Citation: Jingzhao Cheng, Shiyu Gao, Bei Cheng, Kai Yang, Wang Wang, Shaowen Cao. Construction of 4-Amino-1H-imidazole-5-carbonitrile Modified Carbon Nitride-Based Donor-Acceptor Photocatalyst for Efficient Photocatalytic Hydrogen Evolution[J]. Acta Physico-Chimica Sinica, ;2024, 40(11): 240602. doi: 10.3866/PKU.WHXB202406026 shu

Construction of 4-Amino-1H-imidazole-5-carbonitrile Modified Carbon Nitride-Based Donor-Acceptor Photocatalyst for Efficient Photocatalytic Hydrogen Evolution

  • Corresponding author: Wang Wang, doublewang@whut.edu.cn Shaowen Cao, swcao@whut.edu.cn
  • Received Date: 20 June 2024
    Revised Date: 25 July 2024
    Accepted Date: 26 July 2024
    Available Online: 22 August 2024

    Fund Project: the National Key R&D Program of China 2022YFE0114800the National Natural Science Foundation of China 22278324the National Natural Science Foundation of China 52073223the Jiangxi Province "Double Thousand" Talent Training Plan jxsq2023102141

  • Photocatalytic hydrogen generation through water splitting driven by solar energy is regarded as a highly promising strategy to tackle the challenges of the energy crisis and environmental contamination. Tuning the electronic properties and band structures of photocatalysts is critical to improving the efficiency of charge separation and the activity of hydrogen production. Herein, donor-acceptor modified polymeric carbon nitride (CN)-based copolymers are synthesized via the introduction of 4-amino-1H-imidazole-5-carbonitrile (AICN) into the molecular skeleton of CN. The incorporation of electron donor AICN units can broaden the π-conjugated system and promote the spatial charge separation in the catalysts, thus resulting in enhanced light utilization and improved intramolecular charge carrier transfer rate. As a consequence, the AICN modified CN samples exhibit an increased photocatalytic hydrogen evolution rate, and the optimal photocatalytic activity can reach 3204 μmol·h−1·g−1. This molecular engineering strategy provides an effective avenue to develop high-performance CN-based photocatalysts for hydrogen evolution.
  • 加载中
    1. [1]

      Kudo, A.; Miseki, Y. Chem. Soc. Rev. 2009, 38, 253. doi: 10.1039/b800489g  doi: 10.1039/b800489g

    2. [2]

      Nishioka, S.; Osterloh, F. E.; Wang, X.; Mallouk, T. E.; Maeda, K. Nat. Rev. Methods Primers 2023, 3, 42. doi: 10.1038/s43586-023-00226-x  doi: 10.1038/s43586-023-00226-x

    3. [3]

      Hisatomi, T.; Kubota, J.; Domen, K. Chem. Soc. Rev. 2014, 43, 7520. doi: 10.1039/c3cs60378d  doi: 10.1039/c3cs60378d

    4. [4]

      Bushmeleva, A. S.; Tafeenko, V. A.; Zakharov, V. N.; Lobova, A. A.; Aslanov, L. A. Struct. Chem. 2019, 30, 425. doi: 10.1007/s11224-018-1187-0  doi: 10.1007/s11224-018-1187-0

    5. [5]

      Bie, C.; Wang, L.; Yu, J. Chem 2022, 8, 1567. doi: 10.1016/j.chempr.2022.04.013  doi: 10.1016/j.chempr.2022.04.013

    6. [6]

      Fujishima, A.; Honda, K. Nature 1972, 238, 37. doi: 10.1038/238037a0  doi: 10.1038/238037a0

    7. [7]

      Zhang, J.; Le, Y.; Zhang, Y. J. Mater. Sci. Technol. 2023, 142, 121. doi: 10.1016/j.jmst.2022.11.001  doi: 10.1016/j.jmst.2022.11.001

    8. [8]

      Bie, C.; Zhu, B.; Wang, L.; Yu, H.; Jiang, C.; Chen, T.; Yu, J. Angew. Chem. Int. Ed. 2022, 61, e202212045. doi: 10.1002/anie.202212045  doi: 10.1002/anie.202212045

    9. [9]

