Citation: Heng Chen, Longhui Nie, Kai Xu, Yiqiong Yang, Caihong Fang. Remarkable Photocatalytic H2O2 Production Efficiency over Ultrathin g-C3N4 Nanosheet with Large Surface Area and Enhanced Crystallinity by Two-Step Calcination[J]. Acta Physico-Chimica Sinica, ;2024, 40(11): 240601. doi: 10.3866/PKU.WHXB202406019 shu

Remarkable Photocatalytic H2O2 Production Efficiency over Ultrathin g-C3N4 Nanosheet with Large Surface Area and Enhanced Crystallinity by Two-Step Calcination

  • Corresponding author: Longhui Nie, nielonghui@mail.hbut.edu.cn
  • Received Date: 17 June 2024
    Revised Date: 18 July 2024
    Accepted Date: 18 July 2024
    Available Online: 5 August 2024

    Fund Project: the Natural Science Foundation of China 51572074Open Fund of Key Laboratory of Drug Analysis and Anti-drug Technology of the Ministry of Public Security YNPL-B2021002

  • The generation of hydrogen peroxide (H2O2) from water and oxygen redox reaction by photocatalysis has acquired increasing attention owing to its green and clean properties. Aiming at the low intrinsic photocatalytic activity of carbon nitride (g-C3N4), here, an ultrathin g-C3N4 nanosheet photocatalyst with a large surface area and enhanced crystallinity was fabricated by a two-step thermal polymerization technique. The calcination parameters showed a significant impact on the structural properties and catalytic performance of g-C3N4. The remarkable H2O2 yield (3177.0 µmol·g-1·h-1) of CN-T-1 (by two-step calcination, 1 ℃·min-1 optimal heating rate) was 3.7 times that (858.6 µmol·g-1·h-1) of CN-O-1 (by one-step calcination, 1 ℃·min-1 heating rate) and higher than those of pure g-C3N4 in literature. Most of the H2O2 yield for CN-T-1 remained after five cycles, showing good stability. The enhanced catalytic performance of CN-T-1 than CN-O-1 is owing to its larger specific surface area, enhanced crystallinity, higher oxygen adsorption ability and photogenerated carrier separation efficiency, longer lifetime of carriers, and slightly larger bandgap (3.07 eV, +0.26 eV bigger than CN-O-1) with more positive valence band position owing to ultrathin layers. The •O2- radicals were verified to be the primary active species. A two-step single electron ORR pathway (O2 + e- → •O2- → H2O2) was confirmed for H2O2 production over CN-T-1.
  • 加载中
    1. [1]

      You, Q.; Zhang, C.; Cao, M.; Wang, B.; Huang, J.; Wang, Y.; Deng, S.; Yu, G. Appl. Catal. B 2023, 321, 121941. doi: 10.1016/j.apcatb.2022.121941  doi: 10.1016/j.apcatb.2022.121941

    2. [2]

      Xie, K.; Zhuang, X.; Luo, X.; Jing, Z.; Song, X.; Hou, A.; Gao, A. Green Chem. 2023, 25, 4438. doi: 10.1039/d3gc00963g  doi: 10.1039/d3gc00963g

    3. [3]

      Li, X.; Li, P.; Li, Y.; Liu, H.; Yang, Z.; Chen, Y.; Liao, X. J. Environ. Chem. Eng. 2023, 11, 110594. doi: 10.1016/j.jece.2023.110594  doi: 10.1016/j.jece.2023.110594

    4. [4]

      Yuan, J.; Chen, Q.; Xiao, Y.; Li, D.; Jiang, X.; Wu, P. Appl. Surf. Sci. 2023, 630, 157463. doi: 10.1016/j.apsusc.2023.157463  doi: 10.1016/j.apsusc.2023.157463

    5. [5]

