Citation: Yang Xia, Kangyan Zhang, Heng Yang, Lijuan Shi, Qun Yi. Improving Photocatalytic H2O2 Production over iCOF/Bi2O3 S-Scheme Heterojunction in Pure Water via Dual Channel Pathways[J]. Acta Physico-Chimica Sinica, ;2024, 40(11): 240701. doi: 10.3866/PKU.WHXB202407012 shu

Improving Photocatalytic H2O2 Production over iCOF/Bi2O3 S-Scheme Heterojunction in Pure Water via Dual Channel Pathways

  • Corresponding author: Yang Xia, xiayang410@sina.com Heng Yang, yhxg666@sina.com Qun Yi, yq20071001@163.com
  • Received Date: 9 July 2024
    Revised Date: 16 August 2024
    Accepted Date: 19 August 2024
    Available Online: 27 August 2024

    Fund Project: the National Natural Science Foundation of China 2210821the Key Research and Development Project of Hainan Province ZDYF2024GXJS005the Research and Innovation Initiatives of WHPU 2024Y18

  • Solar photocatalysis is a green, economical, and sustainable method for H2O2 synthesis, which has been regarded as the most promising alternative to the traditional anthraquinone oxidation method. However, single-component photocatalyst exhibits moderate activity owing to the limited light-harvesting range, fast charge recombination and inadequate redox capacity. Moreover, the addition of sacrificial agents is required in the reaction system. Herein, we present the development of an S-scheme heterojunction, achieved through photodepositing Bi2O3 nanoparticles (BO) on ionic covalent organic framework nanofiber (iCOF). The optimized photocatalyst iCOF/BO10 shows the highest H2O2 production performance in pure water, achieving an H2O2 yield of 9.76 mmol·g−1·h−1 with an apparent quantum yield (AQY) of 5.5% at 420 nm. This photocatalytic performance is approximately 2.2 and 5.6 times as high as that of pristine iCOF and BO, respectively. In-depth characterizations including in situ irradiated XPS, DFT-calculations, active species trapping experiments and in situ DRIFTS, reveal that the obtained sample not only facilitates charge carrier separation and enhances light absorption capability, but also maximizes the redox ability to concurrently achieve indirect 2e ORR and 4e WOR for H2O2 production. Additionally, the generated O2 from the 4e WOR is capable of accelerating the reaction kinetics for H2O2 formation via the indirect 2e ORR pathway, enabling overall photocatalytic H2O2 synthesis. This work provides a new insight into creating innovative catalysts for achieving high-efficiency photosynthesis of H2O2.
  • 加载中
    1. [1]

      Yu, X.; Viengkeo, B.; He, Q.; Zhao, X.; Huang, Q.; Li, P.; Huang, W.; Li, Y. Adv. Sustainable Syst. 2021, 5, 2100184. doi: 10.1002/adsu.202100184  doi: 10.1002/adsu.202100184

    2. [2]

      Chen, Z.; Yao, D.; Chu, C.; Mao, S. Chem. Eng. J. 2023, 451, 138489. doi: 10.1016/j.cej.2022.138489  doi: 10.1016/j.cej.2022.138489

    3. [3]

      Chen, H.; Gao, S.; Huang, G.; Chen, Q.; Gao, Y.; Bi, J. Appl. Catal. B: Environ. 2024, 343, 123545. doi: 10.1016/j.apcatb.2023.123545  doi: 10.1016/j.apcatb.2023.123545

    4. [4]

      Hsu, J.; Wei, L.; Chen, W.; Liu, S.; Wang, H. ACS Omega 2022, 7, 23727. doi: 10.1021/acsomega.2c02371  doi: 10.1021/acsomega.2c02371

    5. [5]

      Tang, X.; Li, F.; Li, F.; Jiang, Y.; Yu, C. Chin. J. Catal. 2023, 52, 79. doi: 10.1016/s1872-2067(23)64498-5  doi: 10.1016/s1872-2067(23)64498-5