      Cai, J.; Liu, B.; Zhang, S.; Wang, L.; Wu, Z.; Zhang, J.; Cheng, B. J. Mater. Sci. Technol. 2024, 197, 183. doi: 10.1016/j.jmst.2024.02.012  doi: 10.1016/j.jmst.2024.02.012

    10. [10]

      Zhang, Y.; Zhang, Z. J. Mater. Sci. Technol. 2024, 171, 147. doi: 10.1016/j.jmst.2023.06.048  doi: 10.1016/j.jmst.2023.06.048

    11. [11]

      Cao, S.; Zhong, B.; Bie, C.; Cheng, B.; Xu, F. Acta Phys.-Chim.Sin. 2024, 40, 2307016. doi: 10.3866/PKU.WHXB202307016  doi: 10.3866/PKU.WHXB202307016

    12. [12]

      He, B.; Xiao, P.; Wan, S.; Zhang, J.; Chen, T.; Zhang, L.; Yu, J. Angew. Chem. Int. Ed. 2023, 62, e202313172. doi: 10.1002/anie.202313172  doi: 10.1002/anie.202313172

    13. [13]

      Yu, Z.; Guan, C.; Yue, X.; Xiang, Q. Chin. J. Catal. 2023, 50, 361. doi: 10.1016/s1872-2067(23)64448-1  doi: 10.1016/s1872-2067(23)64448-1

    14. [14]

      Wang, Y.; Si, W.; Tan, H.; Xie, Z.; Wang, L.; Di, L.; Liang, J.; Hou, F. Sci. China Mater. 2023, 66, 623. doi: 10.1007/s40843-022-2202-3  doi: 10.1007/s40843-022-2202-3

    15. [15]

      Zhao, B.; Zhong, W.; Chen, F.; Wang, P.; Bie, C.; Yu, H. Chin. J. Catal. 2023, 52, 127. doi: 10.1016/s1872-2067(23)64491-2  doi: 10.1016/s1872-2067(23)64491-2

    16. [16]

      Guo, F.; Hu, B.; Yang, C.; Zhang, J.; Hou, Y.; Wang, X. Adv. Mater. 2021, 33, 2101466. doi: 10.1002/adma.202101466  doi: 10.1002/adma.202101466

    17. [17]

      Ghashghaee, M.; Azizi, Z.; Ghambarian, M. Struct. Chem. 2020, 31, 1137. doi: 10.1007/s11224-020-01496-x  doi: 10.1007/s11224-020-01496-x

    18. [18]

      Jun, Y.; Hong, W.; Antonietti, M.; Thomas, A. Adv. Mater. 2009, 21, 4270. doi: 10.1002/adma.200803500  doi: 10.1002/adma.200803500

    19. [19]

      Wan, S.; Xu, J.; Cao, S.; Yu, J. Interdiscip. Mater. 2022, 1, 294. doi: 10.1002/idm2.12024  doi: 10.1002/idm2.12024

    20. [20]

      Zhang, R.; Zhang, A.; Cao, Y.; Wang, S.; Dong, F.; Zhou, Y. Chem. Eng. J. 2020, 401, 126028. doi: 10.1016/j.cej.2020.126028  doi: 10.1016/j.cej.2020.126028

    21. [21]

      Yu, X.; Su, H.; Zou, J.; Liu, Q.; Wang, L.; Tang, H. Chin. J. Catal. 2022, 43, 421. doi: 10.1016/S1872-2067(21)63849-4  doi: 10.1016/S1872-2067(21)63849-4

    22. [22]

      Li, Z.; Yang, Q.; Chen, C.; Zhang, Z.; Fang, X. Chin. J. Catal. 2019, 40, 875. doi: 10.1016/S1872-2067(19)63337-1  doi: 10.1016/S1872-2067(19)63337-1

    23. [23]

      Yang, S.; Wang, Q.; Wang, Q.; Li, G.; Zhao, T.; Chen, P.; Liu, F.; Yin, S. J. Mater. Chem. A 2021, 9, 21732. doi: 10.1039/D1TA03813C  doi: 10.1039/D1TA03813C

    24. [24]

