Citation: Qin Hu, Liuyun Chen, Xinling Xie, Zuzeng Qin, Hongbing Ji, Tongming Su. Construction of Electron Bridge and Activation of MoS2 Inert Basal Planes by Ni Doping for Enhancing Photocatalytic Hydrogen Evolution[J]. Acta Physico-Chimica Sinica, ;2024, 40(11): 240602. doi: 10.3866/PKU.WHXB202406024 shu

Construction of Electron Bridge and Activation of MoS2 Inert Basal Planes by Ni Doping for Enhancing Photocatalytic Hydrogen Evolution

  • Corresponding author: Tongming Su, sutm@gxu.edu.cn
  • Received Date: 20 June 2024
    Revised Date: 20 July 2024
    Accepted Date: 22 July 2024
    Available Online: 12 August 2024

    Fund Project: the National Natural Science Foundation of China 22208065Guangxi Natural Science Foundation 2022GXNSFBA035483Opening Project of Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology 2023K012

  • Photocatalytic hydrogen production is one of the effective ways to address environmental pollution and energy crises. Herein, Nix-MoS2/ZnIn2S4 heterojunctions were constructed to improve the separation efficiency of photogenerated electrons and holes and increase the number of active sites for hydrogen evolution. According to the catalyst characterization and theoretical calculations, the Ni at the interface between Nix-MoS2 and ZnIn2S4 can act as a bridge for charge transfer, the Ni―S bond is the active site for H2O dissociation, and the S site near the S vacancy on the Nix-MoS2 surface enhances the hydrogen evolution reaction. Benefiting from the synergistic effect of the S vacancy and the Ni-doped MoS2 cocatalyst, the optimal Ni0.08-MoS2/ZnIn2S4 exhibited the best hydrogen production rate of 7.13 mmol∙h−1∙g−1, which is 12.08 times than that of ZnIn2S4. This work provides a new strategy for enhancing photocatalytic efficiency through the synergistic effect of surface vacancies and doping and the optimization of heterojunctions.
  • 加载中
    1. [1]

      Wang, Y.; Vogel, A.; Sachs, M.; Sprick, R. S.; Wilbraham, L.; Moniz, S. J. A.; Godin, R.; Zwijnenburg, M. A.; Durrant, J. R.; Cooper, A. I.; Nat. Energy 2019, 4 (9), 746. doi: 10.1038/s41560-019-0456-5  doi: 10.1038/s41560-019-0456-5

    2. [2]

      Zhou, W.; Jing, Q.; Li, J.; Chen, Y.; Hao, G.; Wang, L. Acta Phys.-Chim.Sin. 2022, 39 (5), 2211010. doi: 10.3866/pku.Whxb202211010  doi: 10.3866/pku.Whxb202211010

    3. [3]

      Bai, X.; Duan, Z.; Nan, B.; Wang, L.; Tang, T.; Guan, J. Chin. J. Catal. 2022, 43 (8) 2240. doi: 10.1016/s1872-2067(21)64033-0  doi: 10.1016/s1872-2067(21)64033-0

    4. [4]

      Wu, Y.; Wang, Z.; Yan, Y.; Wei, Y.; Wang, J.; Shen, Y.; Yang, K.; Weng, B.; Lu, K. Molecules 2024, 29, 465. doi: 10.3390/molecules29020465  doi: 10.3390/molecules29020465

    5. [5]

      Fakeeha, A.; Al-Fatesh, A.; Srivastava, V.; Ibrahim, A.; Abahussain, A.; Abu-Dahrieh, J.; Alotibi, M.; Kumar, R. ACS Omega 2023, 8 (24), 22108. doi: 10.1021/acsomega.3c02229  doi: 10.1021/acsomega.3c02229

    6. [6]

      Wang, Q.; Domen, K. Chem. Rev. 2020, 120 (2), 919. doi: 10.1021/acs.chemrev.9b00201  doi: 10.1021/acs.chemrev.9b00201

    7. [7]

      Zhang, G.; Wu, H.; Chen, D.; Li, N.; Xu, Q.; Li, H.; He, J.; Lu, J. Green Energy Environ. 2022, 7 (2), 176. doi: 10.1016/j.gee.2020.12.015  doi: 10.1016/j.gee.2020.12.015

