Citation: Fei Xie, Chengcheng Yuan, Haiyan Tan, Alireza Z. Moshfegh, Bicheng Zhu, Jiaguo Yu. d-Band Center Regulated O2 Adsorption on Transition Metal Single Atoms Loaded COF: A DFT Study[J]. Acta Physico-Chimica Sinica, ;2024, 40(11): 240701. doi: 10.3866/PKU.WHXB202407013 shu

d-Band Center Regulated O2 Adsorption on Transition Metal Single Atoms Loaded COF: A DFT Study

  • Corresponding author: Bicheng Zhu, zhubicheng@cug.edu.cn Jiaguo Yu, yujiaguo93@cug.edu.cn
  • Received Date: 10 July 2024
    Revised Date: 28 July 2024
    Accepted Date: 30 July 2024
    Available Online: 12 August 2024

    Fund Project: the National Key Research and Development Program of China 2022YFE0115900the National Natural Science Foundation of China 52372294the National Natural Science Foundation of China 22262012the National Natural Science Foundation of China 22238009the National Natural Science Foundation of China 52173065the National Natural Science Foundation of China 22361142704the Natural Science Foundation of Hubei Province of China 2022CFA001China University of Geosciences (Wuhan) CUG22061

  • Covalent organic framework (COF) materials are promising photocatalysts because of their fantastic structural and physicochemical features. To enhance photocatalytic performance, numerous metal single atoms (MSA) are loaded on COF to improve molecule adsorption. However, the inherent mechanisms and dominant factors of the heightened adsorption property are not deeply unveiled. Herein, four MSA-COF systems were constructed by severally introducing Fe, Co, Ni, and Cu single atoms in monolayer TpBpy-COF. The effect of various metal atoms modification on the electronic property and O2 adsorption of COF was investigated using density functional theory calculations. The results show that the metal atoms are bonded to the pyridinic N atoms, forming stable MSA-COF configurations. The anchoring of metal atoms reduces the band gap and raises the Fermi level of COF. Moreover, as the atomic number of the metals increases, the d orbitals of the metal atoms gradually move to lower energy levels, manifesting a negative shift of the d-band centers. After metal atoms loading, the weak physical adsorption of O2 on pristine COF is converted to robust chemisorption with the formation of M―Oads bonds and intense electron transfer. Intriguingly, the adsorption energy presents a strong correlation with the d-band centers of the metal atoms. This finding is comprehended from the perspective of electron occupancy in antibonding orbitals in the adsorption systems. This work provides a feasible approach for modifying molecule adsorption on MSA-COF by regulating the d-band centers of metal atoms.
  • 加载中
    1. [1]

      Zhu, B.; Sun, J.; Zhao, Y.; Zhang, L.; Yu, J. Adv. Mater. 2024, 36, 2310600. doi: 10.1002/adma.202310600  doi: 10.1002/adma.202310600

    2. [2]

      Xia, W.; Ji, C.; Wang, R.; Qiu, S.; Fang, Q. Acta Phys.-Chim.Sin. 2023, 39, 2212057. doi: 10.3866/PKU.WHXB202212057  doi: 10.3866/PKU.WHXB202212057

    3. [3]

      Khaing, K. K.; Yin, D.; Ouyang, Y.; Xiao, S.; Liu, B.; Deng, L.; Li, L.; Guo, X.; Wang, J.; Liu, J.; et al. Inorg. Chem. 2020, 59, 6942. doi: 10.1021/acs.inorgchem.0c00422  doi: 10.1021/acs.inorgchem.0c00422

    4. [4]

      Zhang, Y.; Qiu, J.; Zhu, B.; Fedin, M. V.; Cheng, B.; Yu, J.; Zhang, L. Chem. Eng. J. 2022, 444, 136584. doi: 10.1016/j.cej.2022.136584  doi: 10.1016/j.cej.2022.136584

    5. [5]

