Citation: Jiaxing Cai, Wendi Xu, Haoqiang Chi, Qian Liu, Wa Gao, Li Shi, Jingxiang Low, Zhigang Zou, Yong Zhou. Highly Efficient InOOH/ZnIn2S4 Hollow Sphere S-Scheme Heterojunction with 0D/2D Interface for Enhancing Photocatalytic CO2 Conversion[J]. Acta Physico-Chimica Sinica, ;2024, 40(11): 240700. doi: 10.3866/PKU.WHXB202407002 shu

Highly Efficient InOOH/ZnIn2S4 Hollow Sphere S-Scheme Heterojunction with 0D/2D Interface for Enhancing Photocatalytic CO2 Conversion

  • Corresponding author: Wa Gao, gaowa@tiangong.edu.cn Li Shi, iamlshi@njupt.edu.cn Jingxiang Low, jxlow@tiangong.edu.cn Yong Zhou, zhouyong1999@nju.edu.cn
  • These authors contributed equally to this work.
  • Received Date: 2 July 2024
    Revised Date: 5 August 2024
    Accepted Date: 5 August 2024
    Available Online: 14 August 2024

    Fund Project: the National Key R & D Program of China 2022YFE0126500the National Key R & D Program of China 2018YFE0208500the National Natural Science Foundation of China 21972065the National Natural Science Foundation of China 22203046the National Natural Science Foundation of China 22202152the Natural Science Foundation of Jiangsu Province BK20220006the Hefei National Laboratory for Physical Sciences at the Microscale KF2020006the Program for Guangdong Introducing Innovative and Entrepreneurial Team 2019ZL08L101the Chinese University Development Fund UDF01001159the Project of State Key Laboratory of Organic Electronics and Information Displays, Nanjing University of Posts and Telecommunications GZR2023010003Natural Science Research Start-up Foundation of Recruiting Talents of Nanjing University of Posts and Telecommunications NY221128

  • S-scheme heterojunction system represents a highly efficient strategy for photocatalytic applications as it can simultaneously facilitate photogenerated charge carrier separation and enhance the reduction-oxidation potentials of the photocatalyst. Despite its gigantic potential, the photocatalytic CO2 conversion efficiency of the S-scheme heterojunction remains limited mainly attributed to the sluggish interfacial charge carrier migration and poor light utilization efficiency. Herein, we prepare an InOOH/ZnIn2S4 hollow sphere S-scheme heterojunction with 0D/2D contact interface for enhancing photocatalytic CO2 conversion performance. Specifically, the hollow sphere morphology can cause the multireflection of incident light within the photocatalyst leading to enhanced light absorption of the photocatalyst. In addition, the 0D/2D contact interface can facilitate the photogenerated charge carrier migration transfer over the InOOH/ZnIn2S4 S-scheme heterojunction. Furthermore, combining in situ irradiated X-ray photoelectron spectroscopy (ISI-XPS) characterization and radicals trapping test, it is affirmed the accumulation of photogenerated holes and electrons respectively on InOOH and ZnIn2S4, which is beneficial for the effective utilization of photogenerated charge carriers. As a result, the photocatalytic CO2 conversion performance of the optimized InOOH/ZnIn2S4 is ca. 25.8 times higher than that of pristine ZnIn2S4. Our reported results demonstrate a facile yet effective strategy for enhancing the interfacial photogenerated charge carrier migration and light utilization efficiency of S-scheme heterojunction.
  • 加载中
    1. [1]

      Cheng, Y.; Ji, W.; Hao, P.; Qi, X.; Wu, X.; Dou, X.; Bian, X.; Jiang, D.; Li, F.; Liu, X.; et al. Angew. Chem. Int. Ed. 2023, 62, e202308523. doi: 10.1002/anie.202308523  doi: 10.1002/anie.202308523

    2. [2]

      Luo, C.; Long, Q.; Cheng, B.; Zhu, B.; Wang, L. Acta Phys.-Chim.Sin. 2023, 39, 2212026. doi: 10.3866/PKU.WHXB202212026  doi: 10.3866/PKU.WHXB202212026

    3. [3]

      Zhang, J.; Liu, J.; Meng, Z.; Jana, S.; Wang, L.; Zhu, B. J. Mater. Sci. Technol. 2023, 159, 1. doi: 10.1016/j.jmst.2023.02.044  doi: 10.1016/j.jmst.2023.02.044

    4. [4]

