Citation: Guoqiang Chen, Zixuan Zheng, Wei Zhong, Guohong Wang, Xinhe Wu. Molten Intermediate Transportation-Oriented Synthesis of Amino-Rich g-C3N4 Nanosheets for Efficient Photocatalytic H2O2 Production[J]. Acta Physico-Chimica Sinica, ;2024, 40(11): 240602. doi: 10.3866/PKU.WHXB202406021 shu

Molten Intermediate Transportation-Oriented Synthesis of Amino-Rich g-C3N4 Nanosheets for Efficient Photocatalytic H2O2 Production

  • Corresponding author: Xinhe Wu, wuxinhe@hbnu.edu.cn
  • Received Date: 17 June 2024
    Revised Date: 15 July 2024
    Accepted Date: 16 July 2024
    Available Online: 5 August 2024

    Fund Project: the National Natural Science Foundation of China 22302061the National Natural Science Foundation of China 22075072Hubei Provincial Natural Science Foundation of China 2022CFC060the 2023 National Undergraduate Training Programs for Innovation and Entrepreneurship 202324

  • To eliminate the additional assistance of previously reported strategies for the synthesis of g-C3N4 nanosheets such as templates, strong acids and alkalis, in this study, an innovative pattern for transportation of molten g-C3N4 intermediates, without any additional substance assistance, has been resoundingly established to produce amino-rich g-C3N4 nanosheets. The innovative pattern concretely contains the preliminary placement of melamine onto the top platform of an inverted crucible and their subsequent one-step calcination. During the calcination process, melamine and its subsequently formed g-C3N4 intermediate can transform into a molten state and gradually stream down along the outer surface of inverted crucible. This molten intermediate transportation pattern contributes to remarkably resist severe aggregation, resulting in the final polymerization into amino-rich g-C3N4 nanosheets in sequence. Moreover, the resultant amino-rich g-C3N4 nanosheets exhibit an evidently enhanced photocatalytic H2O2-production rate of ca. 85.8 μmol·L–1·h–1, over 2 times superior to bulk g-C3N4, mainly due to the fact that in addition to their nanosheet structures with enhanced specific surface areas, their amino-rich structures can efficiently reinforce the adsorption of O2 and *OOH intermediates to accelerate their effective transformation into H2O2. This work delivers an innovative pattern to synthesize amino-rich g-C3N4 nanosheets with an insight into the photocatalytic mechanism.
  • 加载中
    1. [1]

      Cheng, C.; Yu, J.; Xu, D.; Wang, L.; Liang, G.; Zhang, L.; Jaroniec, M. Nat. Commun. 2024, 15, 1313. doi: 10.1038/s41467-024-45604-5  doi: 10.1038/s41467-024-45604-5

    2. [2]

      Shao, C.; He, Q.; Zhang, M.; Jia, L.; Ji, Y.; Hu, Y.; Li, Y.; Huang, W.; Li, Y. Chin. J. Catal. 2023, 46, 28. doi: 10.1016/s1872-2067(22)64205-0  doi: 10.1016/s1872-2067(22)64205-0

    3. [3]

      Zhao, B.; Xu, J.; Gao, D.; Chen, F.; Wang, X.; Liu, T.; Wu, X.; Yu, H. Appl. Catal. B Environ. Energy 2024, 355, 124215. doi: 10.1016/j.apcatb.2024.124215  doi: 10.1016/j.apcatb.2024.124215

    4. [4]

      Wang, L.; Sun, J.; Cheng, B.; He, R.; Yu, J. J. Phys. Chem. Lett. 2023, 14, 4803. doi: 10.1021/acs.jpclett.3c00811  doi: 10.1021/acs.jpclett.3c00811

    5. [5]

      He, B.; Wang, Z.; Xiao, P.; Chen, T.; Yu, J.; Zhang, L. Adv. Mater. 2022, 34, 2203225. doi: 10.1002/adma.202203225  doi: 10.1002/adma.202203225

    6. [6]

      Wu, Y.; Wang, P.; Che, H.; Liu, W.; Tang, C.; Ao, Y. Angew. Chem. Int. Ed. 2024, 63, e202316410. doi: 10.1002/anie.202316410  doi: 10.1002/anie.202316410

    7. [7]