      Shao, C.; He, Q.; Zhang, M.; Jia, L.; Ji, Y.; Hu, Y.; Li, Y.; Huang, W.; Li, Y. Chin. J. Catal. 2023, 46, 28. doi: 10.1016/S1872-2067(22)64205-0  doi: 10.1016/S1872-2067(22)64205-0

    6. [6]

      Zhang, H.; Liu, J.; Zhang, Y.; Cheng, B.; Zhu, B.; Wang, L. J. Mater. Sci. Technol. 2023, 166, 241. doi: 10.1016/j.jmst.2023.05.030  doi: 10.1016/j.jmst.2023.05.030

    7. [7]

      Qiu, J.; Meng, K.; Zhang, Y.; Cheng, B.; Zhang, J.; Wang, L.; Yu, J. Adv. Mater. 2024, 36, 2400288. doi: 10.1002/adma.202400288  doi: 10.1002/adma.202400288

    8. [8]

      Song, D.; Xu, W.; Li, J.; Zhao, J.; Shi, Q.; Li, F.; Sun, X.; Wang, N. Chin. J. Catal. 2022, 43, 2425. doi: 10.1016/S1872-2067(22)64143-3  doi: 10.1016/S1872-2067(22)64143-3

    9. [9]

      He, Y.; Hu, P.; Zhang, J.; Liang, G.; Yu, J.; Xu, F. ACS Catal. 2024, 14, 1951. doi: 10.1021/acscatal.4c00026  doi: 10.1021/acscatal.4c00026

    10. [10]

      Li, S.; Chen, X.; Yuan, Y. Acta Phys.-Chim.Sin. 2023, 39, 2303032. doi: 10.3866/PKU.WHXB202303032  doi: 10.3866/PKU.WHXB202303032

    11. [11]

      Sun, L.; Li, L.; Yang, J.; Fan, J.; Xu, Q. Chin. J. Catal. 2022, 43, 350. doi: 10.1016/S1872-2067(21)63869-X  doi: 10.1016/S1872-2067(21)63869-X

    12. [12]

      Sun, L.; Li, L.; Fan, J.; Xu, Q.; Ma, D. J. Mater. Sci. Technol. 2022, 123, 41. doi: 10.1016/j.jmst.2021.12.065  doi: 10.1016/j.jmst.2021.12.065

    13. [13]

      Yang, Y.; Liu, J.; Gu, M.; Cheng, B.; Wang, L.; Yu, J. Appl. Catal. B 2023, 333, 122780. doi: 10.1016/j.apcatb.2023.122780  doi: 10.1016/j.apcatb.2023.122780

    14. [14]

      Zhang, F.; Li, X.; Dong, X.; Hao, H.; Lang, X. Chin. J. Catal. 2022, 43, 2395. doi: 10.1016/S1872-2067(22)64127-5  doi: 10.1016/S1872-2067(22)64127-5

    15. [15]

      Sun, G.; Zhang, J.; Cheng, B.; Yu, H.; Yu, J.; Xu, J. Chem. Eng. J. 2023, 476, 146818. doi: 10.1016/j.cej.2023.146818  doi: 10.1016/j.cej.2023.146818

    16. [16]

      Luo, Y.; Wang, D. Acta Phys.-Chim.Sin. 2023, 39, 2212020. doi: 10.3866/PKU.WHXB202212020  doi: 10.3866/PKU.WHXB202212020

    17. [17]

      Xia, Y.; Zhu, B.; Li, L.; Ho, W.; Wu, J.; Chen, H.; Yu, J. Small 2023, 19, 2301928. doi: 10.1002/smll.202301928  doi: 10.1002/smll.202301928

    18. [18]

      Huang, G.; Lin, G.; Niu, Q.; Bi, J.; Wu, L. J. Mater. Sci. Technol. 2022, 116, 41. doi: 10.1016/j.jmst.2021.11.035  doi: 10.1016/j.jmst.2021.11.035

    19. [19]