      Du, R.; Xiao, K.; Li, B.; Han, X.; Zhang, C.; Wang, X.; Zuo, Y.; Guardia, P.; Li, J.; Chen, J.; et al. Chem. Eng. J. 2022, 441, 135999doi: 10.1016/j.cej.2022.135999  doi: 10.1016/j.cej.2022.135999

    6. [6]

      Wang, Y.; Yang, Z.; Zhang, C.; Feng, Y.; Shao, H.; Chen, J.; Hu, J.; Zhang, L. Ultrason. Sonochem. 2023, 99, 106582. doi: 10.1016/j.ultsonch.2023.106582  doi: 10.1016/j.ultsonch.2023.106582

    7. [7]

      Ding, Y.; Maitra, S.; Esteban, D.; Bals, S.; Vrielinck, H.; Barakat, T.; Roy, S.; Tendeloo, G.; Liu, J.; Li, Y.; et al. Cell Rep. Phys. Sci. 2022, 3, 100874. doi: 10.1016/j.xcrp.2022.100874  doi: 10.1016/j.xcrp.2022.100874

    8. [8]

      Gan, W; Guo, J.; Fu, X.; Jin, J.; Zhang, M.; Chen, R.; Ding, C.; Lu, Y.; Li, J.; Sun, Z. Sep. Purif. Technol. 2023, 317, 123791. doi: 10.1016/j.seppur.2023.123791  doi: 10.1016/j.seppur.2023.123791

    9. [9]

      Yang, Y.; Liu, J.; Gu, M.; Cheng, B.; Wang, L.; Yu, J. Appl. Catal. B 2023, 333, 122780. doi: 10.1016/j.apcatb.2023.122780  doi: 10.1016/j.apcatb.2023.122780

    10. [10]

      Zhao, Y.; Zhang, S.; Wu, Z.; Zhu, B.; Sun, G.; Zhang, J. Chin. J. Catal. 2024, 60, 219. doi: 10.1016/S1872-2067(23)64645-5  doi: 10.1016/S1872-2067(23)64645-5

    11. [11]

      Han, G.; Xu, F.; Cheng, B.; Li, Y.; Yu, J.; Zhang, L. Acta Phys. -Chim. Sin. 2022, 38, 2112037. doi: 10.3866/PKU.WHXB202112037  doi: 10.3866/PKU.WHXB202112037

    12. [12]

      Yin, X.; Shi, H.; Wang, Y.; Wang, X.; Wang, P.; Yu, H. Acta Phys. -Chim. Sin. 2024, 40, 2312007. doi: 10.3866/PKU.WHXB202312007  doi: 10.3866/PKU.WHXB202312007

    13. [13]

      Zhu, Z.; Bao, L.; Pestov, D.; Xu, P.; Wang, W. Chem. Eng. J. 2023, 453, 139956. doi: 10.1016/j.cej.2022.139956  doi: 10.1016/j.cej.2022.139956

    14. [14]

      Shi, H.; Li, Y.; Wang, X.; Yu, H.; Yu, J. Appl. Catal. B 2021, 297, 120414. doi: 10.1016/j.apcatb.2021.120414  doi: 10.1016/j.apcatb.2021.120414

    15. [15]

      Zhao, Y.; Wang, L.; Malpass-Evans, R.; McKeown, N.; Carta, M.; Lowe, J.; Lyall, C.; Castaing, R.; Fletcher, P.; Kociok-Köhn, G.; et al. ACS Appl. Mater. Interf. 2022, 14, 19938. doi: 10.1021/acsami.1c23960  doi: 10.1021/acsami.1c23960

    16. [16]

      Yin, F.; Qin, P.; Xu, J.; Cao, S. Acta Phys. -Chim. Sin. 2023, 39, 2212062. doi: 10.3866/PKU.WHXB202212062  doi: 10.3866/PKU.WHXB202212062

    17. [17]