    8. [8]

      Zhang, H.; Wang, Z.; Zhang, J.; Dai, K. Chin. J. Catal. 2023, 49, 42. doi: 10.1016/s1872-2067(23)64444-4  doi: 10.1016/s1872-2067(23)64444-4

    9. [9]

      Fujishima, A.; Honda, K. Nature 1972, 238, 37. doi: 10.1038/238037a0  doi: 10.1038/238037a0

    10. [10]

      Sun, T.; Li, C.; Bao, Y.; Fan, J.; Liu, E. Acta Phys.-Chim.Sin. 2023, 39 (6), 2212009. doi: 10.3866/pku.Whxb202212009  doi: 10.3866/pku.Whxb202212009

    11. [11]

      Zhang, Y.; Wu, Y.; Wan, L.; Ding, H.; Li, H.; Wang, X.; Zhang, W. Appl. Catal. B-Environ. 2022, 311, 121255. doi: 10.1016/j.apcatb.2022.121255  doi: 10.1016/j.apcatb.2022.121255

    12. [12]

      Zhang, X.; Matras-Postolek, K.; Yang, P.; Ping Jiang, S. J. Colloid Interface Sci. 2023, 636, 646. doi: 10.1016/j.jcis.2023.01.052  doi: 10.1016/j.jcis.2023.01.052

    13. [13]

      Pei, C.; Chen, Y.; Wang, L.; Chen, W.; Huang, G. Appl. Surf. Sci. 2021, 535, 147682. doi: 10.1016/j.apsusc.2020.147682  doi: 10.1016/j.apsusc.2020.147682

    14. [14]

      Gao, D.; Long, H.; Wang, X.; Yu, J.; Yu, H. Adv. Funct. Mater. 2023, 33, 2209994. doi: 10.1002/adfm.202209994  doi: 10.1002/adfm.202209994

    15. [15]

      Gao, D.; Deng, P.; Zhang, J.; Zhang, L.; Wang, X.; Yu, H.; Yu, J. Angew. Chem. Int. Ed. 2023, 62 (25), 202304559. doi: 10.1002/anie.202304559  doi: 10.1002/anie.202304559

    16. [16]

      Yang, Z.; Chu, D.; Jia, G.; Yao, M.; Liu, B. Appl. Surf. Sci. 2020, 504, 144407. doi: 10.1016/j.apsusc.2019.144407  doi: 10.1016/j.apsusc.2019.144407

    17. [17]

      Yang, J.; Bao, W.; Jaumaux, P.; Zhang, S.; Wang, C.; Wang, G. Adv. Mater. Interf. 2019, 6, 1802004. doi: 10.1002/admi.201802004  doi: 10.1002/admi.201802004

    18. [18]

      Tan, P.; Zhu, A.; Qiao, L.; Zeng, W.; Ma, Y.; Dong, H.; Xie, J.; Pan, J. Inorg. Chem. Front. 2019, 6 (4), 929. doi: 10.1039/c8qi01359d  doi: 10.1039/c8qi01359d

    19. [19]

      Ren, T.; Huang, H.; Li, N.; Chen, D.; Xu, Q.; Li, H.; He, J.; Lu, J. J. Colloid Interface Sci. 2021, 598, 398. doi: 10.1016/j.jcis.2021.04.027  doi: 10.1016/j.jcis.2021.04.027

    20. [20]

      Lin, Y.; Pan, D.; Luo, H. Mater. Sci. Semicond. Process. 2021, 121, 105453. doi: 10.1016/j.mssp.2020.105453  doi: 10.1016/j.mssp.2020.105453

    21. [21]

      Zhang, H.; Shao, C.; Wang, Z.; Zhang, J.; Dai, K. J. Mater. Sci. Technol. 2024, 195, 146. doi: 10.1016/j.jmst.2023.11.081  doi: 10.1016/j.jmst.2023.11.081

    22. [22]

      Tan, M.; Ma, Y.; Yu, C.; Luan, Q.; Li, J.; Liu, C.; Dong, W.; Su, Y.; Qiao, L.; Gao, L. Adv. Funct. Mater. 2021, 32 (14), 2111740. doi: 10.1002/adfm.202111740  doi: 10.1002/adfm.202111740