      Wang, C.; You, C.; Rong, K.; Shen, C.; Yang, F.; Li, S. Acta Phys.-Chim.Sin. 2024, 40, 2307045. doi: 10.3866/PKU.WHXB202307045  doi: 10.3866/PKU.WHXB202307045

    5. [5]

      Xiao, L.; Ren, W.; Shen, S.; Chen, M.; Liao, R.; Zhou, Y.; Li, X. Acta Phys.-Chim.Sin. 2024, 40, 2308036. doi: 10.3866/PKU.WHXB202308036  doi: 10.3866/PKU.WHXB202308036

    6. [6]

      Fu, J.; Xu, Q.; Low, J.; Jiang, C.; Yu, J. Appl. Catal. B 2019, 243, 556. doi: 10.1016/j.apcatb.2018.11.011  doi: 10.1016/j.apcatb.2018.11.011

    7. [7]

      Wu, X.; Chen, G.; Wang, J.; Li, J.; Wang, G. Acta Phys.-Chim.Sin. 2023, 39, 2212016. doi: 10.3866/PKU.WHXB202212016  doi: 10.3866/PKU.WHXB202212016

    8. [8]

      Zhu, B.; Sun, J.; Zhao, Y.; Zhang, L.; Yu, J. Adv. Mater. 2024, 36, 2310600. doi: 10.1002/adma.202310600  doi: 10.1002/adma.202310600

    9. [9]

      Huang, Q.; Hu, J.; Hu, Y.; Liu, J.; He, J.; Zhou, G.; Hu, N.; Yang, Z.; Zhang, Y.; Zhou, Y.; et al. Environ. Sci. Nano 2022, 9, 4433. doi: 10.1039/d2en00781a  doi: 10.1039/d2en00781a

    10. [10]

      Deng, X.; Zhang, J.; Qi, K.; Liang, G.; Xu, F.; Yu, J. Nat. Commun. 2024, 15, 4807. doi: 10.1038/s41467-024-49004-7  doi: 10.1038/s41467-024-49004-7

    11. [11]

      Zhang, Y.; Gao, M.; Chen, S.; Wang, H.; Huo, P. Acta Phys.-Chim.Sin. 2023, 39, 2211051. doi: 10.3866/PKU.WHXB202211051  doi: 10.3866/PKU.WHXB202211051

    12. [12]

      Wang, W.; Mei, S.; Jiang, H.; Wang, L.; Tang, H.; Liu, Q. Chin. J. Catal. 2023, 55, 137. doi: 10.1016/S1872-2067(23)64551-6  doi: 10.1016/S1872-2067(23)64551-6

    13. [13]

      Bian, Y.; He, H.; Dawson, G.; Zhang, J.; Dai, K. Sci. China Mater. 2024, 67, 514. doi: 10.1007/s40843-023-2725-y  doi: 10.1007/s40843-023-2725-y

    14. [14]

      Wang, J.; Qiao, X.; Shi, W.; He, J.; Chen, J.; Zhang, W. Acta Phys.-Chim.Sin. 2023, 39, 2210003. doi: 10.3866/PKU.WHXB202210003  doi: 10.3866/PKU.WHXB202210003

    15. [15]

      Yang, T.; Wang, J.; Wang, Z.; Zhang, J.; Dai, K. Chin. J. Catal. 2024, 58, 157. doi: 10.1016/S1872-2067(23)64607-8  doi: 10.1016/S1872-2067(23)64607-8

    16. [16]

      Ding, Z.; Li, X.; Kang, C.; Yan, S.; Zhao, D.; Cai, H.; Zhang, S.; Zeng, Y. Chem. Eng. J. 2023, 473, 145256. doi: 10.1016/j.cej.2023.145256  doi: 10.1016/j.cej.2023.145256

    17. [17]

      Zhao, Z.; Wang, Z.; Zhang, J.; Shao, C.; Dai, K.; Fan, K.; Liang, C. Adv. Funct. Mater. 2023, 33, 2214470. doi: 10.1002/adfm.202214470  doi: 10.1002/adfm.202214470

    18. [18]

      Zan, Z.; Li, X.; Gao, X.; Huang, J.; Luo, Y.; Han, L. Acta Phys.-Chim.Sin. 2023, 39, 2209016. doi: 10.3866/PKU.WHXB202209016  doi: 10.3866/PKU.WHXB202209016

    19. [19]

      Song, M.; Song, X.; Liu, X.; Zhou, W.; Huo, P. Chin. J. Catal. 2023, 51, 180. doi: 10.1016/S1872-2067(23)64480-8  doi: 10.1016/S1872-2067(23)64480-8