    6. [6]

      Hou, H.; Zeng, X.; Zhang, X. Angew. Chem. Int. Ed. 2020, 59, 17356. doi: 10.1002/anie.201911609  doi: 10.1002/anie.201911609

    7. [7]

      Xia, Y.; Zhu, B.; Qin, X.; Ho, W.; Yu, J. Chem. Eng. J. 2023, 467, 143528. doi: 10.1016/j.cej.2023.143528  doi: 10.1016/j.cej.2023.143528

    8. [8]

      He, H.; Wang, Z.; Zhang, J.; Shao, C.; Dai, K.; Fan, K. Adv. Funct. Mater. 2024, 3, 2315426. doi: 10.1002/adfm.202315426  doi: 10.1002/adfm.202315426

    9. [9]

      Li, Y.; Liu, Y.; Wang, Z.; Wang, P.; Zheng, Z.; Cheng, H.; Dai, Y.; Huang, B. Chin. J. Catal. 2023, 45, 132. doi: 10.1016/s1872-2067(22)64163-9  doi: 10.1016/s1872-2067(22)64163-9

    10. [10]

      He, R.; Xu, D.; Li, X. J. Mater. Sci. Technol. 2023, 138, 256. doi: 10.1016/j.jmst.2022.09.002  doi: 10.1016/j.jmst.2022.09.002

    11. [11]

      Chai, H.; Nan, J.; Jin, W.; Wu, F.; Liu, B.; Guo, Y. Chem. Eng. J. 2024, 489, 151293. doi: 10.1016/j.cej.2024.151293  doi: 10.1016/j.cej.2024.151293

    12. [12]

      Li, L.; Xu, L.; Hu, Z.; Yu, J. Adv. Funct. Mater. 2021, 31, 2106120. doi: 10.1002/adfm.202106120  doi: 10.1002/adfm.202106120

    13. [13]

      Zhang, Y.; Qiu, J.; Zhu, B.; Sun, G.; Cheng, B.; Wang, L. Chin. J. Catal. 2024, 57, 143. doi: 10.1016/s1872-2067(23)64580-2  doi: 10.1016/s1872-2067(23)64580-2

    14. [14]

      Meng, K.; Zhang, J.; Cheng, B.; Ren, X.; Xia, Z.; Xu, F.; Zhang, L.; Yu, J. Adv. Mater. 2024, 36, 2406460. doi: 10.1002/adma.202406460  doi: 10.1002/adma.202406460

    15. [15]

      Zhang, X.; Gao, D.; Zhu, B.; Cheng, B.; Yu, J.; Yu, H. Nat. Commun. 2024, 15, 3212. doi: 10.1038/s41467-024-47624-7.  doi: 10.1038/s41467-024-47624-7

    16. [16]

      Zhu, B.; Liu, J.; Sun, J.; Xie, F.; Tan, H.; Cheng, B.; Zhang, B. J. Mater. Sci. Technol. 2023, 162, 90. doi: 10.1016/j.jmst.2023.03.054  doi: 10.1016/j.jmst.2023.03.054

    17. [17]

      Xu, M.; Gao, C.; Yao, S.; Sun, S.; Zhang, L.; Li, K.; Cheng, X. J. Mater. Chem. C 2022, 10, 8101. doi: 10.1039/d2tc00500j  doi: 10.1039/d2tc00500j

    18. [18]

      Wu, Y.; Yang, Y.; Gu, M.; Bie, C.; Tan, H.; Cheng, B.; Xu, J. Chin. J. Catal. 2023, 53, 123. doi: org/10.1016/s1872-2067(23)64514-0  doi: 10.1016/s1872-2067(23)64514-0

    19. [19]

      Isaka, Y.; Kawase, Y.; Kuwahara, Y.; Mori, K.; Yamashita, H. Angew. Chem. Int. Ed. 2019, 58, 5402. doi: 10.1002/ange.201901961  doi: 10.1002/ange.201901961