    23. [23]

      Guo, Y.; Sun, J.; Tang, Y.; Jia, X.; Nie, Y.; Geng, Z.; Wang, C.; Zhang, J.; Tan, X.; Zhong, D.; et al. Energy Environ. Sci. 2023, 16, 3462. doi: 10.1039/d3ee01522j  doi: 10.1039/d3ee01522j

    24. [24]

      Su, T.; Men, C.; Chen, L.; Chu, B.; Luo, X.; Ji, H.; Chen, J.; Qin, Z. Adv. Sci. 2022, 9, 2103715. doi: 10.1002/advs.202103715  doi: 10.1002/advs.202103715

    25. [25]

      Du, C.; Zhang, Q.; Lin, Z.; Yan, B.; Xia, C.; Yang, G. Appl. Catal. B-Environ. 2019, 248, 193. doi: 10.1016/j.apcatb.2019.02.027  doi: 10.1016/j.apcatb.2019.02.027

    26. [26]

      Men, C.; Chen, L.; Ji, H.; Qin, Z.; Su, T. Chem. Eng. J. 2023, 473, 145173. doi: 10.1016/j.cej.2023.145173  doi: 10.1016/j.cej.2023.145173

    27. [27]

      Liu, T.; Wang, T.; Ding, C.; Wang, M.; Wang, W.; Shen, H.; Zhang, J. Sep. Purif. Technol. 2023, 310, 123170. doi: 10.1016/j.seppur.2023.123170  doi: 10.1016/j.seppur.2023.123170

    28. [28]

      Zhou, D.; Xue, X.; Wang, X.; Luan, Q.; Li, A.; Zhang, L.; Li, B.; Dong, W.; Wang, G.; Hou, C. Appl. Catal. B-Environ. 2022, 310, 121337. doi: 10.1016/j.apcatb.2022.121337  doi: 10.1016/j.apcatb.2022.121337

    29. [29]

      Ke, X.; Tang, C.; Xiong, R.; Xiao, Y.; Cheng, B.; Lei, S. Inorg. Chem. 2024, 63 (4), 2157. doi: 10.1021/acs.inorgchem.3c0410  doi: 10.1021/acs.inorgchem.3c0410

    30. [30]

      Lu, P.; Liu, K.; Liu, Y.; Ji, Z.; Wang, X.; Hui, B.; Zhu, Y.; Yang, D.; Jiang, L. Appl. Catal. B-Environ. 2024, 345, 123697. doi: 10.1016/j.apcatb.2024.123697  doi: 10.1016/j.apcatb.2024.123697

    31. [31]

      Zhang, W.; Peng, J.; Hua, W.; Liu, Y.; Wang, J.; Liang, Y.; Lai, W.; Jiang, Y.; Huang, Y.; Zhang, W. Adv. Energy Mater. 2021, 11 (22), 2100757. doi: 10.1002/aenm.202100757  doi: 10.1002/aenm.202100757

    32. [32]

      Dörr, T.; Deilmann, L.; Haselmann, G.; Cherevan, A.; Zhang, P.; Blaha, P.; Oliveira, P. W.; Kraus, T.; Eder, D. Adv. Energy Mater. 2018, 8 (36), 1802566. doi: 10.1002/aenm.201802566  doi: 10.1002/aenm.201802566

    33. [33]

      Wei, L.; Chen, Y.; Lin, Y.; Wu, H.; Yuan, R.; Li, Z. Appl. Catal. B-Environ. 2014, 144, 521. doi: 10.1016/j.apcatb.2013.07.064  doi: 10.1016/j.apcatb.2013.07.064

    34. [34]

      Ji, Y.; Ding, X.; Xue, Y.; Wang, J.; Tian, J. J. Colloid Interface Sci. 2024, 654, 1340. doi: 10.1016/j.jcis.2023.10.147  doi: 10.1016/j.jcis.2023.10.147

    35. [35]

      Wang, G.; Zhang, G.; Ke, X.; Chen, X.; Chen, X.; Wang, Y.; Huang, G.; Dong, J.; Chu, S.; Sui, M. Small 2022, 18, 2107238. doi: 10.1002/smll.202107238  doi: 10.1002/smll.202107238

    36. [36]