      Li, K.; Mei, J.; Li, J.; Liu, Y.; Wang, G.; Hu, D.; Yan, S.; Wang, K. Sci. China Mater. 2024, 67, 484. doi: 10.1007/s40843-023-2717-0  doi: 10.1007/s40843-023-2717-0

    8. [8]

      Wu, X.; Chen, G.; Wang, J.; Li, J.; Wang, G. Acta Phys. -Chim. Sin. 2023, 39, 2212016. doi: 10.3866/PKU.WHXB202212016  doi: 10.3866/PKU.WHXB202212016

    9. [9]

      Xiang, X.; Zhu, B.; Zhang, J.; Jiang, C.; Chen, T.; Yu, H.; Yu, J.; Wang, L. Appl. Catal. B Environ. Energy 2023, 324, 122301. doi: 10.1016/j.apcatb.2022.122301  doi: 10.1016/j.apcatb.2022.122301

    10. [10]

      Liu, T.; Zhu, W.; Wang, N.; Zhang, K.; Wen, X.; Xing, Y.; Li, Y. Adv. Sci. 2023, 10, 2302503. doi: 10.1002/advs.202302503  doi: 10.1002/advs.202302503

    11. [11]

      Chen, C.; Liu, F.; Zhang, Q.; Zhang, Z.; Liu, Q.; Fang, X. Chin. J. Catal. 2023, 46, 91. doi: 10.1016/s1872-2067(22)64159-7  doi: 10.1016/s1872-2067(22)64159-7

    12. [12]

      Zhu, B.; Sun, J.; Zhao, Y.; Zhang, L.; Yu, J. Adv. Mater. 2024, 36, 2310600. doi: 10.1002/adma.202310600  doi: 10.1002/adma.202310600

    13. [13]

      Wu, X.; Tan, L.; Chen, G.; Kang, J.; Wang, G. Sci. China Mater. 2024, 67, 444. doi: 10.1007/s40843-023-2755-2  doi: 10.1007/s40843-023-2755-2

    14. [14]

      Li, H.; Tao, S.; Wan, S.; Qiu, G.; Long, Q.; Yu, J.; Cao, S. Chin. J. Catal. 2023, 46, 167. doi: 10.1016/s1872-2067(22)64201-3  doi: 10.1016/s1872-2067(22)64201-3

    15. [15]

      Wu, X.; Ma, H.; Zhong, W.; Fan, J.; Yu, H. Appl. Catal. B Environ. Energy 2020, 271, 118899. doi: 10.1016/j.apcatb.2020.118899  doi: 10.1016/j.apcatb.2020.118899

    16. [16]

      Wang, J.; Qiao, X.; Shi, W.; He, J.; Chen, J.; Zhang, W. Acta Phys. -Chim. Sin. 2023, 39, 2209016. doi: 10.3866/PKU.WHXB202209016  doi: 10.3866/PKU.WHXB202209016

    17. [17]

      Liu, T.; Zhu, W.; Wang, N.; Zhang, K.; Wen, X.; Xing, Y.; Li, Y. Adv. Sci. 2023, 10, 2302503. doi: 10.1002/advs.202302503  doi: 10.1002/advs.202302503

    18. [18]

      Beyhaqi, A.; Azimi, S. M. T.; Chen, Z.; Hu, C.; Zeng, Q. Int. J. Hydrog. Energy 2021, 46, 20547. doi: 10.1016/j.ijhydene.2021.03.174  doi: 10.1016/j.ijhydene.2021.03.174

    19. [19]

      Chen, H.; Fan, Y.; Xu, H.; Cui, D.; Xue, C.; Zhang, W. J. Alloy. Compd. 2021, 863, 158448. doi: 10.1016/j.jallcom.2020.158448  doi: 10.1016/j.jallcom.2020.158448

    20. [20]

      Shalom, M.; Inal, S.; Fettkenhauer, C.; Neher, D.; Antonietti, M. J. Am. Chem. Soc. 2013, 135, 7118. doi: 10.1021/ja402521s  doi: 10.1021/ja402521s

    21. [21]

      Wang, Y.; Liu, L.; Ma, T.; Zhang, Y.; Huang, H. Adv. Funct. Mater. 2021, 31, 2102540. doi: 10.1002/adfm.202102540  doi: 10.1002/adfm.202102540