      Li, Z.; Shi, X.; Cheng, H.; Song, Y.; Jiao, Y.; Shi, S.; Gao, J.; Hou, J. Adv. Energy Mater. 2024, 14, 2302797. doi: 10.1002/aenm.202302797  doi: 10.1002/aenm.202302797

    20. [20]

      Chen, Y.; Zhuo, H.; Pan, Y.; Liang, J.; Liu, C.; Li, J. Sci. China Mater. 2021, 64, 1939. doi: 10.1007/s40843-021-1662-8  doi: 10.1007/s40843-021-1662-8

    21. [21]

      Yu, J.; Wang, Y.; Li, Y. Phys. Chem. Chem. Phys. 2024, 26, 15120. doi: 10.1039/D4CP01257G  doi: 10.1039/D4CP01257G

    22. [22]

      Zhao, L.; Xu, B.; Jia, J.; Wu, H. Comput. Mater. Sci. 2017, 137, 107. doi: 10.1016/j.commatsci.2017.05.017  doi: 10.1016/j.commatsci.2017.05.017

    23. [23]

      Xie, F.; Bie, C.; Sun, J.; Zhang, Z.; Zhu, B. J. Mater. Sci. Technol. 2024, 170, 87. doi: 10.1016/j.jmst.2023.06.028  doi: 10.1016/j.jmst.2023.06.028

    24. [24]

      Younas, M.; Yar, M.; AlMohamadi, H.; Mahmood, T.; Ayub, K.; Khan, A. L.; Yasin, M.; Gilani, M. A. Int. J. Hydrogen Energy 2024, 51, 758. doi: 10.1016/j.ijhydene.2023.07.062  doi: 10.1016/j.ijhydene.2023.07.062

    25. [25]

      Wang, Y.; Huang, X.; Fu, H.; Shang, J. J. Mater. Chem. A 2022, 10, 24362. doi: 10.1039/D2TA07167C  doi: 10.1039/D2TA07167C

    26. [26]

      Jiao, S.; Fu, X.; Huang, H. Adv. Funct. Mater. 2022, 32, 2107651. doi: 10.1002/adfm.202107651  doi: 10.1002/adfm.202107651

    27. [27]

      Chen, Y.; Wang, L.; Yao, Z.; Hao, L.; Tan, X.; Masa, J.; W. Robertson, A.; Sun, Z. Acta Phys.-Chim.Sin. 2022, 38, 2207024. doi: 10.3866/PKU.WHXB202207024  doi: 10.3866/PKU.WHXB202207024

    28. [28]

      Ruban, A.; Hammer, B.; Stoltze, P.; Skriver, H. L.; Nørskov, J. K. J. Mol. Catal. A: Chem. 1997, 115, 421. doi: 10.1016/S1381-1169(96)00348-2  doi: 10.1016/S1381-1169(96)00348-2

    29. [29]

      Xin, H.; Vojvodic, A.; Voss, J.; Nørskov, J. K.; Abild-Pedersen, F. Phys. Rev. B 2014, 89, 115114. doi: 10.1103/PhysRevB.89.115114  doi: 10.1103/PhysRevB.89.115114

    30. [30]

      Dong, A.; Li, H.; Wu, H.; Li, K.; Shao, Y.; Li, Z.; Sun, S.; Wang, W.; Hu, W. Rare Met. 2023, 42, 1138. doi: 10.1007/s12598-022-02210-y  doi: 10.1007/s12598-022-02210-y

    31. [31]

      Zhang, X.; Gao, D.; Zhu, B.; Cheng, B.; Yu, J.; Yu, H. Nat. Commun. 2024, 15, 3212. doi: 10.1038/s41467-024-47624-7  doi: 10.1038/s41467-024-47624-7

    32. [32]

      Li, J.; Li, Y.; Wang, X.; Yang, Z.; Zhang, G. Chin. J. Catal. 2023, 51, 145. doi: 10.1016/S1872-2067(23)64484-5  doi: 10.1016/S1872-2067(23)64484-5

    33. [33]