      Du, J.; Chen, X.; Liu, C.; Ni, J.; Hou, G.; Zhao, Y.; Zhang, X. Appl. Phys. A 2014, 117, 815. doi: 10.1007/s00339-014-8436-X  doi: 10.1007/s00339-014-8436-X

    37. [37]

      Ye, S.; Li, J.; Feng, Y.; Gao, S.; Cao, R. Sci. China Mater. 2023, 66 (8), 3146. doi: 10.1007/s40843-023-2456-6  doi: 10.1007/s40843-023-2456-6

    38. [38]

      Zhang, P.; Wang, X.; Yang, Y.; Yang, H.; Lu, C.; Su, M.; Zhou, Y.; Dou, A.; Li, X.; Hou, X. J. Colloid Interface Sci. 2024, 655, 383. doi: 10.1016/j.jcis.2023.11.016  doi: 10.1016/j.jcis.2023.11.016

    39. [39]

      Liu, Y.; Guan, S.; Du, X.; Chen, Y.; Yang, Y.; Chen, K.; Zheng, Z.; Wang, X.; Shen, X.; Hu, C. Energy Fuels 2023, 37 (7), 5370. doi: 10.1021/acs.energyfuels.2c03942  doi: 10.1021/acs.energyfuels.2c03942

    40. [40]

      Liu, F.; Cai, X.; Tang, Y.; Liu, W.; Chen, Q.; Dong, P.; Xu, M.; Tan, Y.; Bao, S. Energy Environ. Mater. 2023, 12644. doi: 10.1002/eem2.12644  doi: 10.1002/eem2.12644

    41. [41]

      Ma, X.; Li, J.; An, C.; Feng, J.; Chi, Y.; Liu, J.; Zhang, J.; Sun, Y. Nano Res. 2016, 9 (8), 2284. doi: 10.1007/s12274-016-1115-9  doi: 10.1007/s12274-016-1115-9

    42. [42]

      Dong, T.; Zhang, X.; Wang, P.; Chen, H.; Yang, P. Electrochim. Acta 2020, 338, 135885. doi: 10.1016/j.electacta.2020.135885  doi: 10.1016/j.electacta.2020.135885

    43. [43]

      Wu, L.; Zhang, L.; Liu, R.; Ge, H.; Tao, Z.; Meng, Q.; Zhang, Y.; Duan, T. ACS ES & T Water 2021, 1 (10), 2197. doi: 10.1021/acsestwater.1c00097  doi: 10.1021/acsestwater.1c00097

    44. [44]

      Liu, X.; Han, X.; Liang, Z.; Xue, Y.; Zhou, Y.; Zhang, X.; Cui, H.; Tian, J. J. Colloid Interface Sci. 2022, 605, 320. doi: 10.1016/j.jcis.2021.07.111  doi: 10.1016/j.jcis.2021.07.111

    45. [45]

      Peng, Y.; Guo, X.; Xu, S.; Guo, Y. N.; Zhang, D.; Wang, M.; Wei, G.; Yang, X.; Li, Z.; Zhang, Y. J. Energy Chem. 2022, 75, 276. doi: 10.1016/j.jechem.2022.06.027  doi: 10.1016/j.jechem.2022.06.027

    46. [46]

      Fang, H.; Cai, J.; Li, H.; Wang, J.; Li, Y.; Zhou, W.; Mao, K.; Xu, Q. ACS Appl. Energy Mater. 2022, 5 (7), 8232. doi: 10.1021/acsaem.2c00767  doi: 10.1021/acsaem.2c00767

    47. [47]

      Ding, S.; Medic, I.; Steinfeldt, N.; Dong, T.; Voelzer, T.; Haida, S.; Rabeah, J.; Hu, J.; Strunk, J. Small Struct. 2023, 4 (10), 2300091. doi: 10.1002/sstr.202300091  doi: 10.1002/sstr.202300091

    48. [48]

      Su, H.; Lou, H.; Zhao, Z.; Zhou, L.; Pang, Y.; Xie, H.; Rao, C.; Yang, D.; Qiu, X. Chem. Eng. J. 2022, 430, 132770. doi: 10.1016/j.cej.2021.132770  doi: 10.1016/j.cej.2021.132770

    49. [49]

