng. J. 2022, 444, 136609. doi: 10.1016/j.cej.2022.136609  doi: 10.1016/j.cej.2022.136609

    82. [82]

      Sun, T.; Li, C.; Bao, Y.; Fan, J.; Liu, E. Acta Phys.-Chim.Sin. 2023, 39, 2212009. doi: 10.3866/PKU.WHXB202212009  doi: 10.3866/PKU.WHXB202212009

  • 加载中
    1. [1]

      Kexin DongChuqi ShenRuyu YanYanping LiuChunqiang ZhuangShijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-0. doi: 10.3866/PKU.WHXB202310013

    2. [2]

      Qianqian LiuXing DuWanfei LiWei-Lin DaiBo Liu . Synergistic Effects of Internal Electric and Dipole Fields in SnNb2O6/Nitrogen-Enriched C3N5 S-Scheme Heterojunction for Boosting Photocatalytic Performance. Acta Physico-Chimica Sinica, 2024, 40(10): 2311016-0. doi: 10.3866/PKU.WHXB202311016

    3. [3]

      Shijie LiKe RongXiaoqin WangChuqi ShenFang YangQinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-0. doi: 10.3866/PKU.WHXB202403005

    4. [4]

      Shuang CaoBo ZhongChuanbiao BieBei ChengFeiyan Xu . Insights into Photocatalytic Mechanism of H2 Production Integrated with Organic Transformation over WO3/Zn0.5Cd0.5S S-Scheme Heterojunction. Acta Physico-Chimica Sinica, 2024, 40(5): 2307016-0. doi: 10.3866/PKU.WHXB202307016

    5. [5]

      Yang XiaKangyan ZhangHeng YangLijuan ShiQun Yi . Improving Photocatalytic H2O2 Production over iCOF/Bi2O3 S-Scheme Heterojunction in Pure Water via Dual Channel Pathways. Acta Physico-Chimica Sinica, 2024, 40(11): 2407012-0. doi: 10.3866/PKU.WHXB202407012

    6. [6]

      Menglan WeiXiaoxia OuYimeng WangMengyuan ZhangFei TengKaixuan Wang . S-scheme heterojunction g-C3N4/Bi2WO6 highly efficient degradation of levofloxacin: performance, mechanism and degradation pathway. Acta Physico-Chimica Sinica, 2025, 41(9): 100105-0. doi: 10.1016/j.actphy.2025.100105

    7. [7]

      Peipei SunJinyuan ZhangYanhua SongZhao MoZhigang ChenHui Xu . Built-in Electric Fields Enhancing Photocarrier Separation and H2 Evolution. Acta Physico-Chimica Sinica, 2024, 40(11): 2311001-0. doi: 10.3866/PKU.WHXB202311001

    8. [8]

      Xuejiao WangSuiying DongKezhen QiVadim PopkovXianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-0. doi: 10.3866/PKU.WHXB202408005

    9. [9]

      Chunchun WangChangjun YouKe RongChuqi ShenFang YangShijie Li . An S-Scheme MIL-101(Fe)-on-BiOCl Heterostructure with Oxygen Vacancies for Boosting Photocatalytic Removal of Cr(Ⅵ). Acta Physico-Chimica Sinica, 2024, 40(7): 2307045-0. doi: 10.3866/PKU.WHXB202307045

    10. [10]

      Jiajie CaiChang ChengBowen LiuJianjun ZhangChuanjia JiangBei Cheng . CdS/DBTSO-BDTO S-scheme photocatalyst for H2 production and its charge transfer dynamics. Acta Physico-Chimica Sinica, 2025, 41(8): 100084-0. doi: 10.1016/j.actphy.2025.100084

    11. [11]

      Chenye AnSikandaier AbiduweiliXue GuoYukun ZhuHua TangDongjiang Yang . Hierarchical S-scheme Heterojunction of Red Phosphorus Nanoparticles Embedded Flower-like CeO2 Triggering Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-0. doi: 10.3866/PKU.WHXB202405019

    12. [12]

      Xiutao XuChunfeng ShaoJinfeng ZhangZhongliao WangKai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-0. doi: 10.3866/PKU.WHXB202309031

    13. [13]

      Peng LiYuanying CuiZhongliao WangGraham DawsonChunfeng ShaoKai Dai . Efficient interfacial charge transfer of CeO2/Bi19Br3S27 S-scheme heterojunction for boosted photocatalytic CO2 reduction. Acta Physico-Chimica Sinica, 2025, 41(6): 100065-0. doi: 10.1016/j.actphy.2025.100065

    14. [14]

      You WuChang ChengKezhen QiBei ChengJianjun ZhangJiaguo YuLiuyang Zhang . Efficient Photocatalytic Production of H2O2 over ZnO/D-A Conjugated Polymer S-scheme Heterojunction and Charge Transfer Dynamics Investigation. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-0. doi: 10.3866/PKU.WHXB202406027

    15. [15]

      Tieping CAOYuejun LIDawei SUN . Surface plasmon resonance effect enhanced photocatalytic CO2 reduction performance of S-scheme Bi2S3/TiO2 heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 903-912. doi: 10.11862/CJIC.20240366

    16. [16]

      Yadan LuoHao ZhengXin LiFengmin LiHua TangXilin She . Modulating reactive oxygen species in O, S co-doped C3N4 to enhance photocatalytic degradation of microplastics. Acta Physico-Chimica Sinica, 2025, 41(6): 100052-0. doi: 10.1016/j.actphy.2025.100052

    17. [17]

      Fanpeng MengFei ZhaoJingkai LinJinsheng ZhaoHuayang ZhangShaobin Wang . Optimizing interfacial electric fields in carbon nitride nanosheet/spherical conjugated polymer S-scheme heterojunction for hydrogen evolution. Acta Physico-Chimica Sinica, 2025, 41(8): 100095-0. doi: 10.1016/j.actphy.2025.100095

    18. [18]

      Jiawei HuKai XiaAo YangZhihao ZhangWen XiaoChao LiuQinfang Zhang . Interfacial Engineering of Ultrathin 2D/2D NiPS3/C3N5 Heterojunctions for Boosting Photocatalytic H2 Evolution. Acta Physico-Chimica Sinica, 2024, 40(5): 2305043-0. doi: 10.3866/PKU.WHXB202305043

    19. [19]

      Linfeng XiaoWanlu RenShishi ShenMengshan ChenRunhua LiaoYingtang ZhouXibao Li . Enhancing Photocatalytic Hydrogen Evolution through Electronic Structure and Wettability Adjustment of ZnIn2S4/Bi2O3 S-Scheme Heterojunction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308036-0. doi: 10.3866/PKU.WHXB202308036

    20. [20]

      Yingqi BAIHua ZHAOHuipeng LIXinran RENJun LI . Perovskite LaCoO3/g-C3N4 heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 480-490. doi: 10.11862/CJIC.20240259

Metrics
  • PDF Downloads(3)
  • Abstract views(355)
  • HTML views(96)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return