      Li, N.; Han, J.; Yao, K.; Han, M.; Wang, Z.; Liu, Y.; Liu, L.; Liang, H. J. Mater. Sci. Technol. 2022, 106, 90. doi: 10.1016/j.jmst.2021.08.007  doi: 10.1016/j.jmst.2021.08.007

    34. [34]

      Zhang, Z.; Guo, J.; Sun, S.; Sun, Q.; Zhao, Y.; Zhang, Y.; Yu, Z.; Li, C.; Sun, Y.; Zhang, M.; et al. Rare Met. 2023, 42, 3607. doi: 10.1007/s12598-023-02448-0  doi: 10.1007/s12598-023-02448-0

    35. [35]

      Li, R.; Tung, C.-W.; Zhu, B.; Lin, Y.; Tian, F.; Liu, T.; Chen, H. M.; Kuang, P.; Yu, J. J. Colloid Interface Sci. 2024, 674, 326. doi: 10.1016/j.jcis.2024.06.176  doi: 10.1016/j.jcis.2024.06.176

    36. [36]

      Song, D.; Xu, W.; He, W.; Li, C.; Yang, J.; Li, J.; Wang, N. Inorg. Chem. 2024, 63, 3444. doi: 10.1021/acs.inorgchem.3c04158  doi: 10.1021/acs.inorgchem.3c04158

    37. [37]

      Do, K. H.; Kumar, D. P.; Rangappa, A. P.; Lee, J.; Yun, S.; Kim, T. K. J. Mater. Chem. A 2023, 11, 8392. doi: 10.1039/D3TA00079F  doi: 10.1039/D3TA00079F

    38. [38]

      Liu, Z.; Huang, Y.; Chang, S.; Zhu, X.; Fu, Y.; Ma, R.; Lu, X.; Zhang, F.; Zhu, W.; Fan, M. Sustain. Energy Fuels 2021, 5, 2871. doi: 10.1039/D1SE00358E  doi: 10.1039/D1SE00358E

    39. [39]

      Zhong, X.; Ren, Z.; Ling, Q.; Hu, B. Appl. Surf. Sci. 2022, 597, 153621. doi: 10.1016/j.apsusc.2022.153621  doi: 10.1016/j.apsusc.2022.153621

    40. [40]

      Yang, Y.; Chu, X.; Zhang, H.; Zhang, R.; Liu, Y.; Zhang, F.; Lu, M.; Yang, Z.; Lan, Y. Nat. Commun. 2023, 14, 593. doi: 10.1038/s41467-023-36338-x  doi: 10.1038/s41467-023-36338-x

    41. [41]

      Li, X.; Yang, Q.; Yuan, Y.; Shama, Y.; Yan, H. Small 2024, 20, 2401168. doi: 10.1002/smll.202401168  doi: 10.1002/smll.202401168

    42. [42]

      Jati, A.; Dey, K.; Nurhuda, M.; Addicoat, M. A.; Banerjee, R.; Maji, B. J. Am. Chem. Soc. 2022, 144, 7822. doi: 10.1021/jacs.2c01814  doi: 10.1021/jacs.2c01814

    43. [43]

      Guo, R.; Liu, Y.; Huo, Y.; Zhang, A.; Hong, J.; Ai, Y. J. Colloid Interface Sci. 2022, 606, 1617. doi: 10.1016/j.jcis.2021.08.118  doi: 10.1016/j.jcis.2021.08.118

    44. [44]

      Ran, L.; Li, Z.; Ran, B.; Cao, J.; Zhao, Y.; Shao, T.; Song, Y.; Leung, M. K. H.; Sun, L.; Hou, J. J. Am. Chem. Soc. 2022, 144, 17097. doi: 10.1021/jacs.2c06920  doi: 10.1021/jacs.2c06920

    45. [45]

      Wang, Y.; Sun, T.; Zheng, T.; Ding, X.; Zhang, P.; Xu, Q.; Li, T.; Zhang, S.; Wang, K.; Xu, L.; et al. ACS Materials Lett. 2024, 6, 140. doi: 10.1021/acsmaterialslett.3c01141  doi: 10.1021/acsmaterialslett.3c01141

