Citation: Asif Hassan Raza, Shumail Farhan, Zhixian Yu, Yan Wu. Double S-Scheme ZnS/ZnO/CdS Heterostructure Photocatalyst for Efficient Hydrogen Production[J]. Acta Physico-Chimica Sinica, ;2024, 40(11): 240602. doi: 10.3866/PKU.WHXB202406020 shu

Double S-Scheme ZnS/ZnO/CdS Heterostructure Photocatalyst for Efficient Hydrogen Production

  • Corresponding author: Yan Wu, wuyan@cug.edu.cn
  • Received Date: 17 June 2024
    Revised Date: 24 July 2024
    Accepted Date: 29 July 2024
    Available Online: 12 August 2024

    Fund Project: the National Natural Science Foundation of China 22378372

  • This work illustrates the novelty of double S-scheme ZnS/ZnO/CdS ternary heterojunction photocatalyst with efficient photocatalytic activity. The sample with optimal CdS content, ZnS/ZnO/CdS-14% (ZZC14%), displayed the maximum H2 evolution rate of 4.1 mmol·g‒1·h‒1. The maximum photocatalytic performance was approximately 2 and 13 times higher than their corresponding counterparts, ZnS/CdS and ZnO/ZnS, respectively. A high AQE of 19.8% under 420 nm was obtained. Additionally, the slight changes in H2 evolution activities and retentions of crystal structures after six successive cycles indicate the stability of the photocatalyst. In accordance with the theoretical calculations and experimental results, the remarkable enhancement in photocatalytic activity is attributed to fast electron transfer and separation as well as the intimate contact due to mutual interaction between S-scheme. This work highlights an innovative approach to constructing a dual S-scheme photocatalytic system with high separation and fast migration capabilities of photogenerated charge carriers for splitting water to produce hydrogen.
  • 加载中
    1. [1]

      Bie, C.; Wang, L.; Yu, J. Chem. 2022, 8 (6), 1567. doi: 10.1016/j.chempr.2022.04.013  doi: 10.1016/j.chempr.2022.04.013

    2. [2]

      Sun, T.; Li, C.; Bao, Y.; Fan, J.; Liu, E. Acta Phys.-Chim.Sin. 2023, 39 (6), 2212009. doi: 10.3866/PKU.WHXB202212009.  doi: 10.3866/PKU.WHXB202212009

    3. [3]

      Fujishima, A.; Honda, K. Nature 1972, 238(5358), 37. doi: 10.1038/238037a0  doi: 10.1038/238037a0

    4. [4]

      Lu, C.; Du, S.; Zhao, Y.; Wang, Q.; Ren, K.; Li, C.; Dou, W. RSC Adv. 2021, 11 (45), 28211. doi: 10.1039/DIRA04823F  doi: 10.1039/DIRA04823F

    5. [5]

      Xiao, Y.; Li, M.; Li, H.; Wang, Z.; Wang, Y. Nano Energy 2024, 120 (1), 109164. doi: 10.1016/j.nanoen.2023.109164  doi: 10.1016/j.nanoen.2023.109164

    6. [6]

      Jiang, J.; Wang, G.; Shao, Y.; Wang, J.; Zhou, S.; Su, Y. Chin. J. Catal. 2022, 43 (2), 329. doi: 10.1016/S1872-2067(21)63889  doi: 10.1016/S1872-2067(21)63889

    7. [7]

      Liang, S.; Wang, Z.; Zhou, L.; You, S.; Zhang, R.; Liu, F.; Niu, P.; Wang, X. ACS Appl. Mater. Interfaces 2024, 16 (14), 17442. doi: 10.1021/acsami.3c8575  doi: 10.1021/acsami.3c8575

    8. [8]

      Li, J. Y.; Tan, C. L.; Qi, M. Y.; Tang, Z. R.; Xu, Y. J. Angew. Chem. Int. Edit. 2023, 62 (22), e202303054. doi: 10.1002/anie.202303054.  doi: 10.1002/anie.202303054

    9. [9]

      Zhao, N.; Peng, J.; Wang, J.; Zhai, M. Acta Phys.-Chim.Sin. 2022, 38 (4), 2004046. doi: 10.3866/PKU.WHXB202004046  doi: 10.3866/PKU.WHXB202004046