      Fang, Y.; Wang, X. Chem. Commun. 2018, 54, 5674. doi: 10.1039/C8CC02046A  doi: 10.1039/C8CC02046A

    25. [25]

      Guan, C.; Liao, Y.; Xiang, Q. Sci. China Mater. 2024, 67, 473. doi: 10.1007/s40843-023-2703-0  doi: 10.1007/s40843-023-2703-0

    26. [26]

      Chen, D.; Wang, Z.; Fu, J.; Zhang, J.; Dai, K. Sci. China Mater. 2024, 67, 541. doi: 10.1007/s40843-023-2770-8  doi: 10.1007/s40843-023-2770-8

    27. [27]

      Xia, P.; Cao, S.; Zhu, B.; Liu, M.; Shi, M.; Yu, J.; Zhang, Y. Angew. Chem. Int. Ed. 2020, 59, 5218. doi: 10.1002/anie.201916012  doi: 10.1002/anie.201916012

    28. [28]

      Zheng, Y.; Yu, Z.; Ou, H.; Asiri, A. M.; Chen, Y.; Wang, X. Adv. Funct. Mater. 2018, 28, 1705407. doi: 10.1002/adfm.201705407  doi: 10.1002/adfm.201705407

    29. [29]

      Qin, Z.; Wang, M.; Li, R.; Chen, Y. Sci. China Mater. 2018, 61, 861. doi: 10.1007/s40843-017-9171-9  doi: 10.1007/s40843-017-9171-9

    30. [30]

      Wu, X.; Tan, L.; Chen, G.; Kang, J.; Wang, G. Sci. China Mater. 2024, 67, 444. doi: 10.1007/s40843-023-2755-2  doi: 10.1007/s40843-023-2755-2

    31. [31]

      Wu, X.; Chen, G.; Wang, J.; Li, J.; Wang, G. Acta Phys.-Chim.Sin. 2023, 39, 2212016. doi: 10.3866/PKU.WHXB202212016  doi: 10.3866/PKU.WHXB202212016

    32. [32]

      Chen, Q.; Zhang, Y.; You, E.; Jiang, Q.; Chen, X.; Wang, Y.; Song, Z.; Chang, K.; Xie, Z.; Kuang, Q. Small 2022, 18, 2204924. doi: 10.1002/smll.202204924  doi: 10.1002/smll.202204924

    33. [33]

      Li, Z.; Liu, W.; Chen, C.; Ma, T.; Zhang, J.; Wang, Z. Acta Phys.-Chim.Sin. 2023, 39, 2208030. doi: 10.3866/PKU.WHXB202208030  doi: 10.3866/PKU.WHXB202208030

    34. [34]

      Li, K.; Wang, L.; Chen, Z.; Yang, X.; Yu, Y.; Zhang, W.; Wang, Y.; Shi, Y.; Loh, K. P.; Xu, Q. Adv. Funct. Mater. 2020, 30, 2070288. doi: 10.1002/adfm.202070288  doi: 10.1002/adfm.202070288

    35. [35]

      Yang, C.; Cheng, B.; Xu, J.; Yu, J.; Cao, S. EnergyChem 2024, 6, 100116. doi: 10.1016/j.enchem.2023.100116  doi: 10.1016/j.enchem.2023.100116

    36. [36]

      Luo, J.; Liu, Y.; Fan, C.; Tang, L; . Yang, S.; Liu, M.; Wang, M.; Feng, C.; Ouyang, X.; Wang, L.; et al. ACS Catal. 2021, 11, 11440. doi: 10.1021/acscatal.1c03103  doi: 10.1021/acscatal.1c03103

    37. [37]

      Yan, F.; Zhang, Y.; Liu, S.; Zou, R.; Ghasemi, J. B.; Li, X. Chin. J. Catal. 2023, 51, 124. doi: 10.1016/s1872-2067(23)64475-4  doi: 10.1016/s1872-2067(23)64475-4

    38. [38]

      Cheng, C.; Yu, J.; Xu, D.; Wang, L.; Liang, G.; Zhang, L.; Jaroniec, M. Nat. Commun. 2024, 15, 1313. doi: 10.1038/s41467-024-45604-5  doi: 10.1038/s41467-024-45604-5