    22. [22]

      Zhou, Y.; Wu, Y.; Wu, H.; Xue, J.; Ding, L.; Wang, R.; Wang, H. Nat. Commun. 2022, 13, 5852. doi: 10.1038/s41467-022-33654-6  doi: 10.1038/s41467-022-33654-6

    23. [23]

      Fang, Z.; Hong, Y.; Li, D.; Luo, B.; Mao, B.; Shi, W. ACS Appl. Mater. Interfaces 2018, 10, 20521. doi: 10.1021/acsami.8b04783  doi: 10.1021/acsami.8b04783

    24. [24]

      Xiao, Y.; Tian, G.; Li, W.; Xie, Y.; Jiang, B.; Tian, C.; Zhao, D.; Fu, H. J. Am. Chem. Soc. 2019, 141, 2508. doi: 10.1021/jacs.8b12428  doi: 10.1021/jacs.8b12428

    25. [25]

      Lu, X.; Xu, K.; Chen, P.; Jia, K.; Liu, S.; Wu, C. J. Mater. Chem. A 2014, 2, 18924. doi: 10.1039/c4ta04487h  doi: 10.1039/c4ta04487h

    26. [26]

      Wu, Q.; Jeong, T.; Kim, S.; Song, Y. J. Alloy. Compd. 2022, 900, 163310. doi: 10.1016/j.jallcom.2021.163310  doi: 10.1016/j.jallcom.2021.163310

    27. [27]

      Teng, Z.; Yang, N.; Lv, H.; Wang, S.; Hu, M.; Wang, C.; Wang, D.; Wang, G. Chem 2019, 5, 664. doi: 10.1016/j.chempr.2018.12.009  doi: 10.1016/j.chempr.2018.12.009

    28. [28]

      Zhang, X.; Xie, X.; Wang, H.; Zhang, J.; Pan, B.; Xie, Y. J. Am. Chem. Soc. 2013, 135, 18. doi: 10.1021/ja308249k  doi: 10.1021/ja308249k

    29. [29]

      Xing, W.; Tu, W.; Han, Z.; Hu, Y.; Meng, Q.; Chen, G. ACS Energy Lett. 2018, 3, 514. doi: 10.1021/acsenergylett.7b01328  doi: 10.1021/acsenergylett.7b01328

    30. [30]

      Li, K.; Liu, C.; Li, J.; Wang, G.; Wang, K. Acta Phys. -Chim. Sin. 2024, 40, 2403009. doi: 10.3866/PKU.WHXB202403009  doi: 10.3866/PKU.WHXB202403009

    31. [31]

      Yu, Z.; Guan, C.; Yue, X.; Xiang, Q. Chin. J. Catal. 2023, 50, 361. doi: 10.1016/s1872-2067(23)64448-1  doi: 10.1016/s1872-2067(23)64448-1

    32. [32]

      Zhao, B.; Gao, D.; Zhong, W.; Chen, F.; Wang, P.; Wang, X.; Yu, H. Chem. Eng. J. 2024, 479, 147711. doi: 10.1016/j.cej.2023.147711  doi: 10.1016/j.cej.2023.147711

    33. [33]

      Wu, X.; Zhong, W.; Ma, H.; Hong, X.; Fan, J.; Yu, H. J. Colloid Interface Sci. 2021, 586, 719. doi: 10.1016/j.jcis.2020.10.141  doi: 10.1016/j.jcis.2020.10.141

    34. [34]

      Zhang, P.; Dong, W.; Zhang, Y.; Zhao, L.-N.; Yuan, H.; Wang, C.; Wang, W.; Wang, H.; Zhang, H.; Liu, J. Chin. J. Catal. 2023, 54, 188. doi: 10.1016/s1872-2067(23)64523-1  doi: 10.1016/s1872-2067(23)64523-1

    35. [35]

      Wu, X.; Ma, H.; Wang, K.; Wang, J.; Wang, G.; Yu, H. J. Colloid Interface Sci. 2023, 633, 817. doi: 10.1016/j.jcis.2022.11.143  doi: 10.1016/j.jcis.2022.11.143

    36. [36]