    10. [10]

      Xiang, X.; Zhang, L.; Luo, C.; Zhang, J.; Cheng, B.; Liang, G.; Zhang, Z.; Yu, J. Appl. Catal. B-Environ. 2024, 340, 123196. doi: 10.1016/j.apcatb.2023.123196  doi: 10.1016/j.apcatb.2023.123196

    11. [11]

      Ren, Y.; Li, Y.; Pan, G.; Wang, N.; Xing, Y.; Zhang, Z. J. Mater. Sci. Technol. 2023, 171, 162. doi: 10.1016/j.jmst.2023.06.052  doi: 10.1016/j.jmst.2023.06.052

    12. [12]

      Tang, W.; Luo, L.; Fan, Z.; Zhang, A.; Ma, Y.; Xie, Y.; Zhao, J. Mater. Today Chem. 2024, 37, 102000. doi: 10.1016/j.mtchem.2024.102000  doi: 10.1016/j.mtchem.2024.102000

    13. [13]

      Cheng, Y.; Kang, J.; Yan, P.; Shen, J.; Chen, Z.; Zhu, X.; Tan, Q.; Shen, L.; Wang, S.; Wang, S. Appl. Catal. B-Environ. 2024, 341, 123325. doi: 10.1016/j.apcatb.2023.123325  doi: 10.1016/j.apcatb.2023.123325

    14. [14]

      Shin, H.; Kim, S.; Lee, J.; Jeong, H.; Joo, S. W.; Lee, C.-T.; Park, S.-M.; Kang, M. Mater. Today Adv. 2024, 21, 100469. doi: 10.1016/j.mtadv.2024.100469  doi: 10.1016/j.mtadv.2024.100469

    15. [15]

      Yusuff, A. S.; Popoola, L. T.; Gbadamosi, A. O.; Igbafe, A. I. Mater. Today Commun. 2024, 38, 107999. doi: 10.1016/j.mtcomm.2023.107999  doi: 10.1016/j.mtcomm.2023.107999

    16. [16]

      Shundo, Y.; Nguyen, T. T.; Akrami, S.; Edalati, P.; Itagoe, Y.; Ishihara, T.; Arita, M.; Guo, Q.; Fuji, M.; Edalati, K. J. Colloid Interface Sci. 2024, 666, 22. doi: 10.1016/j.jcis.2024.04.010  doi: 10.1016/j.jcis.2024.04.010

    17. [17]

      Revathi, M.; Saravanan, S. Inorg. Chem. Commun. 2021, 134, 109056. doi: 10.1016/j.inoche.2021.109056  doi: 10.1016/j.inoche.2021.109056

    18. [18]

      Wang, J.; Pan, R.; Yuan, Z.; Hao, Q.; Niu, X.; Wang, R.; Ye, J.; Yang, H. Y.; Wu, Y. Chem. Eng. J. 2024, 481, 148296. doi: 10.1016/j.cej.2023.148296  doi: 10.1016/j.cej.2023.148296

    19. [19]

      Ali, R.; Qureshi, W.; Yaseen, M.; Jiang, H.; Wang, L.; Yang, J.; Liu, Q. Mater. Today Sustain. 2023, 22, 100337. doi: 10.1016/j.mtsust.2023.100337  doi: 10.1016/j.mtsust.2023.100337

    20. [20]

      Lin, Q.; Liang, S.; Wang, J.; Zhang, R.; Liu, G.; Wang, X. ACS Sustain. Chem. Eng. 2023, 11 (7), 3093. doi: 10.1021/acssuschemeng.2c07255  doi: 10.1021/acssuschemeng.2c07255

    21. [21]

      Jia, Y.; Wang, Z.; Qiao, X.-Q.; Huang, L.; Gan, S.; Hou, D.; Zhao, J.; Sun, C.; Li, D.-S. Chem. Eng. J. 2021, 424, 130368. doi: 10.1016/j.cej.2021.130368  doi: 10.1016/j.cej.2021.130368

    22. [22]

      Zhu, Q.; Xu, Q.; Du, M.; Zeng, X.; Zhong, G.; Qiu, B.; Zhang, J. Adv. Mater. 2022, 34 (45), 2202929. doi: 10.1001/adma.202202929  doi: 10.1001/adma.202202929