    39. [39]

      Ou, H.; Chen, X.; Lin, L.; Fang, Y.; Wang, X. Angew. Chem. Int. Ed. 2018, 57, 8729. doi: 10.1002/anie.201803863  doi: 10.1002/anie.201803863

    40. [40]

      Xie, Z.; Yang, X.; Zhang, P.; Ke, X.; Yuan, X.; Zhai, L.; Wang, W.; Qin, N.; Cui, C.; Qu, L.; Chen, X. Chin. J. Catal. 2023, 47, 171. doi: 10.1016/S1872-2067(23)64397-9  doi: 10.1016/S1872-2067(23)64397-9

    41. [41]

      Yang, C.; Wan, S.; Zhu, B.; Yu, J.; Cao, S. Angew. Chem. Int. Ed. 2022, 61, e202208438. doi: 10.1002/anie.202208438  doi: 10.1002/anie.202208438

    42. [42]

      Chen, Y.; Zhang, J.; Zhang, M.; Wang, X. Chem. Sci. 2013, 4, 3244. doi: 10.1039/C3SC51203G  doi: 10.1039/C3SC51203G

    43. [43]

      Kim, D. E.; Park, J. W.; Seo, S. Y.; Baeg, K. Jun. ACS Appl. Mater. Interfaces 2022, 14, 13560. doi: 10.1021/acsami.1c21864  doi: 10.1021/acsami.1c21864

    44. [44]

      Zhang, J.; Zhang, M.; Lin, S.; Fu, X.; Wang, X. J. Catal. 2014, 310, 24. doi: 10.1016/j.jcat.2013.01.008  doi: 10.1016/j.jcat.2013.01.008

    45. [45]

      Liu, Q.; Wei, L.; Xi, Q.; Lei, Y.; Wang, F. Chem. Eng. J. 2020, 383, 123792. doi: 10.1016/j.cej.2019.123792  doi: 10.1016/j.cej.2019.123792

    46. [46]

      Zhang, G.; Xu, Y.; Mi, H.; Zhang, P.; Li, H.; Lu, Y. ChemSusChem 2021, 14, 4516. doi: 10.1002/cssc.202101431  doi: 10.1002/cssc.202101431

    47. [47]

      Fang, Z.; Li, D.; Chen, R.; Huang, Y.; Luo. B.; Shi, W. ACS Appl. Mater. Interfaces 2019, 11, 22255. doi: 10.1021/acsami.9b03745  doi: 10.1021/acsami.9b03745

    48. [48]

      Haiber, D. M.; Levin, B. D. A.; Treacy, M. M. J.; Crozier, P. A. Chem. Mater. 2020, 33, 195. doi: 10.1021/acs.chemmater.0c03343  doi: 10.1021/acs.chemmater.0c03343

    49. [49]

      Song, H.; Liu, X.; Wang, Y.; Chen, L.; Zhang, J.; Zhao, C.; He, F.; Dong, P.; Li, B.; Wang, S.; et al. Colloid Interf. Sci. 2022, 607, 1603. doi: 10.1016/j.jcis.2021.09.088  doi: 10.1016/j.jcis.2021.09.088

    50. [50]

      Wang, C.; Hou, Y.; Cheng, J.; Lin, M.; Wang, X. Appl. Catal. B 2021, 294, 120259. doi: 10.1016/j.apcatb.2021.120259  doi: 10.1016/j.apcatb.2021.120259

    51. [51]

      Ho, W.; Zhang, Z.; Lin, W.; Huang, S.; Zhang, X.; Wang, X.; Huang, Y. ACS Appl. Mater. Interfaces 2015, 7, 5497. doi: 10.1021/am509213x  doi: 10.1021/am509213x

    52. [52]

      Zhou, T.; Li, T.; Hou, J.; Wang, Y.; Hu, B.; Sun, D.; Wu, Y.; Jiang, W.; Che, G.; Liu, C. Chem. Eng. J. 2022, 445, 136643. doi: 10.1016/j.cej.2022.136643  doi: 10.1016/j.cej.2022.136643

    53. [53]