    20. [20]

      Qiu, J.; Meng, K.; Zhang, Y.; Cheng, B.; Zhang, J.; Wang, L.; Yu, J. Adv. Mater. 2024, 36, 2400288. doi: 10.1002/adma.202400288  doi: 10.1002/adma.202400288

    21. [21]

      Zhao, Y.; Liu, Y.; Cao, J.; Wang, H.; Shao, M.; Huang, H.; Liu, Y.; Kang, Z. Appl. Catal. B: Environ. 2020, 278, 119289. doi: 10.1016/j.apcatb.2020.119289  doi: 10.1016/j.apcatb.2020.119289

    22. [22]

      Liu, S.; Zhu, C.; Xu, J.; Lu, L.; Fang, Q.; Xu, C.; Zheng, Y.; Song, S.; Shen, Y. Appl. Catal. B: Environ. 2024, 344, 123629. doi: 10.1016/j.apcatb.2023.123629  doi: 10.1016/j.apcatb.2023.123629

    23. [23]

      Wu, X.; Chen, G.; Wang, J.; Li, J.; Wang, G. Acta Phys.-Chim.Sin. 2023, 39, 2212016. doi: 10.3866/PKU.WHXB202212016  doi: 10.3866/PKU.WHXB202212016

    24. [24]

      Wu, X.; Chen, G.; Li, L.; Wang, J.; Wang, G. J. Mater. Sci. Technol. 2023, 167, 184. doi: org/10.1016/j.jmst.2023.05.046  doi: 10.1016/j.jmst.2023.05.046

    25. [25]

      Wu, X.; Tan, L.; Chen, G.; Kang, J.; Wang, G. Sci. China Mater. 2024, 67, 444. doi: org/10.1007/s40843-023-2755-2  doi: 10.1007/s40843-023-2755-2

    26. [26]

      Li, G.; Fu, P.; Yue, Q.; Ma, F.; Zhao, X.; Dong, S.; Han, X.; Zhou, Y.; Wang, J. Chem Catal. 2022, 2, 1734. doi: 10.1016/j.checat.2022.05.002  doi: 10.1016/j.checat.2022.05.002

    27. [27]

      Chen, Z.; Wan, S.; Cheng, B.; Wang, W.; Xiang, Y.; Yu, J.; Cao, S. Sci. China Chem. 2024, 67, 1953. doi: 10.1007/s11426-024-2012-5  doi: 10.1007/s11426-024-2012-5

    28. [28]

      Jiang, Z.; Long, Q.; Cheng, B.; He, R.; Wang, L. J. Mater. Sci. Technol. 2023, 162, 1. doi: 10.1016/j.jmst.2023.03.045  doi: 10.1016/j.jmst.2023.03.045

    29. [29]

      Zhang, K.; Li, Y.; Yuan, S.; Zhang, L.; Wang, Q. Acta Phys.-Chim.Sin. 2023, 39, 2212010. doi: 10.3866/pku.whxb202212010  doi: 10.3866/pku.whxb202212010

    30. [30]

      Yu, W.; Bie, C. Acta Phys.-Chim.Sin. 2024, 40, 2307022. doi: 10.3866/pku.whxb202307022  doi: 10.3866/pku.whxb202307022

    31. [31]

      Yan, J.; Wei, L. Acta Phys.-Chim.Sin. 2024, 40, 2312024. doi: 10.3866/pku.whxb202312024  doi: 10.3866/pku.whxb202312024

    32. [32]

      Xu, Q.; He, R.; Li, Y. Acta Phys.-Chim.Sin. 2023, 39, 2211009. doi: 10.3866/pku.whxb202211009  doi: 10.3866/pku.whxb202211009

    33. [33]

      He, B.; Wang, Z.; Xiao, P.; Chen, T.; Yu, J.; Zhang, L. Adv. Mater., 2022, 34, 2203225. doi: 10.1002/adma.202203225  doi: 10.1002/adma.202203225