    23. [23]

      Dong, J.; Fang, W.; Yuan, H.; Xia, W.; Zeng, X.; Shangguan, W. ACS Appl. Energy Mater. 2022, 5 (4), 4893. doi: 10.1021/acsaem.2c00301  doi: 10.1021/acsaem.2c00301

    24. [24]

      Wu, P.; Liu, H.; Xie, Z.; Xie, L.; Liu, G.; Xu, Y.; Chen, J.; Lu, C.-Z. ACS Appl. Mater. Interfaces 2024, 16 (13), 16601. doi: 10.1021/acsami.3c15957  doi: 10.1021/acsami.3c15957

    25. [25]

      Bao, L.; Ali, S.; Dai, C.; Zeng, Q.; Zeng, C.; Jia, Y.; Liu, X.; Wang, P.; Ren, X.; Yang, T. ACS Nano 2024, 18 (7) 5878. doi: 10.1021/acsnano.3c12773  doi: 10.1021/acsnano.3c12773

    26. [26]

      Xue, S.; Tang, H.; Shen, M.; Liang, X.; Li, X.; Xing, W.; Yang, C.; Yu, Z. Adv. Mater. 2024, 36 (16), 2311937. doi: 10.1002/adma.202311937  doi: 10.1002/adma.202311937

    27. [27]

      Piña-Pérez, Y.; Samaniego-Benítez, E.; Sierra-Uribe, J. H.; González, F.; Tzompantzi, F.; Lartundo-Rojas, L.; Mantilla, Á. J. Environ. Chem. Eng. 2023, 11 (3), 109760. doi: 10.1016/j.jece.2023.109760  doi: 10.1016/j.jece.2023.109760

    28. [28]

      Sun, H.; Xiao, Z.; Zhao, Z.; Zhai, S.; An, Q. Appl. Surf. Sci. 2023, 611 (Part A), 155631. doi: 10.1016/j.apsusc.2022.155631  doi: 10.1016/j.apsusc.2022.155631

    29. [29]

      Li, Q.; Yang, S.; Huang, Y.; Liang, Y.; Hu, C.; Wang, M.; Liu, Z.; Tai, Y.; Liu, J.; Li, Y. J. Mater. Sci. Technol. 2024, in press. doi: 10.1016/j.jmst.2024.01.104

    30. [30]

      Yan, J.; Wei, L. Acta Phys.-Chim.Sin. 2024, 40 (10), 2312024. doi. 10.3866/PKU.WHXB202312024  doi: 10.3866/PKU.WHXB202312024

    31. [31]

      Deng, X.; Zhang, J.; Qi, K.; Liang, G.; Xu, F.; Yu, J. Nat. Commun. 2024, 15 (1), 4807. doi. 10.1038/s41467-024-49004-7  doi: 10.1038/s41467-024-49004-7

    32. [32]

      Xu, F.; Meng, K.; Cheng, B.; Wang, S.; Xu, J.; Yu, J. Nat. Commun. 2020, 11 (1), 4613. doi: 10.1038/s41467-020-18350-7  doi: 10.1038/s41467-020-18350-7

    33. [33]

      Fu, J.; Xu, Q.; Low, J.; Jiang, C.; Yu, J. Appl. Catal. B-Environ. 2019, 243, 556. doi: 10.1016/j.apcatb.2018.11.011  doi: 10.1016/j.apcatb.2018.11.011

    34. [34]

      Zhu, B.; Sun, J.; Zhao, Y.; Zhang, L.; Yu, J. Adv. Mater. 2024, 36 (8), 2310600. doi: 10.1002/adma.202310600  doi: 10.1002/adma.202310600

    35. [35]

      Yu, W.; Bie, C. Acta Phys.-Chim.Sin. 2023, 40 (4), 2307022. doi. 10.3866/PKU.WHXB202307022  doi: 10.3866/PKU.WHXB202307022

    36. [36]

      Li, Z.; Liu, W.; Chen, C.; Ma, T.; Zhang, J.; Wang, Z. Acta Phys.-Chim.Sin. 2023, 39 (6), 2208030. doi: 10.3866/PKU.WHXB202208030  doi: 10.3866/PKU.WHXB202208030

    37. [37]