      Wang, N.; Cheng, L.; Liao, Y.; Xiang, Q. Small 2023, 19, 2300109. doi: 10.1002/smll.202300109  doi: 10.1002/smll.202300109

    37. [37]

      Ng, S.-F.; Chen, X.; Foo, J. J.; Xiong, M.; Ong, W.-J.; Chin. J. Catal. 2023, 47, 150. doi: 10.1016/s1872-2067(23)64417-1  doi: 10.1016/s1872-2067(23)64417-1

    38. [38]

      Wu, X.; Gao, D.; Wang, P.; Yu, H.; Yu, J. Carbon 2019, 153, 757. doi: 10.1016/j.carbon.2019.07.083  doi: 10.1016/j.carbon.2019.07.083

    39. [39]

      Ma, D.; Lian, Q.; Zhang, Y.; Huang, Y.; Guan, X.; Liang, Q.; He, C.; Xia, D.; Liu, S.; Yu, J. Nat. Commun. 2023, 14, 7011. doi: 10.1038/s41467-023-42853-8  doi: 10.1038/s41467-023-42853-8

    40. [40]

      Wu, X.; Wang, X.; Wang, F.; Yu, H. Appl. Catal. B Environ. Energy 2019, 247, 70. doi: 10.1016/j.apcatb.2019.01.088  doi: 10.1016/j.apcatb.2019.01.088

    41. [41]

      Zhao, B.; Zhong, W.; Chen, F.; Wang, P.; Bie, C.; Yu, H. Chin. J. Catal. 2023, 52, 127. doi: 10.1016/s1872-2067(23)64491-2  doi: 10.1016/s1872-2067(23)64491-2

    42. [42]

      Luo, C.; Long, Q.; Cheng, B.; Zhu, B.; Wang, L. Acta Phys. -Chim. Sin. 2023, 39, 2212026. doi: 10.3866/PKU.WHXB202212026  doi: 10.3866/PKU.WHXB202212026

    43. [43]

      Wu, X.; Chen, G.; Kang, J.; Zheng, Z.; Wang, G.; Zhong, W.; Yu, H. J. Colloid Interface Sci. 2024, 654, 268. doi: 10.1016/j.jcis.2023.10.043  doi: 10.1016/j.jcis.2023.10.043

    44. [44]

      Shi, H.; Li, Y.; Wang, X.; Yu, H.; Yu, J. Appl. Catal. B Environ. Energy 2021, 297, 120414. doi: 10.1016/j.apcatb.2021.120414  doi: 10.1016/j.apcatb.2021.120414

    45. [45]

      Zhang, X.; Gao, D.; Zhu, B.; Cheng, B.; Yu, J.; Yu, H. Nat. Commun. 2024, 15, 3212. doi: 10.1038/s41467-024-47624-7  doi: 10.1038/s41467-024-47624-7

    46. [46]

      Wang, K.; Li, Y.; Shi, H.; Chen, F.; Wang, P.; Wang, X. Adv. Sustain. Syst. 2022, 6, 2200144. doi: 10.1002/adsu.202200144  doi: 10.1002/adsu.202200144

    47. [47]

      Zhang, K.; Li, Y.; Yuan, S.; Zhang, L.; Wang, Q. Acta Phys. -Chim. Sin. 2023, 39, 2212010. doi: 10.3866/PKU.WHXB202212010  doi: 10.3866/PKU.WHXB202212010

    48. [48]

      Wang, J.; Wang, J.; Zuo, S.; Pei, J.; Liu, W.; Wang, J. Chin. Chem. Lett. 2023, 34, 108157. doi: 10.1016/j.cclet.2023.108157  doi: 10.1016/j.cclet.2023.108157

    49. [49]

      He, B.; Xiao, P.; Wan, S.; Zhang, J.; Chen, T.; Zhang, L.; Yu, J. Angew. Chem. Int. Ed. 2023, 62, e202313172. doi: 10.1002/anie.202313172  doi: 10.1002/anie.202313172

    50. [50]

      Zhong, W.; Xu, J.; Zhang, X.; Zhang, J.; Wang, X.; Yu, H. Adv. Funct. Mater. 2023, 33, 2302325. doi: 10.1002/adfm.202302325  doi: 10.1002/adfm.202302325

    51. [51]