    20. [20]

      Wang, J.; Wang, Z.; Zhang, J.; Dai, K. Chin. J. Struct. Chem. 2023, 42, 100202. doi: 10.1016/j.cjsc.2023.100202  doi: 10.1016/j.cjsc.2023.100202

    21. [21]

      Yuan, D.; Jiao, Y.; Li, Z.; Chen, X.; Ding, J.; Dai, W.; Wan, H.; Guan, G. Adv. Mater. Interfaces 2021, 8, 2100695. doi: 10.1002/admi.202100695  doi: 10.1002/admi.202100695

    22. [22]

      Yu, W.; Bie, C. Acta Phys.-Chim.Sin. 2024, 40, 2307022. doi: 10.3866/PKU.WHXB202307022  doi: 10.3866/PKU.WHXB202307022

    23. [23]

      Cheng, C.; Zhang, J.; Zhu, B.; Liang, G.; Zhang, L.; Yu, J. Angew. Chem. Int. Ed. 2023, 62, e202218688. doi: 10.1002/anie.202218688  doi: 10.1002/anie.202218688

    24. [24]

      Wang, L.; Cheng, B.; Zhang, L.; Yu, J. Small 2021, 17, 2103447. doi: 10.1002/smll.202103447  doi: 10.1002/smll.202103447

    25. [25]

      Liu, B.; Cai, J.; Zhang, J.; Tan, H.; Cheng, B.; Xu, J. Chin. J. Catal. 2023, 51, 204. doi: 10.1016/S1872-2067(23)64466-3  doi: 10.1016/S1872-2067(23)64466-3

    26. [26]

      Zhang, L.; Wu, Y.; Tsubaki, N.; Jin, Z. Acta Phys.-Chim.Sin. 2023, 39, 2302051. doi: 10.3866/PKU.WHXB202302051  doi: 10.3866/PKU.WHXB202302051

    27. [27]

      Wang, S.; Zhang, Y.; Zheng, Y.; Xu, Y.; Yang, G.; Zhong, S.; Zhao, Y.; Bai, S. Small 2023, 19, 2204774. doi: 10.1002/smll.202204774  doi: 10.1002/smll.202204774

    28. [28]

      Yan, J.; Wei, L. Acta Phys.-Chim.Sin. 2024, 40, 2312024. doi: 10.3866/PKU.WHXB202312024  doi: 10.3866/PKU.WHXB202312024

    29. [29]

      Zhou, S.; Wen, D.; Zhong, W.; Zhang, J.; Su, Y.; Meng, A. J. Mater. Sci. Technol. 2024, 199, 53. doi: 10.1016/j.jmst.2024.02.048  doi: 10.1016/j.jmst.2024.02.048

    30. [30]

      Xu, Q.; Zhang, L.; Cheng, B.; Fan, J.; Yu, J. Chem 2020, 6, 1543. doi: 10.1016/j.chempr.2020.06.010  doi: 10.1016/j.chempr.2020.06.010

    31. [31]

      Giannozzi, P.; Baroni, S.; Bonini, N.; Calandra, M.; Car, R.; Cavazzoni, C.; Ceresoli, D.; Chiarotti, G.; Cococcioni, M.; Dabo, I.; et al. J. Phys. : Condens. Matter 2009, 21, 395502. doi: 10.1088/0953-8984/21/39/395502  doi: 10.1088/0953-8984/21/39/395502

    32. [32]

      Perdew, J.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. 1996, 77, 3865. doi: 10.1103/PhysRevLett.77.3865  doi: 10.1103/PhysRevLett.77.3865

    33. [33]

      Grimme, S.; Ehrlich, S.; Goerigk, L. J. Comput. Chem. 2011, 32, 1456. doi: 10.1002/jcc.21759  doi: 10.1002/jcc.21759

    34. [34]

      Li, J.; Li, K.; Lei, B.; Ran, M.; Sun, Y.; Zhang, Y.; Kim, K.; Dong, F. Chem. Eng. J. 2021, 413, 1385. doi: 10.1016/j.cej.2020.127389  doi: 10.1016/j.cej.2020.127389

    35. [35]

      Li, S.; Rui, H.; Bao, T.; Qi, Y.; Rao, H.; She, P.; Qin, J. Appl. Surf. Sci. 2023, 641, 158492. doi: 10.1016/j.apsusc.2023.158492  doi: 10.1016/j.apsusc.2023.158492

    36. [36]