    46. [46]

      Zhang, Y.; Liu, Y.; Li, H.; Bai, G.; Lan, X. Chem. Eng. J. 2024, 489, 151479. doi: 10.1016/j.cej.2024.151479  doi: 10.1016/j.cej.2024.151479

    47. [47]

      Dong, Z.; Zhang, L.; Gong, J.; Zhao, Q. Chem. Eng. J. 2021, 403, 126383. doi: 10.1016/j.cej.2020.126383  doi: 10.1016/j.cej.2020.126383

    48. [48]

      Zhong, W.; Sa, R.; Li, L.; He, Y.; Li, L.; Bi, J.; Zhuang, Z.; Yu, Y.; Zou, Z. J. Am. Chem. Soc. 2019, 141, 7615. doi: 10.1021/jacs.9b02997  doi: 10.1021/jacs.9b02997

    49. [49]

      Lin, C.; Shan, Z.; Dong, C.; Lu, Y.; Meng, W.; Zhang, G.; Cai, B.; Su, G.; Park, J. H.; Zhang, K. Sci. Adv. 2023, 9, eadi9442. doi: 10.1126/sciadv.adi9442  doi: 10.1126/sciadv.adi9442

    50. [50]

      Chen, H.; Li, Q.; Yan, W.; Gu, Z.; Zhang, J. Chem. Eng. J. 2020, 401, 126149. doi: 10.1016/j.cej.2020.126149  doi: 10.1016/j.cej.2020.126149

    51. [51]

      Paul, S.; Gupta, M.; Kumar Mahato, A.; Karak, S.; Basak, A.; Datta, S.; Banerjee, R. J. Am. Chem. Soc. 2024, 146, 858. doi: 10.1021/jacs.3c11169  doi: 10.1021/jacs.3c11169

    52. [52]

      He, H.; Wen, H.; Li, H.; Li, P.; Wang, J.; Yang, Y.; Li, C.; Zhang, Z.; Du, M. Adv. Sci. 2023, 10, 2206933. doi: 10.1002/advs.202206933  doi: 10.1002/advs.202206933

    53. [53]

      Aiyappa, H. B.; Thote, J.; Shinde, D. B.; Banerjee, R.; Kurungot, S. Chem. Mater. 2016, 28, 4375. doi: 10.1021/acs.chemmater.6b01370  doi: 10.1021/acs.chemmater.6b01370

    54. [54]

      Kuang, P.; Wang, Y.; Zhu, B.; Xia, F.; Tung, C.-W.; Wu, J.; Chen, H. M.; Yu, J. Adv. Mater. 2021, 33, 2008599. doi: 10.1002/adma.202008599  doi: 10.1002/adma.202008599

    55. [55]

      Zhang, H.; Gu, H.; Huang, Y.; Wang, X.; Gao, L.; Li, Q.; Li, Y.; Zhang, Y.; Cui, Y.; Gao, R.; et al. J. Colloid Interface Sci. 2024, 664, 916. doi: 10.1016/j.jcis.2024.03.102  doi: 10.1016/j.jcis.2024.03.102

    56. [56]

      Dutta, S.; Pati, S. K. Phys. Chem. Chem. Phys. 2022, 24, 10765. doi: 10.1039/D1CP05699A  doi: 10.1039/D1CP05699A

    57. [57]

      Luo, C.; Long, Q.; Cheng, B.; Zhu, B.; Wang, L. Acta Phys.-Chim.Sin. 2023, 39, 2212026. doi: 10.3866/PKU.WHXB202212026  doi: 10.3866/PKU.WHXB202212026

    58. [58]

      Debruyne, M.; Borgmans, S.; Radhakrishnan, S.; Breynaert, E.; Vrielinck, H.; Leus, K.; Laemont, A.; De Vos, J.; Rawat, K. S.; Vanlommel, S.; et al. ACS Appl. Mater. Interfaces 2023, 15, 35092. doi: 10.1021/acsami.3c07036  doi: 10.1021/acsami.3c07036