      Cheng, C.; Zhang, J.; Zhu, B.; Liang, G.; Zhang, L.; Yu, J. Angew. Chem. Int. Ed. 2023, 62, e202218688. doi: 10.1002/anie.202218688  doi: 10.1002/anie.202218688

    52. [52]

      Yu, W.; Bie, C. Acta Phys. -Chim. Sin. 2024, 40, 2307022. doi: 10.3866/PKU.WHXB202307022  doi: 10.3866/PKU.WHXB202307022

    53. [53]

      Wu, X.; Chen, G.; Li, L.; Wang, J.; Wang, G. J. Mater. Sci. Technol. 2023, 167, 184. doi: 10.1016/j.jmst.2023.05.046  doi: 10.1016/j.jmst.2023.05.046

    54. [54]

      Gao, D.; Deng, P.; Zhang, J.; Zhang, L.; Wang, X.; Yu, H.; Yu, J. Angew. Chem. Int. Ed. 2023, 62, e202304559. doi: 10.1002/anie.202304559  doi: 10.1002/anie.202304559

    55. [55]

      Xia, Y.; Zhu, B.; Qin, X.; Ho, W.; Yu, J. Chem. Eng. J. 2023, 467, 143528. doi: 10.1016/j.cej.2023.143528  doi: 10.1016/j.cej.2023.143528

    56. [56]

      Yin, X.; Shi, H.; Wang, Y.; Wang, X.; Wang, P.; Yu, H. Acta Phys. -Chim. Sin. 2024, 40, 2312007. doi: 10.3866/PKU.WHXB202312007  doi: 10.3866/PKU.WHXB202312007

    57. [57]

      Bie, C.; Zhu, B.; Wang, L.; Yu, H.; Jiang, C.; Chen, T.; Yu, J. Angew. Chem. Int. Ed. 2022, 61, e202212045. doi: 10.1002/anie.202212045  doi: 10.1002/anie.202212045

    58. [58]

      Cheng, C.; Zhu, B.; Cheng, B.; Macyk, W.; Wang, L.; Yu, J. ACS Catal. 2023, 13, 459. doi: 10.1021/acscatal.2c05001  doi: 10.1021/acscatal.2c05001

    59. [59]

      Chen, Z.; Wang, P.; Wang, X.; Yu, H. Surf. Interfaces 2024, 51, 104684. doi: 10.1016/j.surfin.2024.104684  doi: 10.1016/j.surfin.2024.104684

  • 加载中
    1. [1]

      Ke LiChuang LiuJingping LiGuohong WangKai Wang . Architecting Inorganic/Organic S-Scheme Heterojunction of Bi4Ti3O12 Coupling with g-C3N4 for Photocatalytic H2O2 Production from Pure Water. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-0. doi: 10.3866/PKU.WHXB202403009

    2. [2]

      Xinyu YinHaiyang ShiYu WangXuefei WangPing WangHuogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-0. doi: 10.3866/PKU.WHXB202312007

    3. [3]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    4. [4]

      Zhiquan ZhangBaker RhimiZheyang LiuMin ZhouGuowei DengWei WeiLiang MaoHuaming LiZhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029

    5. [5]

      Heng ChenLonghui NieKai XuYiqiong YangCaihong Fang . Remarkable Photocatalytic H2O2 Production Efficiency over Ultrathin g-C3N4 Nanosheet with Large Surface Area and Enhanced Crystallinity by Two-Step Calcination. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-0. doi: 10.3866/PKU.WHXB202406019

    6. [6]

      Chenye AnSikandaier AbiduweiliXue GuoYukun ZhuHua TangDongjiang Yang . Hierarchical S-scheme Heterojunction of Red Phosphorus Nanoparticles Embedded Flower-like CeO2 Triggering Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-0. doi: 10.3866/PKU.WHXB202405019

    7. [7]

      Yanhui GuoLi WeiZhonglin WenChaorong QiHuanfeng Jiang . Recent Progress on Conversion of Carbon Dioxide into Carbamates. Acta Physico-Chimica Sinica, 2024, 40(4): 2307004-0. doi: 10.3866/PKU.WHXB202307004

    8. [8]