      Tang, S.; Zhang, C.; Chen, T.; Du, Y.; Xiao, X. Appl. Surf. Sci. 2021, 562, 150225. doi: 10.1016/j.apsusc.2021.150225  doi: 10.1016/j.apsusc.2021.150225

    37. [37]

      Zhang, G.; Zhu, X.; Chen, D.; Li, N.; Xu, Q.; Li, H.; He, J.; Xu, H.; Lu, J. Environ. Sci. Nano 2020, 7, 676. doi: 10.1039/c9en01325c  doi: 10.1039/c9en01325c

    38. [38]

      Zhuang, Y.; Luan, J. Chem. Eng. J. 2020, 382, 122770. doi: 10.1016/j.cej.2019.122770  doi: 10.1016/j.cej.2019.122770

    39. [39]

      Han, Q.; Li, L.; Gao, W.; Shen, Y.; Wang, L.; Zhang, Y.; Wang, X.; Shen, Q.; Xiong, Y.; Zhou, Y.; et al. ACS Appl. Mater. Interfaces 2021, 13, 15092. doi: 10.1021/acsami.0c21266  doi: 10.1021/acsami.0c21266

    40. [40]

      Zhang, K.; Li, Y.; Yuan, S.; Zhang, L.; Wang, Q. Acta Phys.-Chim.Sin. 2023, 39, 2212010. doi: 10.3866/PKU.WHXB202212010  doi: 10.3866/PKU.WHXB202212010

    41. [41]

      Wang, P.; Zhou, X.; Shao, Y.; Li, D.; Zuo, Z.; Liu, X. J. Colloid Interface Sci. 2021, 601, 186. doi: 10.1016/j.jcis.2021.05.132  doi: 10.1016/j.jcis.2021.05.132

    42. [42]

      Wang, Z.; Wang, J.; Zhang, J.; Dai, K. Acta Phys.-Chim.Sin. 2023, 39, 2209037. doi: 10.3866/PKU.WHXB202209037  doi: 10.3866/PKU.WHXB202209037

    43. [43]

      Degefu, D.; Liao, Z. J. Sol-Gel. Sci. Technol. 2021, 98, 605. doi: 10.1007/s10971-021-05532-y  doi: 10.1007/s10971-021-05532-y

    44. [44]

      Kumagai, H.; Tamaki, Y.; Ishitani, O. Acc. Chem. Res. 2022, 55, 978. doi: 10.1021/acs.accounts.1c00705  doi: 10.1021/acs.accounts.1c00705

    45. [45]

      Liu, R.; Li, L.; Wang, Q.; Lu, J.; Liang, J. ACS Appl. Nano Mater. 2024, 7, 5308. doi: 10.1021/acsanm.3c06076  doi: 10.1021/acsanm.3c06076

    46. [46]

      Wang, X.; Chen, G.; Wang, H.; Wu, Y.; Wei, X.; Wen, J.; Hu, L.; Gu, W.; Zhu, C. J. Catal. 2021, 399, 192. doi: 10.1016/j.jcat.2021.05.007  doi: 10.1016/j.jcat.2021.05.007

    47. [47]

      Shen, Y.; Han, Q.; Hu, J.; Gao, W.; Wang, L.; Yang, L.; Gao, C.; Shen, Q.; Wu, C.; Wang, X.; et al. ACS Appl. Energy Mater. 2020, 3, 6561. doi: 10.1021/acsaem.0c00750  doi: 10.1021/acsaem.0c00750

    48. [48]

      Deng, X.; Wen, Z.; Li, X.; Macyk, W.; Yu, J.; Xu, F. Small 2024, 20, 2305410. doi: 10.1002/smll.202305410  doi: 10.1002/smll.202305410

    49. [49]

      Tang, Q.; Sun, Z.; Deng, S.; Wang, H.; Wu, Z. J. Colloid Interface Sci. 2020, 564, 406. doi: 10.1016/j.jcis.2019.12.091  doi: 10.1016/j.jcis.2019.12.091

    50. [50]

      Xiong, X.; Zhao, Y.; Shi, R.; Yin, W.; Zhao, Y.; Waterhouse, G.; Zhang, T. Sci. Bull. 2020, 65, 987. doi: 10.1016/j.scib.2020.03.032  doi: 10.1016/j.scib.2020.03.032

    51. [51]

      Zhao, T.; Li, D.; Zhang, Y.; Chen, G. J. Colloid Interface Sci. 2022, 628, 966. doi: 10.1016/j.jcis.2022.08.008  doi: 10.1016/j.jcis.2022.08.008

    52. [52]