      Katsumata, H.; Sakakibara, K.; Tateishi, I.; Furukawa, M.; Kaneco, S. Catal. Today 2020, 352, 47. doi: 10.1016/j.cattod.2019.12.007  doi: 10.1016/j.cattod.2019.12.007

    54. [54]

      Gao, S.; Wan, S.; Yu, J.; Cao, S. Adv. Sustain. Syst. 2023, 7, 2200130. doi: 10.1002/adsu.202200130  doi: 10.1002/adsu.202200130

    55. [55]

      Yang, F.; Li, C.; Xu, C.; Kan, J.; Tian, B.; Qu, H.; Guo, Y.; Geng, Y.; Dong, Y. Chem. Commun. 2022, 58, 1530. doi: 10.1039/D1CC06184D  doi: 10.1039/D1CC06184D

    56. [56]

      Wang, X.; Chen, G.; Wang, H.; Wu, Y.; Wei, X.; Wen, J.; Hu, L.; Gu, W.; Zhu, C. J. Catal. 2021, 399, 192. doi: 10.1016/j.jcat.2021.05.007  doi: 10.1016/j.jcat.2021.05.007

    57. [57]

      Yang, C.; Li, X.; Li, M.; Liang, G.; Jin, Z. Chin. J. Catal. 2024, 56, 88. doi: 10.1016/S1872-2067(23)64563-2  doi: 10.1016/S1872-2067(23)64563-2

    58. [58]

      Sun, T.; Li, C.; Bao, Y.; Fan, J.; Liu, E. Acta Phys.-Chim.Sin. 2023, 39, 2212009. doi: 10.3866/PKU.WHXB202212009  doi: 10.3866/PKU.WHXB202212009

    59. [59]

      Yang, Q.; Chen, C.; Zhang, Q.; Zhang, Z.; Fang, X. Carbon 2020, 164, 337. doi: 10.1016/j.carbon.2020.04.015  doi: 10.1016/j.carbon.2020.04.015

    60. [60]

      Cheng, J.; Wan, S.; Cao, S. Angew. Chem. Int. Ed. 2023, 62, e202310476. doi: 10.1002/anie.202310476  doi: 10.1002/anie.202310476

  • 加载中
    1. [1]

      Fanpeng MengFei ZhaoJingkai LinJinsheng ZhaoHuayang ZhangShaobin Wang . Optimizing interfacial electric fields in carbon nitride nanosheet/spherical conjugated polymer S-scheme heterojunction for hydrogen evolution. Acta Physico-Chimica Sinica, 2025, 41(8): 100095-0. doi: 10.1016/j.actphy.2025.100095

    2. [2]

      Jiajie CaiChang ChengBowen LiuJianjun ZhangChuanjia JiangBei Cheng . CdS/DBTSO-BDTO S-scheme photocatalyst for H2 production and its charge transfer dynamics. Acta Physico-Chimica Sinica, 2025, 41(8): 100084-0. doi: 10.1016/j.actphy.2025.100084

    3. [3]

      Peipei SunJinyuan ZhangYanhua SongZhao MoZhigang ChenHui Xu . Built-in Electric Fields Enhancing Photocarrier Separation and H2 Evolution. Acta Physico-Chimica Sinica, 2024, 40(11): 2311001-0. doi: 10.3866/PKU.WHXB202311001

    4. [4]

      Haitao WangLianglang YuJizhou JiangArramelJing Zou . S-Doping of the N-Sites of g-C3N4 to Enhance Photocatalytic H2 Evolution Activity. Acta Physico-Chimica Sinica, 2024, 40(5): 2305047-0. doi: 10.3866/PKU.WHXB202305047

    5. [5]

      Jiawei HuKai XiaAo YangZhihao ZhangWen XiaoChao LiuQinfang Zhang . Interfacial Engineering of Ultrathin 2D/2D NiPS3/C3N5 Heterojunctions for Boosting Photocatalytic H2 Evolution. Acta Physico-Chimica Sinica, 2024, 40(5): 2305043-0. doi: 10.3866/PKU.WHXB202305043

    6. [6]