      Pan, X.; Shang, C.; Chen, Z.; Jin, M.; Zhang, Y.; Zhang, Z.; Wang, X.; Zhou, G. Nanomaterials 2019, 9, 1266. doi: 10.3390/nano9091266  doi: 10.3390/nano9091266

    50. [50]

      Mandari, K. K.; Kang, M. Mater. Today Sustain. 2023, 23, 100444. doi: 10.1016/j.mtsust.2023.100444  doi: 10.1016/j.mtsust.2023.100444

    51. [51]

      Chen, T.; Liu, B.; Li, M.; Zhou, L.; Lin, D.; Ding, X.; Lian, J.; Li, J.; He, R.; Duan, T. Chem. Eng. J. 2021, 406, 126791. doi: 10.1016/j.cej.2020.126791  doi: 10.1016/j.cej.2020.126791

    52. [52]

      Qin, Y.; Li, H.; Lu, J.; Feng, Y.; Meng, F.; Ma, C.; Yan, Y.; Meng, M. Appl. Catal. B-Environ. 2020, 277, 119254. doi: 10.1016/j.apcatb.2020.119254  doi: 10.1016/j.apcatb.2020.119254

    53. [53]

      Li, R.; Liang, S.; Aihemaiti, A.; Li, S.; Zhang, Z. Appl. Surf. Sci. 2023, 631, 157461. doi: 10.1016/j.apsusc.2023.157461  doi: 10.1016/j.apsusc.2023.157461

    54. [54]

      Liu, W.; Wang, P.; Chen, J.; Gao, X.; Che, H.; Liu, B.; Ao, Y. Adv. Funct. Mater. 2022, 32 (38), 2205119. doi: 10.1002/adfm.202205119  doi: 10.1002/adfm.202205119

    55. [55]

      Ding, X.; Xu, X.; Wang, J.; Xue, Y.; Wang, J.; Qin, Y.; Tian, J. J. Colloid Interface Sci. 2024, 662, 727. doi: 10.1016/j.jcis.2024.02.124  doi: 10.1016/j.jcis.2024.02.124

    56. [56]

      Li, W.; Li, J.; Liu, Z.; Ma, H.; Fang, P.; Xiong, R.; Wei, J. Rare Met. 2023, 43 (2), 533. doi: 10.1007/s12598-023-02419-5  doi: 10.1007/s12598-023-02419-5

    57. [57]

      Ning, Y.; Wang, S.; Wang, H.; Quan, W.; Lv, D.; Yu, S.; Hu, X.; Tian, H. J. Colloid Interface Sci. 2024, 662, 928. doi: 10.1016/j.jcis.2024.02.082  doi: 10.1016/j.jcis.2024.02.082

    58. [58]

      Yang, W.; Zhou, F.; Sun, N.; Wu, J.; Qi, Y.; Zhang, Y.; Song, J.; Sun, Y.; Liu, Q.; Wang, X. J. Colloid Interface Sci. 2024, 662, 695. doi: 10.1016/j.jcis.2024.02.119  doi: 10.1016/j.jcis.2024.02.119

    59. [59]

      Liu, F.; Zeng, D.; Tian, Y.; Hu, Y.; Shen, T.; Gao, Y.; Guan, R. Appl. Surf. Sci. 2024, 642, 158572. doi: 10.1016/j.apsusc.2023.158572  doi: 10.1016/j.apsusc.2023.158572

    60. [60]

      Dai, M.; Yu, H.; Chen, W.; Qu, K.; Zhai, D.; Liu, C.; Zhao, S.; Wang, S.; He, Z. Chem. Eng. J. 2023, 470, 144240. doi: 10.1016/j.cej.2023.144240  doi: 10.1016/j.cej.2023.144240

    61. [61]

      Liang, Z.; Xue, Y.; Guo, Y.; Zhang, G.; Cui, H.; Tian, J. Chem. Eng. J. 2020, 396, 125344. doi: 10.1016/j.cej.2020.125344  doi: 10.1016/j.cej.2020.125344

    62. [62]

      Ding, X.; Xue, Y.; Wang, J.; Tian, J. J. Colloid Interface Sci. 2024, 659, 225. doi: 10.1016/j.jcis.2023.12.161  doi: 10.1016/j.jcis.2023.12.161