      Chu, C.; Miao, W.; Li, Q.; Wang, D.; Liu, Y.; Mao, S. Chem. Eng. J. 2022, 428, 132531. doi: 10.1016/j.cej.2021.132531  doi: 10.1016/j.cej.2021.132531

    18. [18]

      Khamesan, A.; Esfahani, M.; Ghasemi, J.; Farzin, F.; Parsaei-Khomami, A.; Mousavi, M. Adv. Powder Technol. 2022, 33, 103777. doi: 10.1016/j.apt.2022.103777  doi: 10.1016/j.apt.2022.103777

    19. [19]

      Jian, L.; Dong, Y.; Zhao, H.; Pan, C.; Wang, G.; Zhu, Y. Appl. Catal. B 2024, 342, 123340. doi: 10.1016/j.apcatb.2023.123340  doi: 10.1016/j.apcatb.2023.123340

    20. [20]

      Zan, Z.; Li, X.; Gao, X.; Huang, J.; Luo, Y.; Han, L. Acta Phys. -Chim. Sin. 2023, 39, 2209016. doi: 10.3866/PKU.WHXB202209016  doi: 10.3866/PKU.WHXB202209016

    21. [21]

      Deng, J.; Zhu, S.; Zheng, J.; Nie, L. J. Colloid Interface Sci. 2020, 569, 320. doi: 10.1016/j.jcis.2020.02.100  doi: 10.1016/j.jcis.2020.02.100

    22. [22]

      Hu, H.; Hu, Y.; Kong, W.; Tao, Y.; Jiang, Q.; Wang, J.; Li, C.; Xie, H.; Shi, Y.; Li, Y.; et al. J. Environ. Chem. Eng. 2023, 11, 111108. doi: 10.1016/j.jece.2023.111108  doi: 10.1016/j.jece.2023.111108

    23. [23]

      Zhang, H.; Cheng, L.; Hu, M.; Li, M.; Zheng, J.; Xin, S.; Fang, C.; Chen, H.; Yang, Y.; Nie, L. Chin. J. Inorg. Chem. 2023, 39, 2121. doi: 10.11862/CJIC.2023.175  doi: 10.11862/CJIC.2023.175

    24. [24]

      Ding, C.; Lu, X.; Tao, B.; Yang, L.; Xu, X.; Tang, L.; Chi, H.; Yang, Y.; Meira, D.; Wang, L.; et al. Adv. Funct. Mater. 2023, 33, 2302824. doi: 10.1002/adfm.202302824  doi: 10.1002/adfm.202302824

    25. [25]

      Li, H.; Li, F.; Yu, J.; Cao, S. Acta Phys. -Chim. Sin. 2021, 37, 2010073. doi: 10.3866/PKU.WHXB202010073  doi: 10.3866/PKU.WHXB202010073

    26. [26]

      Balakrishnan, A.; Kunnel, E.; Sasidharan, R.; Chinthala, M.; Kumar, A. Chem. Eng. J. 2023, 475, 146163. doi: 10.1016/j.cej.2023.146163  doi: 10.1016/j.cej.2023.146163

    27. [27]

      Gea, T.; Jin, X.; Cao, J.; Chen, Z.; Xu, Y.; Xie, H.; Su, F.; Li, X.; Lan, Q.; Ye, L. J. Taiwan Inst. Chem. Eng. 2021, 129, 104. doi: 10.1016/j.jtice.2021.09.036  doi: 10.1016/j.jtice.2021.09.036

    28. [28]

      Liu, W.; Song, C.; Kou, M.; Wang, Y.; Deng, Y.; Shimada, T.; Ye, L. Chem. Eng. J. 2021, 425, 130615. doi: 10.1016/j.cej.2021.130615  doi: 10.1016/j.cej.2021.130615

    29. [29]

      Zhang, Z.; Zheng, Y.; Xie, H.; Zhao, J.; Guo, X.; Zhang, W.; Fu, Q.; Wang, S.; Xu, Q.; Huang, Y. J. Alloy. Compd. 2022, 904, 164028. doi: 10.1016/j.jallcom.2022.164028  doi: 10.1016/j.jallcom.2022.164028