      Shuang CaoBo ZhongChuanbiao BieBei ChengFeiyan Xu . Insights into Photocatalytic Mechanism of H2 Production Integrated with Organic Transformation over WO3/Zn0.5Cd0.5S S-Scheme Heterojunction. Acta Physico-Chimica Sinica, 2024, 40(5): 2307016-0. doi: 10.3866/PKU.WHXB202307016

    7. [7]

      Chenye AnSikandaier AbiduweiliXue GuoYukun ZhuHua TangDongjiang Yang . Hierarchical S-scheme Heterojunction of Red Phosphorus Nanoparticles Embedded Flower-like CeO2 Triggering Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-0. doi: 10.3866/PKU.WHXB202405019

    8. [8]

      Pengcheng YanPeng WangJing HuangZhao MoLi XuYun ChenYu ZhangZhichong QiHui XuHenan Li . Engineering Multiple Optimization Strategy on Bismuth Oxyhalide Photoactive Materials for Efficient Photoelectrochemical Applications. Acta Physico-Chimica Sinica, 2025, 41(2): 2309047-0. doi: 10.3866/PKU.WHXB202309047

    9. [9]

      Yuanyin CuiJinfeng ZhangHailiang ChuLixian SunKai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-0. doi: 10.3866/PKU.WHXB202405016

    10. [10]

      Yadan LuoHao ZhengXin LiFengmin LiHua TangXilin She . Modulating reactive oxygen species in O, S co-doped C3N4 to enhance photocatalytic degradation of microplastics. Acta Physico-Chimica Sinica, 2025, 41(6): 100052-0. doi: 10.1016/j.actphy.2025.100052

    11. [11]

      Wei ZhongDan ZhengYuanxin OuAiyun MengYaorong Su . Simultaneously Improving Inter-Plane Crystallization and Incorporating K Atoms in g-C3N4 Photocatalyst for Highly-Efficient H2O2 Photosynthesis. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-0. doi: 10.3866/PKU.WHXB202406005

    12. [12]

      Sumiya Akter DristyMd Ahasan HabibShusen LinMehedi Hasan JoniRutuja MandavkarYoung-Uk ChungMd NajibullahJihoon Lee . Exploring Zn doped NiBP microspheres as efficient and stable electrocatalyst for industrial-scale water splitting. Acta Physico-Chimica Sinica, 2025, 41(7): 100079-0. doi: 10.1016/j.actphy.2025.100079

    13. [13]

      Ke LiChuang LiuJingping LiGuohong WangKai Wang . Architecting Inorganic/Organic S-Scheme Heterojunction of Bi4Ti3O12 Coupling with g-C3N4 for Photocatalytic H2O2 Production from Pure Water. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-0. doi: 10.3866/PKU.WHXB202403009

    14. [14]

      Weikang WangYadong WuJianjun ZhangKai MengJinhe LiLele WangQinqin Liu . Green H2O2 synthesis via melamine-foam supported S-scheme Cd0.5Zn0.5In2S4/S-doped carbon nitride heterojunction: synergistic interfacial charge transfer and local photothermal effect. Acta Physico-Chimica Sinica, 2025, 41(8): 100093-0. doi: 10.1016/j.actphy.2025.100093

    15. [15]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    16. [16]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    17. [17]

      Yan KongWei WeiLekai XuChen Chen . Electrochemical Synthesis of Organonitrogen Compounds from N-integrated CO2 Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2307049-0. doi: 10.3866/PKU.WHXB202307049

    18. [18]

      Wenxiu YangJinfeng ZhangQuanlong XuYun YangLijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-0. doi: 10.3866/PKU.WHXB202312014

    19. [19]

      Xiaotian ZHUFangding HUANGWenchang ZHUJianqing ZHAO . Layered oxide cathode for sodium-ion batteries: Surface and interface modification and suppressed gas generation effect. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 254-266. doi: 10.11862/CJIC.20240260

    20. [20]

      Yue ZhangBao LiLixin Wu . GO-Assisted Supramolecular Framework Membrane for High-Performance Separation of Nanosized Oil-in-Water Emulsions. Acta Physico-Chimica Sinica, 2024, 40(5): 2305038-0. doi: 10.3866/PKU.WHXB202305038

Metrics
  • PDF Downloads(1)
  • Abstract views(215)
  • HTML views(46)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return