      Zhu, J.; Wageh, S.; Al-Ghamdi, A. A. Chin. J. Catal. 2023, 49 (6), 5. doi: 10.1016/S1872-2067(23)64438-9  doi: 10.1016/S1872-2067(23)64438-9

    38. [38]

      Li, T.; Tsubaki, N.; Jin, Z. J. Mater. Sci. Technol. 2024, 169, 82. doi: 10.1016/j.jmst.2023.04.049  doi: 10.1016/j.jmst.2023.04.049

    39. [39]

      Wu, X.; Chen, G.; Wang, J.; Li, J.; Wang, G. Acta Phys. -Chim. Sin. 2023, 39 (6), 2212016. doi: 10.3866/PKU.WHXB202212016  doi: 10.3866/PKU.WHXB202212016

    40. [40]

      Wang, T.; Jin, Z. J. Mater. Sci. Technol. 2023, 155, 132. doi: 10.1016/j.jmst.2023.03.002  doi: 10.1016/j.jmst.2023.03.002

    41. [41]

      Li, Y.; Shu, S.; Huang, L.; Liu, J.; Liu, J.; Yao, J.; Liu, S.; Zhu, M.; Huang, L. J. Colloid Interf. Sci. 2023, 633, 60. doi: 10.1016/j.jcis.2022.11.058  doi: 10.1016/j.jcis.2022.11.058

    42. [42]

      Chen, Z.; Ma, T.; Li, Z.; Zhu, W.; Li, L. J. Mater. Sci. Technol. 2024, 179, 198. doi: 10.1016/j.jmst.2023.07.029  doi: 10.1016/j.jmst.2023.07.029

    43. [43]

      Xiao, L.; Ren, W.; Shen, S.; Chen, M.; Liao, R.; Zhou, Y. Acta Phys.-Chim.Sin. 2024, 40 (8), 2308036. doi: 10.3866/PKU.WHXB202308036  doi: 10.3866/PKU.WHXB202308036

    44. [44]

      Hong, S. H.; Kim, Y. K.; Hwang, S.-H.; Seo, H.-J.; Lim, S. K. Int. J. Hydrogen Energ. 2024, 57, 717. doi: 10.1016/j.ijhydene.2024.01.087  doi: 10.1016/j.ijhydene.2024.01.087

    45. [45]

      Nowosielska, A. M.; Nikoloski, A. N.; Parsons, D. F. Miner. Eng. 2023, 202, 108236. doi: 10.1016/j.mineng.2023.108236  doi: 10.1016/j.mineng.2023.108236

    46. [46]

      Wu, F.; Zhang, X.; Wang, L.; Li, G.; Huang, J.; Song, A.; Meng, A.; Li, Z. Small 2024, 2309439. doi: 10.1002/small.202309439  doi: 10.1002/small.202309439

    47. [47]

      Jiang, Z.; Cheng, B.; Zhang, L.; Zhang, Z.; Bie, C. A. Chin. J. Catal. 2023, 52, 32. doi: 10.1016/S1872-2067(23)64502-4  doi: 10.1016/S1872-2067(23)64502-4

    48. [48]

      Liu, B.; Cai, J.; Zhang, J.; Tan, H.; Cheng, B.; Xu, J. Chin. J. Catal. 2023, 51, 204. doi: 10.1016/S1872-2067(23)64466-3  doi: 10.1016/S1872-2067(23)64466-3

    49. [49]

      Bi, L.; Liu, J.; Du, M.; Huang, B.; Song, M.; Jiang, G. Chem. Eng. J. 2023, 454, 140258. doi: 10.1016/j.cej.2022.140258  doi: 10.1016/j.cej.2022.140258

    50. [50]

      Jiang, J.; Ye, K.; Zhang, W.; Ren, H.; Chen, H.; Hu, Y.; Wang, F.; Hou, J.; Diao, G.; Chen, M. J. Mater. Sci. 2022, 57 (47), 21667. doi: 10.1007/s10853-022-07980-5  doi: 10.1007/s10853-022-07980-5

    51. [51]

      Wen, B.; Guo, X.; Liu, Y.; Jin, Z. ACS Appl. Nano Mater. 2024, 7 (6), 6056. doi: 10.1021/acsanm.3c05962  doi: 10.1021/acsanm.3c05962