      Sakakibara, N.; Shizuno, M.; Kanazawa, T.; Kato, K.; Yamakata, A.; Nozawa, S.; Ito, T.; Terashima, K.; Maeda, K.; Tamaki, Y.; et al. ACS Appl. Mater. Interfaces 2023, 15, 13205. doi: 10.1021/acsami.3c00955  doi: 10.1021/acsami.3c00955

    53. [53]

      Gebre, S.; Kiefer, L.; Guo, F.; Yang, K.; Miller, C.; Liu, Y.; Kubiak, C.; Batista, V.; Lian, T. J. Am. Chem. Soc. 2023, 145, 3238. doi: 10.1021/jacs.2c13464  doi: 10.1021/jacs.2c13464

    54. [54]

      Vennapoosa, C.; Varangane, S.; Gonuguntla, S.; Abraham, B.; Ahmadipour, M.; Pal, U. Inorg. Chem. 2023, 62, 16451. doi: 10.1021/acs.inorgchem.3c02126  doi: 10.1021/acs.inorgchem.3c02126

    55. [55]

      Wu, Z.; Wang, X.; Deng, S.; Qin, X.; Han, Q.; Zhou, Y.; Zhu, Y.; Wang, N.; He, C.; Wu, Y. iScience 2023, 26, 108435. doi: 10.1016/j.isci.2023.108435  doi: 10.1016/j.isci.2023.108435

    56. [56]

      Wang, J.; Xiong, L.; Bai, Y.; Chen, Z.; Zheng, Q.; Shi, Y.; Zhang, C.; Jiang, G.; Li, Z. Solar RRL 2022, 6, 2200294. doi: 10.1002/solr.202200294  doi: 10.1002/solr.202200294

    57. [57]

      Xu, Q.; He, R.; Li, Y. Acta Phys.-Chim.Sin. 2023, 39, 2211009. doi: 10.3866/PKU.WHXB202211009  doi: 10.3866/PKU.WHXB202211009

    58. [58]

      Gu, M.; Yang, Y.; Zhang, L.; Zhu, B.; Liang, G.; Yu, J. Appl. Catal. B 2023, 324, 122227. doi: 10.1016/j.apcatb.2022.122227  doi: 10.1016/j.apcatb.2022.122227

    59. [59]

      Zhu, J.; Wageh, S.; Al-Ghamdi, A. Chin. J. Catal. 2023, 49, 5. doi: 10.1016/S1872-2067(23)64438-9  doi: 10.1016/S1872-2067(23)64438-9

  • 加载中
    1. [1]

      Xiutao XuChunfeng ShaoJinfeng ZhangZhongliao WangKai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-0. doi: 10.3866/PKU.WHXB202309031

    2. [2]

      Hongrui ZhangMiaoying CuiYongjie LvYongfang RaoYu Huang . A short review on research progress of ZnIn2S4-based S-scheme heterojunction: Improvement strategies. Chinese Chemical Letters, 2025, 36(4): 110108-. doi: 10.1016/j.cclet.2024.110108

    3. [3]

      Qin HuLiuyun ChenXinling XieZuzeng QinHongbing JiTongming Su . Construction of Electron Bridge and Activation of MoS2 Inert Basal Planes by Ni Doping for Enhancing Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-0. doi: 10.3866/PKU.WHXB202406024

    4. [4]

      Peng LiYuanying CuiZhongliao WangGraham DawsonChunfeng ShaoKai Dai . Efficient interfacial charge transfer of CeO2/Bi19Br3S27 S-scheme heterojunction for boosted photocatalytic CO2 reduction. Acta Physico-Chimica Sinica, 2025, 41(6): 100065-0. doi: 10.1016/j.actphy.2025.100065

    5. [5]

      Weikang WangYadong WuJianjun ZhangKai MengJinhe LiLele WangQinqin Liu . Green H2O2 synthesis via melamine-foam supported S-scheme Cd0.5Zn0.5In2S4/S-doped carbon nitride heterojunction: synergistic interfacial charge transfer and local photothermal effect. Acta Physico-Chimica Sinica, 2025, 41(8): 100093-0. doi: 10.1016/j.actphy.2025.100093

    6. [6]

      Yuejiao AnWenxuan LiuYanfeng ZhangJianjun ZhangZhansheng Lu . Revealing Photoinduced Charge Transfer Mechanism of SnO2/BiOBr S-Scheme Heterostructure for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2407021-0. doi: 10.3866/PKU.WHXB202407021

    7. [7]