    34. [34]

      He, R.; Liu, H.; Liu, H.; Xu, D.; Zhang, L. J. Mater. Sci. Technol., 2020, 52, 145. doi: 10.1016/j.jmst.2020.03.027  doi: 10.1016/j.jmst.2020.03.027

    35. [35]

      Zhang, Z.; Wen, L.; Liao, S.; Zeng, X.; Zhou, R.; Zeng, Y. Chem. Eng. J. 2023, 474, 145473. doi: 10.1016/j.cej.2023.145473  doi: 10.1016/j.cej.2023.145473

    36. [36]

      Zhu, B.; Dong, Q.; Huang, J.; Yang, M.; Chen, X.; Zhai, C.; Chen, Q.; Wang, B.; Tao, H.; Chen, L. ACS Omega 2023, 8, 13702. doi: 10.1021/acsomega.2c07899  doi: 10.1021/acsomega.2c07899

    37. [37]

      Kan, L.; Mu, W.; Chang, C.; Lian, F. Sep. Purif. Technol. 2023, 312, 123388. doi: 10.1016/j.seppur.2023.123388  doi: 10.1016/j.seppur.2023.123388

    38. [38]

      Li, G.; Zhao, X.; Yue, Q.; Fu, P.; Ma, F.; Wang, J.; Zhou, Y. J. Energy Chem., 2023, 82, 40. doi: 10.1016/j.jechem.2023.02.047  doi: 10.1016/j.jechem.2023.02.047

    39. [39]

      Wang, D.; Yu, X.; Feng, Q.; Lin, X.; Huang, Y.; Huang, X.; Li, X.; Chen, K.; Zhao, B.; Zhang, Z. J. Alloy. Compd., 2021, 859, 157795. doi: 10.1016/j.jallcom.2020.157795  doi: 10.1016/j.jallcom.2020.157795

    40. [40]

      Zang, Y.; Cheng, Y.; Wang, Z.; Peng, P.; Dong, Q.; Chen, H.; Wang, R.; Zang, S. Appl. Catal. B: Environ. 2022, 302, 120817. doi: 10.1016/j.apcatb.2021.120817  doi: 10.1016/j.apcatb.2021.120817

    41. [41]

      She, S.; Zhao, B.; Wang, J.; Wei, Z.; Wu, X.; Li, Y. Sep. Purif. Technol. 2023, 309, 123064. doi: 10.1016/j.seppur.2022.123064  doi: 10.1016/j.seppur.2022.123064

    42. [42]

      Xu, G.; Guan, X.; Wang, X.; Zhang, C.; Zhang, X.; Liu, J.; Li, R.; Fan, C. Mater. Lett. 2023, 349, 134806. doi: 10.1016/j.matlet.2023.134806  doi: 10.1016/j.matlet.2023.134806

    43. [43]

      Wang, M.; Chen, Y.; Sun, L.; Chen, Y.; Zhang, Y.; Dong, L.; Zhao, L.; Yan, F. Mol. Catal. 2024, 552, 113690. doi: 10.1016/j.mcat.2023.113690  doi: 10.1016/j.mcat.2023.113690

    44. [44]

      Zhang, J.; Liu, J.; Ma, H.; Luo, X.; Han, C.; Zhou, R.; Yuan, S.; Li, D.; Wu, T. J. Mater. Chem. A 2024, 12, 14398. doi: 10.1039/d4ta02087a  doi: 10.1039/d4ta02087a

    45. [45]

      Qin, X.; Tan, H.; Zhao, Y.; Cheng, S.; Zhou, M.; Lin, J.; Ho, W.; Li, H.; Lee, S. Adv. Energy Sust. Res. 2023, 4, 2200157. doi: 10.1002/aesr.202200157  doi: 10.1002/aesr.202200157

    46. [46]