    52. [52]

      Sun, H.; Qin, P.; Guo, J.; Jiang, Y.; Liang, Y.; Gong, X.; Ma, X.; Wu, Q.; Zhang, J.; Luo, L. Chem. Eng. J. 2023, 470, 144217. doi: 10.1016/j.cej.2023.144217  doi: 10.1016/j.cej.2023.144217

    53. [53]

      Cheng, C.; Zhang, J.; Zhu, B.; Liang, G.; Zhang, L.; Yu, J. Angew. Chem. Int. Edit. 2023, 62 (8), e202218688. doi: 10.1002/anie.202218688  doi: 10.1002/anie.202218688

    54. [54]

      Li, L.; Shi, H.; Yu, H.; Tan, X.; Wang, Y.; Ge, S.; Wang, A.; Cui, K.; Zhang, L.; Yu, J. Appl. Catal. B-Environ. 2021, 292, 120184. doi: 10.1016/j.apcatb.2021.120184  doi: 10.1016/j.apcatb.2021.120184

    55. [55]

      Jiang, L.; Liu, S.; Zhang, D.; Deng, M.; Xia, Z.; Fu, Y.; Lü, C. Mater. Today Chem. 2024, 35, 101875. doi: 10.1016/j.mtchem.2023.101875  doi: 10.1016/j.mtchem.2023.101875

    56. [56]

      Liu, S.; Wang, W.; Shi, S.; Liao, S.; Zhong, M.; Xiao, W.; Wang, S.; Wang, X.; Chen, C. Appl. Surf. Sci. 2024, 657, 159795. doi: 10.1016/j.apsusc.2024.159795  doi: 10.1016/j.apsusc.2024.159795

    57. [57]

      Yang, X.; Yang, H.; Zhang, T.; Lou, Y.; Chen, J. Catal. Sci. Technol. 2021, 11 (17), 5849. doi: 10.1039/D1CY00951F  doi: 10.1039/D1CY00951F

    58. [58]

      Wang, X.; Liu, B.; Ma, S.; Zhang, Y.; Wang, L.; Zhu, G.; Huang, W.; Wang, S. Nat. Commun. 2024, 15 (1), 2600. doi: 10.1038/s41467-024-47022-z  doi: 10.1038/s41467-024-47022-z

    59. [59]

      Farhan, S.; Raza, A. H.; Yang, S.; Yu, Z.; Wu, Y. J. Colloid Interface Sci. 2024, 669, 430. doi: 10.1016/j.jcis.2024.04.189.  doi: 10.1016/j.jcis.2024.04.189

    60. [60]

      Wang, K.; Yang, Y.; Farhan, S.; Wu, Y.; Lin, W.-F. Chem. Eng. J. 2024, 490, 151408. doi: 10.1016/j.cej.2024.151408.  doi: 10.1016/j.cej.2024.151408

    61. [61]

      Jakob, D. S.; Wang, H.; Xu, X. G. ACS Nano 2020, 14 (4), 4839. doi: 10.1021/acsnano.0c00767  doi: 10.1021/acsnano.0c00767

    62. [62]

      Zhou, J.; Zhang, J.; Deng, Y.; Zhao, H.; Zhang, P.; Fu, S.; Xu, X.; Li, H. Nano Energy 2022, 99, 107411. doi: 10.1016/j.nanoen.2022.107411  doi: 10.1016/j.nanoen.2022.107411

    63. [63]

      Bie, C.; Meng, Z.; He, B.; Cheng, B.; Liu, G.; Zhu, B. J. Mater. Sci. Technol. 2024, 173, 11. doi: 10.1016/j.jmst.2023.07.019  doi: 10.1016/j.jmst.2023.07.019

    64. [64]

      Yang, S.; Wang, K.; Wu, Z.; Wu, Y. J. Mater. Sci. Technol. 2024, 200, 253. doi: 10.1016/j.jmst.2024.02.055.  doi: 10.1016/j.jmst.2024.02.055

    65. [65]

      Chen, Y.; Ma, M.; Hu, J.; Chen, Z.; Jiang, P.; Amirav, L.; Yang, S.; Xing, Z. Appl. Catal. B-Environ. 2023, 324, 122300. doi: 10.1016/j.apcatb.2022.122300  doi: 10.1016/j.apcatb.2022.122300