    63. [63]

      Wang, Q.; Huang, W.; Li, X.; Lin, S.; Li, Z.; Ma, X. Chem. Eng. J. 2024, 480, 148242. doi: 10.1016/j.cej.2023.148242  doi: 10.1016/j.cej.2023.148242

    64. [64]

      Han, X.; Liu, Q.; Qian, A.; Ye, L.; Pu, X.; Liu, J.; Jia, X.; Wang, R.; Ju, F.; Sun, H. ACS Appl. Mater. Interfaces 2023, 15 (22), 26670. doi: 10.1021/acsami.3c02895  doi: 10.1021/acsami.3c02895

    65. [65]

      Cai, X.; Du, J.; Zhong, G.; Zhang, Y.; Mao, L.; Lou, Z. Acta Phys.-Chim.Sin. 2023, 39 (11), 2302017. doi: 10.3866/PKU.WHXB202302017  doi: 10.3866/PKU.WHXB202302017

    66. [66]

      Tu, B.; Che, R.; Wang, F.; Li, Y.; Li, J.; Qiu, J. Appl. Surf. Sci. 2023, 629, 157451. doi: 10.1016/j.apsusc.2023.157451  doi: 10.1016/j.apsusc.2023.157451

    67. [67]

      Bian, Y.; He, H.; Dawson, G.; Zhang, J.; Dai, K. Sci. China Mater. 2024, 67 (2), 514. doi: 10.1007/s40843-023-2725-y  doi: 10.1007/s40843-023-2725-y

    68. [68]

      Xie, Z.; Xie, L.; Qi, F.; Liu, H.; Meng, L.; Wang, J.; Xie, Y.; Chen, J.; Lu, C. J. Colloid Interface Sci. 2023, 650, 784. doi: 10.1016/j.jcis.2023.07.032  doi: 10.1016/j.jcis.2023.07.032

    69. [69]

      Shen, Y.; Liu, Y.; Xi, X.; Nie, Z. J. Solid State Chem. 2024, 329, 124419. doi: 10.1016/j.jssc.2023.124419  doi: 10.1016/j.jssc.2023.124419

    70. [70]

      Zhang, Y.; Gao, M.; Chen, S.; Wang, H.; Huo, P. Acta Phys.-Chim.Sin. 2023, 39 (6), 2211051. doi: 10.3866/PKU.WHXB202211051  doi: 10.3866/PKU.WHXB202211051

    71. [71]

      Xu, X.; Shao, C.; Zhang, J.; Wang, Z.; Dai, K. Acta Phys.-Chim.Sin. 2024, 40 (10), 202309031. doi: 10.3866/PKU.WHXB202309031  doi: 10.3866/PKU.WHXB202309031

    72. [72]

      Ma, X.; Li, W.; Ren, C.; Li, H.; Li, X.; Dong, M.; Gao, Y.; Wang, T.; Zhou, H.; Li, Y. J. Alloy. Compd. 2022, 901, 163709. doi: 10.1016/j.jallcom.2022.163709  doi: 10.1016/j.jallcom.2022.163709

    73. [73]

      Zhang, L.; Wu, Y.; Tsubaki, N.; Jin, Z. Acta Phys.-Chim.Sin. 2023, 39 (12), 2302051. doi: 10.3866/PKU.WHXB202302051  doi: 10.3866/PKU.WHXB202302051

    74. [74]

      Cao, J.; Teng, F.; Zhang, Y.; Zhang, C.; Liu, X.; Li, Z. Mater. Lett. 2024, 355, 135458. doi: 10.1016/j.matlet.2023.135458  doi: 10.1016/j.matlet.2023.135458

    75. [75]

      Yang, T.; Wang, J.; Wang, Z.; Zhang, J.; Dai, K. Chin. J. Catal. 2024, 58, 157. doi: 10.1016/s1872-2067(23)64607-8  doi: 10.1016/s1872-2067(23)64607-8

    76. [76]

      Yan, J.; Zhang, J. J. Mater. Sci. Technol. 2024, 193, 18. doi: 10.1016/j.jmst.2023.12.054  doi: 10.1016/j.jmst.2023.12.054

    77. [77]