      Xiao, L.; Ren, W.; Shen, S.; Chen, M.; Liao, R.; Zhou, Y.; Li, X. Acta Phys.-Chim.Sin. 2023, 40, 2308036. doi: 10.3866/pku.whxb202308036  doi: 10.3866/pku.whxb202308036

    47. [47]

      Pierotti, R.; Rouquerol, J. Pure Appl. Chem. 1985, 57, 603. doi: 10.1351/pac198557040603  doi: 10.1351/pac198557040603

    48. [48]

      Shao, Y.; Hao, X.; Lu, S.; Jin, Z. Chem. Eng. J. 2023, 454, 140123. doi: 10.1016/j.cej.2022.140123  doi: 10.1016/j.cej.2022.140123

    49. [49]

      Kruk, M.; Jaroniec, M. Chem. Mater. 2001, 13, 3169. doi: 10.1021/cm0101069  doi: 10.1021/cm0101069

    50. [50]

      Xia, Y.; Zhu, B.; Li, L.; Ho, W.; Wu, J.; Chen, H.; Yu, J. Small 2023, 19, 2301928. doi: 10.1002/smll.202301928  doi: 10.1002/smll.202301928

    51. [51]

      Wang, C.; Liu, H.; Wang, G.; Fang, H.; Yuan, X.; Lu, C. Chem. Eng. J. 2022, 450, 138167. doi: 10.1016/j.cej.2022.138167  doi: 10.1016/j.cej.2022.138167

    52. [52]

      Li, C.; Liu, X.; Huo, P.; Yan, Y.; Liao, G.; Ding, G.; Liu, C. Small 2021, 17, 2102539. doi: 10.1002/smll.202102539  doi: 10.1002/smll.202102539

    53. [53]

      Tang, R.; Gong, D.; Deng, Y.; Xiong, S.; Deng, J.; Li, L.; Zhou, Z.; Zheng, J.; Su, L.; Yang, L. Chem. Eng. J. 2022, 427, 131809. doi: 10.1016/j.cej.2021.131809  doi: 10.1016/j.cej.2021.131809

    54. [54]

      Cheng, J.; Wan, S.; Cao, S. Angew. Chem. Int. Ed. 2023, 62, 202310476. doi: 10.1002/anie.202310476  doi: 10.1002/anie.202310476

    55. [55]

      Zhang, H.; Liu, J.; Zhang, Y.; Cheng, B.; Zhu, B.; Wang, L. J. Mater. Sci. Technol. 2023, 166, 241. doi: 10.1016/j.jmst.2023.05.030  doi: 10.1016/j.jmst.2023.05.030

    56. [56]

      Cheng, C.; Yu, J.; Xu, D.; Wang, L.; Liang, G.; Zhang, L.; Jaroniec, M. Nat. Commun. 2024, 15, 1313. doi: 10.1038/s41467-024-45604-5  doi: 10.1038/s41467-024-45604-5

    57. [57]

      Zhang, X.; Yu, J.; Macyk, W.; Wageh, S.; Ghamdi, A.A.; Wang, L. Adv. Sustain. Syst. 2023, 7, 2200113. doi: 10.1002/adsu.202200113  doi: 10.1002/adsu.202200113

    58. [58]

      Deng, X.; Zhang, J.; Qi, K.; Liang, G.; Xu, F.; Yu, J. Nat. Commun. 2024, 15, 4807. doi: 10.1038/s41467-024-49004-7  doi: 10.1038/s41467-024-49004-7

    59. [59]

      Zhou, S.; Wen, D.; Zhong, W.; Zhang, J.; Su, Y.; Meng, A. J. Mater. Sci. Technol. 2024, 199, 53. doi: 10.1016/j.jmst.2024.02.048  doi: 10.1016/j.jmst.2024.02.048

    60. [60]

      Wei, J.; Chen, Y.; Zhang, H.; Zhuang, Z.; Yu, Y. Chin. J. Catal. 2021, 42, 78 doi: 10.1016/S1872-2067(20)63661-0  doi: 10.1016/S1872-2067(20)63661-0