    66. [66]

      Sun, Y.; Shen, S.; Deng, W.; Tian, G.; Xiong, D.; Zhang, H.; Yang, T.; Wang, S.; Chen, J.; Yang, W. Nano Energy 2023, 105, 108024. doi: 10.1016/j.nanoen.2022.108024  doi: 10.1016/j.nanoen.2022.108024

    67. [67]

      Wang, N.; Pu, M.; Ma, Z.; Feng, Y.; Guo, Y.; Guo, W.; Zheng, Y.; Zhang, L.; Wang, Z.; Feng, M. Nano Energy 2021, 90, 106646. doi: 10.1016/j.nanoen.2021.106646  doi: 10.1016/j.nanoen.2021.106646

    68. [68]

      Zhang, W.; Xu, Q.; Tang, X.; Jiang, H.; Shi, J.; Fominski, V.; Bai, Y.; Chen, P.; Zou, J. J. Colloid Interface Sci. 2023, 649, 325. doi: 10.1016/j.jcis.2023.06.080.  doi: 10.1016/j.jcis.2023.06.080

    69. [69]

      Patel, M.; Song, J.; Kim, D.-W.; Kim, J. Appl. Mater. Today 2022, 26, 101344. doi: 10.1016/j.apmt.2021.101344  doi: 10.1016/j.apmt.2021.101344

    70. [70]

      Vishwakarma, M.; Kumar, M.; Hendrickx, M.; Hadermann, J.; Singh, A. P.; Batra, Y. Adv. Mater. Interfaces 2021, 8 (10), 2002124. doi: 10.1002/admi.202002124  doi: 10.1002/admi.202002124

    71. [71]

      Chen, X.; Guo, R.-T.; Pan, W.-G.; Yuan, Y.; Hu, X.; Bi, Z.-x.; Wang, J. Appl. Catal. B-Environ. 2022, 318, 121839. doi: 10.1016/j.apcatb.2022.121839  doi: 10.1016/j.apcatb.2022.121839

    72. [72]

      Ruan, X.; Meng, D.; Huang, C.; Xu, M.; Jiao, D.; Cheng, H.; Cui, Y.; Li, Z.; Ba, K.; Xie, T. Adv. Mater. 2024, 36 (9), 2309199. doi: 10.1002/adma.202309199  doi: 10.1002/adma.202309199

    73. [73]

      Ruan, X.; Huang, C.; Cheng, H.; Zhang, Z.; Cui, Y.; Li, Z.; Xie, T.; Ba, K.; Zhang, H.; Zhang, L. Adv. Mater. 2023, 35 (6), 2209141. doi: 10.1002/adma.202209141  doi: 10.1002/adma.202209141

  • 加载中
    1. [1]

      Linfeng XiaoWanlu RenShishi ShenMengshan ChenRunhua LiaoYingtang ZhouXibao Li . Enhancing Photocatalytic Hydrogen Evolution through Electronic Structure and Wettability Adjustment of ZnIn2S4/Bi2O3 S-Scheme Heterojunction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308036-0. doi: 10.3866/PKU.WHXB202308036

    2. [2]

      Wenxiu YangJinfeng ZhangQuanlong XuYun YangLijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-0. doi: 10.3866/PKU.WHXB202312014

    3. [3]

      Jianan HongChenyu XuYan LiuChangqi LiMenglin WangYanwei Zhang . Decoding the interfacial competition between hydrogen evolution and CO2 reduction via edge-active-site modulation in photothermal catalysis. Acta Physico-Chimica Sinica, 2025, 41(9): 100099-0. doi: 10.1016/j.actphy.2025.100099

    4. [4]

      Qin LiHuihui ZhangHuajun GuYuanyuan CuiRuihua GaoWei-Lin DaiIn situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2025, 41(4): 2402016-0. doi: 10.3866/PKU.WHXB202402016

    5. [5]

      Kaihui HuangDejun ChenXin ZhangRongchen ShenPeng ZhangDifa XuXin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-0. doi: 10.3866/PKU.WHXB202407020

    6. [6]

      Juntao YanLiang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-0. doi: 10.3866/PKU.WHXB202312024