    30. [30]

      Shi, J.; Luo, Y.; Yang, T.; Wang, H.; Ju, C.; Pu, K.; Shi, J.; Zhao, T.; Xue, J.; Li, Y.; et al. J. Colloid Interface Sci. 2022, 628, 259. doi: 10.1016/j.jcis.2022.07.137  doi: 10.1016/j.jcis.2022.07.137

    31. [31]

      Zhang, Y.; Liang, C.; Feng, H.; Liu, W. Chem. Eng. J. 2022, 446, 137379. doi: 10.1016/j.cej.2022.137379  doi: 10.1016/j.cej.2022.137379

    32. [32]

      Nie, L.; Chen, H.; Wang, J.; Yang, Y.; Fang, C. Inorg. Chem. 2024, 63, 4770. doi: 10.1021/acs.inorgchem.4c00075  doi: 10.1021/acs.inorgchem.4c00075

    33. [33]

      Xia, Y.; Zhu, B.; Qin, X.; Ho, W.; Yu, J. Chem. Eng. J. 2023, 467, 143528. doi: 10.1016/j.cej.2023.143528  doi: 10.1016/j.cej.2023.143528

    34. [34]

      Zheng, J.; Xu, Z.; Xin, S.; Zhu, B.; Nie, L. Dalton Trans. 2022, 51, 12883. doi: 10.1039/d2dt01748b  doi: 10.1039/d2dt01748b

    35. [35]

      Zheng, J.; Xu, Z.; Xin, S.; Nie, L. Mat. Lett. 2022, 325, 132912. doi: 10.1016/j.matlet.2022.132912  doi: 10.1016/j.matlet.2022.132912

    36. [36]

      Cong, Y.; Zhang, S.; Zheng, Q.; Li, X.; Zhang, Y.; Lv, S. J. Colloid Interface Sci. 2023, 650, 1013. doi: 10.1016/j.jcis.2023.07.075  doi: 10.1016/j.jcis.2023.07.075

    37. [37]

      Liu, B.; Bie, C.; Zhang, Y.; Wang, L.; Li, Y.; Yu, J. Langmuir 2021, 37, 14114. doi: 10.1021/acs.langmuir.1c02360  doi: 10.1021/acs.langmuir.1c02360

    38. [38]

      Yuan, J.; Tian, N.; Zhu, Z.; Yu, W.; Li, M.; Zhang, Y.; Huang, H. Chem. Eng. J. 2023, 467, 143379. doi: 10.1016/j.cej.2023.143379  doi: 10.1016/j.cej.2023.143379

    39. [39]

      Luo, H.; Shan, T.; Zhou, J.; Huang, L.; Chen, L.; Sa, R.; Yamauchi, Y.; You, J.; Asakura, Y.; Yuan, Z.; et al. Appl. Catal. B 2023, 337, 122933. doi: 10.1016/j.apcatb.2023.122933  doi: 10.1016/j.apcatb.2023.122933

    40. [40]

      Chen, J.; Yan, Z.; Chen, Y.; Yao, K.; Xu, Z. Appl. Surf. Sci. 2023, 634, 157637. doi: 10.1016/j.apsusc.2023.157637  doi: 10.1016/j.apsusc.2023.157637

    41. [41]

      Wang, W.; Zhang, W.; Cai, Y.; Wang, Q.; Deng, J.; Chen, J.; Jiang, Z.; Zhang, Y.; Yu, C. Nano Res. 2023, 16, 2177. doi: 10.1007/s12274-022-4976-0  doi: 10.1007/s12274-022-4976-0

    42. [42]