    61. [61]

      Zhang, Y.; Qiu, J.; Zhu, B.; Fedin, M. V.; Cheng, B.; Yu, J.; Zhang, L. Chem. Eng. J. 2022, 444, 136584. doi: 10.1016/j.cej.2022.136584  doi: 10.1016/j.cej.2022.136584

    62. [62]

      Fang, W.; Wang, L.; Meng, X.; Li, C. J. Alloy. Compd. 2023, 947, 169606. doi: 10.1016/j.jallcom.2023.169606  doi: 10.1016/j.jallcom.2023.169606

    63. [63]

      Yue, J.; Song, L.; Fan, Y.; Pan, Z.; Yang, P.; Ma, Y.; Xu, Q.; Tang, B. Angew. Chem. Int. Ed. 2023, 62, 202309624. doi: 10.1002/anie.202309624  doi: 10.1002/anie.202309624

  • 加载中
    1. [1]

      Menglan WeiXiaoxia OuYimeng WangMengyuan ZhangFei TengKaixuan Wang . S-scheme heterojunction g-C3N4/Bi2WO6 highly efficient degradation of levofloxacin: performance, mechanism and degradation pathway. Acta Physico-Chimica Sinica, 2025, 41(9): 100105-0. doi: 10.1016/j.actphy.2025.100105

    2. [2]

      Chenye AnSikandaier AbiduweiliXue GuoYukun ZhuHua TangDongjiang Yang . Hierarchical S-scheme Heterojunction of Red Phosphorus Nanoparticles Embedded Flower-like CeO2 Triggering Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-0. doi: 10.3866/PKU.WHXB202405019

    3. [3]

      Yi YangXin ZhouMiaoli GuBei ChengZhen WuJianjun Zhang . Femtosecond transient absorption spectroscopy investigation on ultrafast electron transfer in S-scheme ZnO/CdIn2S4 photocatalyst for H2O2 production and benzylamine oxidation. Acta Physico-Chimica Sinica, 2025, 41(6): 100064-0. doi: 10.1016/j.actphy.2025.100064

    4. [4]

      Yuejiao AnWenxuan LiuYanfeng ZhangJianjun ZhangZhansheng Lu . Revealing Photoinduced Charge Transfer Mechanism of SnO2/BiOBr S-Scheme Heterostructure for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2407021-0. doi: 10.3866/PKU.WHXB202407021

    5. [5]

      Xuejiao WangSuiying DongKezhen QiVadim PopkovXianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-0. doi: 10.3866/PKU.WHXB202408005

    6. [6]

      Jiajie CaiChang ChengBowen LiuJianjun ZhangChuanjia JiangBei Cheng . CdS/DBTSO-BDTO S-scheme photocatalyst for H2 production and its charge transfer dynamics. Acta Physico-Chimica Sinica, 2025, 41(8): 100084-0. doi: 10.1016/j.actphy.2025.100084

    7. [7]

      Shijie LiKe RongXiaoqin WangChuqi ShenFang YangQinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-0. doi: 10.3866/PKU.WHXB202403005

    8. [8]

      You WuChang ChengKezhen QiBei ChengJianjun ZhangJiaguo YuLiuyang Zhang . Efficient Photocatalytic Production of H2O2 over ZnO/D-A Conjugated Polymer S-scheme Heterojunction and Charge Transfer Dynamics Investigation. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-0. doi: 10.3866/PKU.WHXB202406027

    9. [9]

      Xiutao XuChunfeng ShaoJinfeng ZhangZhongliao WangKai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-0. doi: 10.3866/PKU.WHXB202309031

    10. [10]

      Wenlong WangWentao HaoLang HeJia QiaoNing LiChaoqiu ChenYong Qin . Bandgap and adsorption engineering of carbon dots/TiO2 S-scheme heterojunctions for enhanced photocatalytic CO2 methanation. Acta Physico-Chimica Sinica, 2025, 41(9): 100116-0. doi: 10.1016/j.actphy.2025.100116