      Wenlong WangWentao HaoLang HeJia QiaoNing LiChaoqiu ChenYong Qin . Bandgap and adsorption engineering of carbon dots/TiO2 S-scheme heterojunctions for enhanced photocatalytic CO2 methanation. Acta Physico-Chimica Sinica, 2025, 41(9): 100116-0. doi: 10.1016/j.actphy.2025.100116

    8. [8]

      Chunchun WangChangjun YouKe RongChuqi ShenFang YangShijie Li . An S-Scheme MIL-101(Fe)-on-BiOCl Heterostructure with Oxygen Vacancies for Boosting Photocatalytic Removal of Cr(Ⅵ). Acta Physico-Chimica Sinica, 2024, 40(7): 2307045-0. doi: 10.3866/PKU.WHXB202307045

    9. [9]

      Shuang CaoBo ZhongChuanbiao BieBei ChengFeiyan Xu . Insights into Photocatalytic Mechanism of H2 Production Integrated with Organic Transformation over WO3/Zn0.5Cd0.5S S-Scheme Heterojunction. Acta Physico-Chimica Sinica, 2024, 40(5): 2307016-0. doi: 10.3866/PKU.WHXB202307016

    10. [10]

      Jianyu QinYuejiao AnYanfeng ZhangIn Situ Assembled ZnWO4/g-C3N4 S-Scheme Heterojunction with Nitrogen Defect for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408002-0. doi: 10.3866/PKU.WHXB202408002

    11. [11]

      Xinyu MiaoHao YangJie HeJing WangZhiliang Jin . Adjusting the electronic structure of Keggin-type polyoxometalates to construct S-scheme heterojunction for photocatalytic hydrogen evolution. Acta Physico-Chimica Sinica, 2025, 41(6): 100051-0. doi: 10.1016/j.actphy.2025.100051

    12. [12]

      Jinwang WuQijing XieChengliang ZhangHaifeng Shi . Rationally Designed ZnFe1.2Co0.8O4/BiVO4 S-Scheme Heterojunction with Spin-Polarization for the Elimination of Antibiotic. Acta Physico-Chimica Sinica, 2025, 41(5): 100050-0. doi: 10.1016/j.actphy.2025.100050

    13. [13]

      Menglan WeiXiaoxia OuYimeng WangMengyuan ZhangFei TengKaixuan Wang . S-scheme heterojunction g-C3N4/Bi2WO6 highly efficient degradation of levofloxacin: performance, mechanism and degradation pathway. Acta Physico-Chimica Sinica, 2025, 41(9): 100105-0. doi: 10.1016/j.actphy.2025.100105

    14. [14]

      Chenye AnSikandaier AbiduweiliXue GuoYukun ZhuHua TangDongjiang Yang . Hierarchical S-scheme Heterojunction of Red Phosphorus Nanoparticles Embedded Flower-like CeO2 Triggering Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-0. doi: 10.3866/PKU.WHXB202405019

    15. [15]

      Jiajie CaiChang ChengBowen LiuJianjun ZhangChuanjia JiangBei Cheng . CdS/DBTSO-BDTO S-scheme photocatalyst for H2 production and its charge transfer dynamics. Acta Physico-Chimica Sinica, 2025, 41(8): 100084-0. doi: 10.1016/j.actphy.2025.100084

    16. [16]

      Shijie LiKe RongXiaoqin WangChuqi ShenFang YangQinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-0. doi: 10.3866/PKU.WHXB202403005

    17. [17]

      Kaihui HuangDejun ChenXin ZhangRongchen ShenPeng ZhangDifa XuXin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-0. doi: 10.3866/PKU.WHXB202407020

    18. [18]

      You WuChang ChengKezhen QiBei ChengJianjun ZhangJiaguo YuLiuyang Zhang . Efficient Photocatalytic Production of H2O2 over ZnO/D-A Conjugated Polymer S-scheme Heterojunction and Charge Transfer Dynamics Investigation. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-0. doi: 10.3866/PKU.WHXB202406027

    19. [19]

      Tieping CAOYuejun LIDawei SUN . Surface plasmon resonance effect enhanced photocatalytic CO2 reduction performance of S-scheme Bi2S3/TiO2 heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 903-912. doi: 10.11862/CJIC.20240366

    20. [20]

      Kexin DongChuqi ShenRuyu YanYanping LiuChunqiang ZhuangShijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-0. doi: 10.3866/PKU.WHXB202310013

Metrics
  • PDF Downloads(6)
  • Abstract views(459)
  • HTML views(88)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return