      Xie, H.; Zheng, Y.; Guo, X.; Liu, Y.; Zhang, Z.; Zhao, J.; Zhang, W.; Wang, Y.; Huang, Y. ACS Sustain. Chem. Eng. 2021, 9, 6788. doi: 10.1021/acssuschemeng.1c01012  doi: 10.1021/acssuschemeng.1c01012

    43. [43]

      Li, T.; Zhang, X.; Hu, C.; Li, X.; Zhang, P.; Chen, Z. J. Environ. Chem. Eng. 2022, 10, 107116. doi: 10.1016/j.jece.2021.107116  doi: 10.1016/j.jece.2021.107116

    44. [44]

      Wang, T.; Chang, L.; Wu, H.; Yang, W.; Cao, J.; Fan, H.; Wang, J.; Liu, H.; Hou, Y.; Jiang, Y.; et al. J. Colloid Interface Sci. 2022, 612, 434. doi: 10.1016/j.jcis.2021.12.120  doi: 10.1016/j.jcis.2021.12.120

    45. [45]

      Wang, K.; Shu, Z.; Zhou, J.; Zhao, Z.; Wen, Y.; Sun, S. J. Colloid Interface Sci. 2023, 648, 242. doi: 10.1016/j.jcis.2023.05.204  doi: 10.1016/j.jcis.2023.05.204

    46. [46]

      Zheng, J.; Li, L.; Dai, Z.; Tian, Y.; Fang, T.; Xin, S.; Zhu, B.; Liu, Z.; Nie, L. Appl. Surf. Sci. 2022, 571, 151305. doi: 10.1016/j.apsusc.2021.151305  doi: 10.1016/j.apsusc.2021.151305

    47. [47]

      Hu, Q.; Dong, Y.; Ma, K.; Meng, X.; Ding, Y. J. Catal. 2022, 413, 321. doi: 10.1016/j.jcat.2022.06.042  doi: 10.1016/j.jcat.2022.06.042

    48. [48]

      Zhou, C.; Song, Y.; Wang, Z.; Liu, J.; Sun, P.; Mo, Z.; Yi, J.; Zhai, L. J. Environ. Chem. Eng. 2023, 11, 110138. doi: 10.1016/j.jece.2023.110138  doi: 10.1016/j.jece.2023.110138

    49. [49]

      Tan, L.; Chen, Y.; Li, D.; Wang, S.; Ao, Z. Nanomaterials 2022, 12, 3089. doi: 10.3390/nano12183089  doi: 10.3390/nano12183089

    50. [50]

      Chu, Y.; Zheng, X.; Fan, J. Chem. Eng. J. 2022, 431, 134020. doi: 10.1016/j.cej.2021.134020  doi: 10.1016/j.cej.2021.134020

    51. [51]

      Tang, R.; Zhou, Y.; Xiong, S.; Deng, Y.; Li, L.; Zhou, Z.; Zeng, H.; Wang, J.; Zhao, J.; Gong, D. J. Colloid Interface Sci. 2023, 630, 127. doi: 10.1016/j.jcis.2022.09.131  doi: 10.1016/j.jcis.2022.09.131

    52. [52]

      Zhang, H.; Bai, X. J. Colloid Interface Sci. 2022, 627, 541. doi: 10.1016/j.jcis.2022.07.077  doi: 10.1016/j.jcis.2022.07.077

    53. [53]

      Li, D.; Wen, C.; Huang, J.; Zhong, J.; Chen, P.; Liu, H.; Wang, Z.; Liu, Y.; Lv, W.; Liu, G. Appl. Catal. B 2022, 307, 121099. doi: 10.1016/j.apcatb.2022.121099  doi: 10.1016/j.apcatb.2022.121099

    54. [54]

      Zhang, P.; Zhang, J.; Wang, D.; Zhang, F.; Zhao, Y.; Yan, M.; Zheng, C.; Wang, Q.; Long, M.; Chen, C. Appl. Catal. B 2022, 318, 121749. doi: 10.1016/j.apcatb.2022.121749  doi: 10.1016/j.apcatb.2022.121749