    7. [7]

      Zhengyu ZhouHuiqin YaoYoulin WuTeng LiNoritatsu TsubakiZhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-0. doi: 10.3866/PKU.WHXB202312010

    8. [8]

      Fanpeng MengFei ZhaoJingkai LinJinsheng ZhaoHuayang ZhangShaobin Wang . Optimizing interfacial electric fields in carbon nitride nanosheet/spherical conjugated polymer S-scheme heterojunction for hydrogen evolution. Acta Physico-Chimica Sinica, 2025, 41(8): 100095-0. doi: 10.1016/j.actphy.2025.100095

    9. [9]

      Haodong JINQingqing LIUChaoyang SHIDanyang WEIJie YUXuhui XUMingli XU . NiCu/ZnO heterostructure photothermal electrocatalyst for efficient hydrogen evolution reaction. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1068-1082. doi: 10.11862/CJIC.20250048

    10. [10]

      Xinyu MiaoHao YangJie HeJing WangZhiliang Jin . Adjusting the electronic structure of Keggin-type polyoxometalates to construct S-scheme heterojunction for photocatalytic hydrogen evolution. Acta Physico-Chimica Sinica, 2025, 41(6): 100051-0. doi: 10.1016/j.actphy.2025.100051

    11. [11]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    12. [12]

      Jingzhuo TianChaohong GuanHaobin HuEnzhou LiuDongyuan Yang . Waste plastics promoted photocatalytic H2 evolution over S-scheme NiCr2O4/twinned-Cd0.5Zn0.5S homo-heterojunction. Acta Physico-Chimica Sinica, 2025, 41(6): 100068-0. doi: 10.1016/j.actphy.2025.100068

    13. [13]

      Shuang CaoBo ZhongChuanbiao BieBei ChengFeiyan Xu . Insights into Photocatalytic Mechanism of H2 Production Integrated with Organic Transformation over WO3/Zn0.5Cd0.5S S-Scheme Heterojunction. Acta Physico-Chimica Sinica, 2024, 40(5): 2307016-0. doi: 10.3866/PKU.WHXB202307016

    14. [14]

      Yifan ZHAOQiyun MAOMeijing GUOGuoying ZHANGTongliang HU . Z-scheme bismuth-based multi-site heterojunction: Synthesis and hydrogen production from photocatalytic hydrogen production. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1318-1330. doi: 10.11862/CJIC.20250001

    15. [15]

      Jiajie CaiChang ChengBowen LiuJianjun ZhangChuanjia JiangBei Cheng . CdS/DBTSO-BDTO S-scheme photocatalyst for H2 production and its charge transfer dynamics. Acta Physico-Chimica Sinica, 2025, 41(8): 100084-0. doi: 10.1016/j.actphy.2025.100084

    16. [16]

      Chenye AnSikandaier AbiduweiliXue GuoYukun ZhuHua TangDongjiang Yang . Hierarchical S-scheme Heterojunction of Red Phosphorus Nanoparticles Embedded Flower-like CeO2 Triggering Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-0. doi: 10.3866/PKU.WHXB202405019

    17. [17]

      Qianqian LiuXing DuWanfei LiWei-Lin DaiBo Liu . Synergistic Effects of Internal Electric and Dipole Fields in SnNb2O6/Nitrogen-Enriched C3N5 S-Scheme Heterojunction for Boosting Photocatalytic Performance. Acta Physico-Chimica Sinica, 2024, 40(10): 2311016-0. doi: 10.3866/PKU.WHXB202311016

    18. [18]

      Jianyin HeLiuyun ChenXinling XieZuzeng QinHongbing JiTongming Su . Construction of ZnCoP/CdLa2S4 Schottky Heterojunctions for Enhancing Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-0. doi: 10.3866/PKU.WHXB202404030

    19. [19]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    20. [20]

      Jianbao MeiBei LiShu ZhangDongdong XiaoPu HuGeng Zhang . Enhanced Performance of Ternary NASICON-Type Na3.5−xMn0.5V1.5−xZrx (PO4)3/C Cathodes for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(12): 2407023-0. doi: 10.3866/PKU.WHXB202407023

Metrics
  • PDF Downloads(5)
  • Abstract views(481)
  • HTML views(108)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return