      Fanpeng MengFei ZhaoJingkai LinJinsheng ZhaoHuayang ZhangShaobin Wang . Optimizing interfacial electric fields in carbon nitride nanosheet/spherical conjugated polymer S-scheme heterojunction for hydrogen evolution. Acta Physico-Chimica Sinica, 2025, 41(8): 100095-0. doi: 10.1016/j.actphy.2025.100095

    9. [9]

      Jingping LiSuding YanJiaxi WuQiang ChengKai Wang . Improving hydrogen peroxide photosynthesis over inorganic/organic S-scheme photocatalyst with LiFePO4. Acta Physico-Chimica Sinica, 2025, 41(9): 100104-0. doi: 10.1016/j.actphy.2025.100104

    10. [10]

      Haitao WangLianglang YuJizhou JiangArramelJing Zou . S-Doping of the N-Sites of g-C3N4 to Enhance Photocatalytic H2 Evolution Activity. Acta Physico-Chimica Sinica, 2024, 40(5): 2305047-0. doi: 10.3866/PKU.WHXB202305047

    11. [11]

      Jianyin HeLiuyun ChenXinling XieZuzeng QinHongbing JiTongming Su . Construction of ZnCoP/CdLa2S4 Schottky Heterojunctions for Enhancing Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-0. doi: 10.3866/PKU.WHXB202404030

    12. [12]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    13. [13]

      Yu WangHaiyang ShiZihan ChenFeng ChenPing WangXuefei Wang . 具有富电子Ptδ壳层的空心AgPt@Pt核壳催化剂:提升光催化H2O2生成选择性与活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100081-0. doi: 10.1016/j.actphy.2025.100081

    14. [14]

      Qin LiHuihui ZhangHuajun GuYuanyuan CuiRuihua GaoWei-Lin DaiIn situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2025, 41(4): 2402016-0. doi: 10.3866/PKU.WHXB202402016

    15. [15]

      Jingzhuo TianChaohong GuanHaobin HuEnzhou LiuDongyuan Yang . Waste plastics promoted photocatalytic H2 evolution over S-scheme NiCr2O4/twinned-Cd0.5Zn0.5S homo-heterojunction. Acta Physico-Chimica Sinica, 2025, 41(6): 100068-0. doi: 10.1016/j.actphy.2025.100068

    16. [16]

      Jiawei HuKai XiaAo YangZhihao ZhangWen XiaoChao LiuQinfang Zhang . Interfacial Engineering of Ultrathin 2D/2D NiPS3/C3N5 Heterojunctions for Boosting Photocatalytic H2 Evolution. Acta Physico-Chimica Sinica, 2024, 40(5): 2305043-0. doi: 10.3866/PKU.WHXB202305043

    17. [17]

      Yuchen ZhouHuanmin LiuHongxing LiXinyu SongYonghua TangPeng Zhou . Designing thermodynamically stable noble metal single-atom photocatalysts for highly efficient non-oxidative conversion of ethanol into high-purity hydrogen and value-added acetaldehyde. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-0. doi: 10.1016/j.actphy.2025.100067

    18. [18]

      Yuanqing WangYusong PanHongwu ZhuYanlei XiangRong HanRun HuangChao DuChengling Pan . Enhanced Catalytic Activity of Bi2WO6 for Organic Pollutants Degradation under the Synergism between Advanced Oxidative Processes and Visible Light Irradiation. Acta Physico-Chimica Sinica, 2024, 40(4): 2304050-0. doi: 10.3866/PKU.WHXB202304050

    19. [19]

      Zhuoya WANGLe HEZhiquan LINYingxi WANGLing LI . Multifunctional nanozyme Prussian blue modified copper peroxide: Synthesis and photothermal enhanced catalytic therapy of self-provided hydrogen peroxide. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2445-2454. doi: 10.11862/CJIC.20240194

    20. [20]

      Yu Dai Xueting Sun Haoyu Wu Naizhu Li Guoe Cheng Xiaojin Zhang Fan Xia . Determination of the Michaelis Constant for Gold Nanozyme-Catalyzed Decomposition of Hydrogen Peroxide. University Chemistry, 2025, 40(5): 351-356. doi: 10.12461/PKU.DXHX202407052

Metrics
  • PDF Downloads(0)
  • Abstract views(201)
  • HTML views(56)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return