    59. [59]

      Li, X.; Chen, D.; Li, N.; Xu, Q.; Li, H.; Lu, J. J. Colloid Interface Sci. 2023, 648, 664. doi: 10.1016/j.jcis.2023.06.062  doi: 10.1016/j.jcis.2023.06.062

    60. [60]

      Cheng, C.; Yu, J.; Xu, D.; Wang, L.; Liang, G.; Zhang, L.; Jaroniec, M. Nat. Commun. 2024, 15, 1313. doi: 10.1038/s41467-024-45604-5  doi: 10.1038/s41467-024-45604-5

    61. [61]

      Meng, K.; Zhang, J.; Cheng, B.; Ren, X.; Xia, Z.; Xu, F.; Zhang, L.; Yu, J. Adv. Mater. 2024, 36, 2406460. doi: 10.1002/adma.202406460  doi: 10.1002/adma.202406460

    62. [62]

      Qu, Y.; Li, B.; Chen, H.; Liang, J.; Wang, H.; Zhu, C. J. Porphyrins Phthalocyanines 2024, 28, 272. doi: 10.1142/S1088424624500214  doi: 10.1142/S1088424624500214

    63. [63]

      Kuang, P.; Ni, Z.; Zhu, B.; Lin, Y.; Yu, J. Adv. Mater. 2023, 35, 2303030. doi: 10.1002/adma.202303030  doi: 10.1002/adma.202303030

    64. [64]

      Luo, H.; Zhang, X.; Zhu, H.; Zhang, K.; Yang, F.; Xu, K.; Yu, S.; Guo, D. J. Mater. Sci. Technol. 2023, 166, 164. doi: 10.1016/j.jmst.2023.05.028  doi: 10.1016/j.jmst.2023.05.028

    65. [65]

      Zhao, Y.; Zhang, S.; Wu, Z.; Zhu, B.; Sun, G.; Zhang, J. Chin. J. Catal. 2024, 60, 219. doi: 10.1016/S1872-2067(23)64645-5  doi: 10.1016/S1872-2067(23)64645-5

    66. [66]

      Fan, X.; Chen, W.; Zhu, Y.; Wang, W. Rare Met. 2023, 42, 3614. doi: 10.1007/s12598-023-02428-4  doi: 10.1007/s12598-023-02428-4

    67. [67]

      Zhang, D.; Gong, H.; Liu, T.; Yu, J.; Kuang, P. J. Colloid Interface Sci. 2024, 672, 423. doi: 10.1016/j.jcis.2024.06.023  doi: 10.1016/j.jcis.2024.06.023

  • 加载中
    1. [1]

      Wenxiu YangJinfeng ZhangQuanlong XuYun YangLijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-0. doi: 10.3866/PKU.WHXB202312014

    2. [2]

      Yu WangHaiyang ShiZihan ChenFeng ChenPing WangXuefei Wang . 具有富电子Ptδ壳层的空心AgPt@Pt核壳催化剂:提升光催化H2O2生成选择性与活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100081-0. doi: 10.1016/j.actphy.2025.100081

    3. [3]

      Xueqi YangJuntao ZhaoJiawei YeDesen ZhouTingmin DiJun Zhang . 调节NNU-55(Fe)的d带中心以增强CO2吸附和光催化活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100074-0. doi: 10.1016/j.actphy.2025.100074

    4. [4]

      Lewang YuanYaoyao PengZong-Jie GuanYu Fang . Insights into the development of 2D covalent organic frameworks as photocatalysts in organic synthesis. Acta Physico-Chimica Sinica, 2025, 41(8): 100086-0. doi: 10.1016/j.actphy.2025.100086

    5. [5]