      Zhang, J.; Yang, G.; He, B.; Cheng, B.; Li, Y.; Liang, G.; Wang, L. Chin. J. Catal. 2022, 43 (10), 2530. doi: 10.1016/s1872-2067(22)64108-1  doi: 10.1016/s1872-2067(22)64108-1

    78. [78]

      Zhang, J.; Zhu, B.; Zhang, L.; Yu, J. Chem. Commun. 2023, 59 (6), 688. doi: 10.1039/d2cc06300j  doi: 10.1039/d2cc06300j

    79. [79]

      Yuan, C.; Yin, H.; Lu, H.; Zhang, Y.; Li, J.; Xiao, D.; Yang, X.; Zhang, Y.; Zhang, P. J. Am. Chem. Soc. 2023, 3 (11), 3127. doi: 10.1021/jacsau.3c00482  doi: 10.1021/jacsau.3c00482

    80. [80]

      Zhang, X.; Gao, D.; Zhu, B.; Cheng, B.; Yu, J.; Yu, H. Nat. Commun. 2024, 15, 3212. doi: 10.1038/s41467-024-47624-7  doi: 10.1038/s41467-024-47624-7

    81. [81]

      Ma, G.; Shang, C.; Jin, M.; Shui, L.; Meng, Q.; Zhang, Y.; Zhang, Z.; Liao, H.; Li, M.; Chen, Z. J. Mater. Chem. C 2020, 8 (1), 2693. doi: 10.1039/c9tc05456a  doi: 10.1039/c9tc05456a

    82. [82]

      Huang, Z.; Zhang, T.; Chang, C.; Li, J. ACS Catal. 2019, 9, 5523. doi: 10.1021/acscatal.9b00838  doi: 10.1021/acscatal.9b00838

    83. [83]

      Huang, Z.; Liu, L.; Qi, S.; Zhang, S.; Qu, Y.; Chang, C. ACS Catal. 2017, 8, 546. doi: 10.1021/acscatal.7b02732  doi: 10.1021/acscatal.7b02732

    84. [84]

      Zhang, K.; Jin, B.; Gao, Y.; Zhang, S.; Shin, H.; Zeng, H.; Park, J. H. Small 2019, 15 (8), 1804903. doi: 10.1002/smll.201804903  doi: 10.1002/smll.201804903

    85. [85]

      Dai, M.; He, Z.; Zhang, P.; Li, X.; Wang, S. J. Mater. Sci. Technol. 2022, 122, 231. doi: 10.1016/j.jmst.2022.02.014  doi: 10.1016/j.jmst.2022.02.014

    86. [86]

      Xi, Q.; Xie, F.; Liu, J.; Zhang, X.; Wang, J.; Wang, Y.; Wang, Y.; Li, H.; Yu, Z.; Sun, Z. Small 2023, 19 (24), 2300717. doi: 10.1002/smll.202300717  doi: 10.1002/smll.202300717

    87. [87]

      Zhang, G.; Yuan, X.; Xie, B.; Meng, Y.; Ni, Z.; Xia, S. Chem. Eng. J. 2022, 433, 133670. doi: 10.1016/j.cej.2021.133670  doi: 10.1016/j.cej.2021.133670

    88. [88]

      Shi, Y.; Li, L.; Xu, Z.; Guo, F.; Shi, W. Chem. Eng. J. 2023, 459, 141549. doi: 10.1016/j.cej.2023.141549  doi: 10.1016/j.cej.2023.141549

  • 加载中
    1. [1]

      Jiaxing CaiWendi XuHaoqiang ChiQian LiuWa GaoLi ShiJingxiang LowZhigang ZouYong Zhou . Highly Efficient InOOH/ZnIn2S4 Hollow Sphere S-Scheme Heterojunction with 0D/2D Interface for Enhancing Photocatalytic CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(11): 2407002-0. doi: 10.3866/PKU.WHXB202407002

    2. [2]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    3. [3]

      Jianqiao ZHANGYang LIUYan HEYaling ZHOUFan YANGShihui CHENGBin XIAZhong WANGShijian CHEN . Ni-doped WP2 nanowire self-standingelectrode: Preparation and alkaline electrocatalytic hydrogen evolution property. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1610-1616. doi: 10.11862/CJIC.20240444

    4. [4]