    11. [11]

      Jinwang WuQijing XieChengliang ZhangHaifeng Shi . Rationally Designed ZnFe1.2Co0.8O4/BiVO4 S-Scheme Heterojunction with Spin-Polarization for the Elimination of Antibiotic. Acta Physico-Chimica Sinica, 2025, 41(5): 100050-0. doi: 10.1016/j.actphy.2025.100050

    12. [12]

      Jiaxing CaiWendi XuHaoqiang ChiQian LiuWa GaoLi ShiJingxiang LowZhigang ZouYong Zhou . Highly Efficient InOOH/ZnIn2S4 Hollow Sphere S-Scheme Heterojunction with 0D/2D Interface for Enhancing Photocatalytic CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(11): 2407002-0. doi: 10.3866/PKU.WHXB202407002

    13. [13]

      Peng LiYuanying CuiZhongliao WangGraham DawsonChunfeng ShaoKai Dai . Efficient interfacial charge transfer of CeO2/Bi19Br3S27 S-scheme heterojunction for boosted photocatalytic CO2 reduction. Acta Physico-Chimica Sinica, 2025, 41(6): 100065-0. doi: 10.1016/j.actphy.2025.100065

    14. [14]

      Changjun YouChunchun WangMingjie CaiYanping LiuBaikang ZhuShijie Li . Improved Photo-Carrier Transfer by an Internal Electric Field in BiOBr/N-rich C3N5 3D/2D S-Scheme Heterojunction for Efficiently Photocatalytic Micropollutant Removal. Acta Physico-Chimica Sinica, 2024, 40(11): 2407014-0. doi: 10.3866/PKU.WHXB202407014

    15. [15]

      Tieping CAOYuejun LIDawei SUN . Surface plasmon resonance effect enhanced photocatalytic CO2 reduction performance of S-scheme Bi2S3/TiO2 heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 903-912. doi: 10.11862/CJIC.20240366

    16. [16]

      Linfeng XiaoWanlu RenShishi ShenMengshan ChenRunhua LiaoYingtang ZhouXibao Li . Enhancing Photocatalytic Hydrogen Evolution through Electronic Structure and Wettability Adjustment of ZnIn2S4/Bi2O3 S-Scheme Heterojunction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308036-0. doi: 10.3866/PKU.WHXB202308036

    17. [17]

      Jingzhuo TianChaohong GuanHaobin HuEnzhou LiuDongyuan Yang . Waste plastics promoted photocatalytic H2 evolution over S-scheme NiCr2O4/twinned-Cd0.5Zn0.5S homo-heterojunction. Acta Physico-Chimica Sinica, 2025, 41(6): 100068-0. doi: 10.1016/j.actphy.2025.100068

    18. [18]

      Tong ZhouXue LiuLiang ZhaoMingtao QiaoWanying Lei . Efficient Photocatalytic H2O2 Production and Cr(Ⅵ) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-0. doi: 10.3866/PKU.WHXB202309020

    19. [19]

      Jianyin HeLiuyun ChenXinling XieZuzeng QinHongbing JiTongming Su . Construction of ZnCoP/CdLa2S4 Schottky Heterojunctions for Enhancing Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-0. doi: 10.3866/PKU.WHXB202404030

    20. [20]

      Chunchun WangChangjun YouKe RongChuqi ShenFang YangShijie Li . An S-Scheme MIL-101(Fe)-on-BiOCl Heterostructure with Oxygen Vacancies for Boosting Photocatalytic Removal of Cr(Ⅵ). Acta Physico-Chimica Sinica, 2024, 40(7): 2307045-0. doi: 10.3866/PKU.WHXB202307045

Metrics
  • PDF Downloads(1)
  • Abstract views(274)
  • HTML views(62)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return