      Yuchen ZhouHuanmin LiuHongxing LiXinyu SongYonghua TangPeng Zhou . Designing thermodynamically stable noble metal single-atom photocatalysts for highly efficient non-oxidative conversion of ethanol into high-purity hydrogen and value-added acetaldehyde. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-0. doi: 10.1016/j.actphy.2025.100067

    6. [6]

      Fan Wu Wenchang Tian Jin Liu Qiuting Zhang YanHui Zhong Zian Lin . Core-Shell Structured Covalent Organic Framework-Coated Silica Microspheres as Mixed-Mode Stationary Phase for High Performance Liquid Chromatography. University Chemistry, 2024, 39(11): 319-326. doi: 10.12461/PKU.DXHX202403031

    7. [7]

      Jiawei HuKai XiaAo YangZhihao ZhangWen XiaoChao LiuQinfang Zhang . Interfacial Engineering of Ultrathin 2D/2D NiPS3/C3N5 Heterojunctions for Boosting Photocatalytic H2 Evolution. Acta Physico-Chimica Sinica, 2024, 40(5): 2305043-0. doi: 10.3866/PKU.WHXB202305043

    8. [8]

      Yueshuai Xu Wei Liu Xudong Chen Zhikun Zheng . 水相中制备共价有机框架单晶的实验教学设计. University Chemistry, 2025, 40(6): 256-265. doi: 10.12461/PKU.DXHX202408045

    9. [9]

      Yuanqing WangYusong PanHongwu ZhuYanlei XiangRong HanRun HuangChao DuChengling Pan . Enhanced Catalytic Activity of Bi2WO6 for Organic Pollutants Degradation under the Synergism between Advanced Oxidative Processes and Visible Light Irradiation. Acta Physico-Chimica Sinica, 2024, 40(4): 2304050-0. doi: 10.3866/PKU.WHXB202304050

    10. [10]

      Wei Li Jinfan Xu Yongjun Zhang Ying Guan . 共价有机框架整体材料的制备及食品安全非靶向筛查应用——推荐一个仪器分析综合化学实验. University Chemistry, 2025, 40(6): 276-285. doi: 10.12461/PKU.DXHX202406013

    11. [11]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    12. [12]

      Jingping LiSuding YanJiaxi WuQiang ChengKai Wang . Improving hydrogen peroxide photosynthesis over inorganic/organic S-scheme photocatalyst with LiFePO4. Acta Physico-Chimica Sinica, 2025, 41(9): 100104-0. doi: 10.1016/j.actphy.2025.100104

    13. [13]

      Ke LiChuang LiuJingping LiGuohong WangKai Wang . Architecting Inorganic/Organic S-Scheme Heterojunction of Bi4Ti3O12 Coupling with g-C3N4 for Photocatalytic H2O2 Production from Pure Water. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-0. doi: 10.3866/PKU.WHXB202403009

    14. [14]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    15. [15]

      Xuejiao WangSuiying DongKezhen QiVadim PopkovXianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-0. doi: 10.3866/PKU.WHXB202408005

    16. [16]

      Jianyin HeLiuyun ChenXinling XieZuzeng QinHongbing JiTongming Su . Construction of ZnCoP/CdLa2S4 Schottky Heterojunctions for Enhancing Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-0. doi: 10.3866/PKU.WHXB202404030

    17. [17]

      Xinyu YinHaiyang ShiYu WangXuefei WangPing WangHuogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-0. doi: 10.3866/PKU.WHXB202312007

    18. [18]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    19. [19]

      Yulian Hu Xin Zhou Xiaojun Han . A Virtual Simulation Experiment on the Design and Property Analysis of CO2 Reduction Photocatalyst. University Chemistry, 2025, 40(3): 30-35. doi: 10.12461/PKU.DXHX202403088

    20. [20]

      Ronghui LI . Photocatalysis performance of nitrogen-doped CeO2 thin films via ion beam-assisted deposition. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1123-1130. doi: 10.11862/CJIC.20240440

Metrics
  • PDF Downloads(8)
  • Abstract views(521)
  • HTML views(198)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return