      Shuqi YuYu YangKeisuke KurodaJian PuRui GuoLi-An Hou . Selective removal of Cr(Ⅵ) using polyvinylpyrrolidone and polyacrylamide co-modified MoS2 composites by adsorption combined with reduction. Chinese Chemical Letters, 2024, 35(6): 109130-. doi: 10.1016/j.cclet.2023.109130

    5. [5]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    6. [6]

      Hongrui ZhangMiaoying CuiYongjie LvYongfang RaoYu Huang . A short review on research progress of ZnIn2S4-based S-scheme heterojunction: Improvement strategies. Chinese Chemical Letters, 2025, 36(4): 110108-. doi: 10.1016/j.cclet.2024.110108

    7. [7]

      Xinyu GuoChang LiWenjun DengYi ZhouYan ChenYushuang XuRui Li . Phase engineering and heteroatom incorporation enable defect-rich MoS2 for long life aqueous iron-ion batteries. Chinese Chemical Letters, 2025, 36(3): 109715-. doi: 10.1016/j.cclet.2024.109715

    8. [8]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    9. [9]

      Ximeng CHIJianwei WEIYunyun WANGWenxin DENGJiayi DAIXu ZHOU . First-principles study of the electronic structure and optical properties of Au and I doped-inorganic lead-free double perovskite Cs2NaBiCl6. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1371-1379. doi: 10.11862/CJIC.20240401

    10. [10]

      Yuchen ZhouHuanmin LiuHongxing LiXinyu SongYonghua TangPeng Zhou . Designing thermodynamically stable noble metal single-atom photocatalysts for highly efficient non-oxidative conversion of ethanol into high-purity hydrogen and value-added acetaldehyde. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-0. doi: 10.1016/j.actphy.2025.100067

    11. [11]

      Ronghui LI . Photocatalysis performance of nitrogen-doped CeO2 thin films via ion beam-assisted deposition. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1123-1130. doi: 10.11862/CJIC.20240440

    12. [12]

      Linfeng XiaoWanlu RenShishi ShenMengshan ChenRunhua LiaoYingtang ZhouXibao Li . Enhancing Photocatalytic Hydrogen Evolution through Electronic Structure and Wettability Adjustment of ZnIn2S4/Bi2O3 S-Scheme Heterojunction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308036-0. doi: 10.3866/PKU.WHXB202308036

    13. [13]

      Jianyin HeLiuyun ChenXinling XieZuzeng QinHongbing JiTongming Su . Construction of ZnCoP/CdLa2S4 Schottky Heterojunctions for Enhancing Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-0. doi: 10.3866/PKU.WHXB202404030

    14. [14]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    15. [15]

      Xuejiao WangSuiying DongKezhen QiVadim PopkovXianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-0. doi: 10.3866/PKU.WHXB202408005

    16. [16]

      Yadan LuoHao ZhengXin LiFengmin LiHua TangXilin She . Modulating reactive oxygen species in O, S co-doped C3N4 to enhance photocatalytic degradation of microplastics. Acta Physico-Chimica Sinica, 2025, 41(6): 100052-0. doi: 10.1016/j.actphy.2025.100052

    17. [17]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    18. [18]

      Jingzhuo TianChaohong GuanHaobin HuEnzhou LiuDongyuan Yang . Waste plastics promoted photocatalytic H2 evolution over S-scheme NiCr2O4/twinned-Cd0.5Zn0.5S homo-heterojunction. Acta Physico-Chimica Sinica, 2025, 41(6): 100068-0. doi: 10.1016/j.actphy.2025.100068

    19. [19]

      Qilin YUYifei XUPengjun ZHANGShuwei HAOChongqiang ZHUChunhui YANG . Effect of regulating K+/Na+ ratio on the structure and optical properties of double perovskite Cs2NaBiCl6: Mn2+. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1058-1067. doi: 10.11862/CJIC.20240418

    20. [20]

      Pingping LUShuguang ZHANGPeipei ZHANGAiyun NI . Preparation of zinc sulfate open frameworks based probe materials and detection of Pb2+ and Fe3+ ions. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 959-968. doi: 10.11862/CJIC.20240411

Metrics
  • PDF Downloads(1)
  • Abstract views(273)
  • HTML views(59)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return