    55. [55]

      Salehian, S.; Heydari, H.; Khansanami, M.; Vatanpour, V.; Mousavi, S. Sep. Purif. Technol. 2022, 285, 120291. doi: 10.1016/j.seppur.2021.120291  doi: 10.1016/j.seppur.2021.120291

    56. [56]

      Shan, Y.; Guo, Y.; Wang, Y.; Du, X.; Yu, J.; Luo, H.; Wu, H.; Boury, B.; Xiao, H.; Huang, L.; et al. J. Colloid Interface Sci. 2021, 599, 507. doi: 10.1016/j.jcis.2021.04.111  doi: 10.1016/j.jcis.2021.04.111

    57. [57]

      Chen, J.; Gao, W.; Lu, Y.; Ye, F.; Huang, S.; Peng, Y.; Yang, X.; Cai, Y.; Qu, J.; Hu, J. ACS Appl. Nano Mater. 2023, 6, 3927. doi: 10.1021/acsanm.3c00092  doi: 10.1021/acsanm.3c00092

    58. [58]

      Deng, L.; Sun, J.; Sun, J.; Wang, X.; Shen, T.; Zhao, R.; Zhang, Y.; Wang, B. Appl. Surf. Sci. 2022, 597, 153586. doi: 10.1016/j.apsusc.2022.153586  doi: 10.1016/j.apsusc.2022.153586

    59. [59]

      Chen, A.; Li, C.; Liu, C.; Sun, W. Appl. Surf. Sci. 2023, 628, 157359. doi: 10.1016/j.apsusc.2023.157359  doi: 10.1016/j.apsusc.2023.157359

    60. [60]

      Hu, S.; Qu, X.; Li, P.; Wang, F.; Li, Q.; Song, L.; Zhao, Y.; Kang, X. Chem. Eng. J. 2018, 334, 410. doi: 10.1016/j.cej.2017.10.016  doi: 10.1016/j.cej.2017.10.016

    61. [61]

      Lu, N.; Liu, N.; Hui, Y.; Shang, K.; Jiang, N.; Li, J.; Wu, Y. Chemosphere 2020, 241, 124927. doi: 10.1016/j.chemosphere.2019.124927  doi: 10.1016/j.chemosphere.2019.124927

    62. [62]

      Liu, W.; Xu, R.; Wang, Y.; Huang, N.; Shimada, T.; Ye, L. Int. J. Hydrog. Energy 2022, 47, 16005. doi: 10.1016/j.ijhydene.2022.03.106  doi: 10.1016/j.ijhydene.2022.03.106

    63. [63]

      Hu, J.; Chen, C.; Yang, H.; Yang, F.; Qu, J.; Yang, X.; Sun, W.; Dai, L.; Li, C. Appl. Catal. B 2022, 317, 121723. doi: 10.1016/j.apcatb.2022.121723  doi: 10.1016/j.apcatb.2022.121723

    64. [64]

      Chen, F.; Wang, H.; Hu, H.; Gan, J.; Su, M.; Xu, H.; Wei, C. Colloids Surf. A 2021, 631, 127710. doi: 10.1016/j.colsurfa.2021.127710  doi: 10.1016/j.colsurfa.2021.127710

    65. [65]

      Niu, P.; Zhang, L.; Liu, G.; Cheng, H. Adv. Funct. Mater. 2012, 22, 4763. doi: 10.1016/j.apsusc.2018.06.134  doi: 10.1016/j.apsusc.2018.06.134

    66. [66]

      Chen, B.; Xu, J.; Dai, G.; Sun, X.; Situ, Y.; Huang, H. Sep. Purif. Technol. 2022, 299, 121688. doi: 10.1016/j.seppur.2022.121688  doi: 10.1016/j.seppur.2022.121688

    67. [67]

      Xue, Y.; Ma, C.; Yang, Q.; Wang, X.; An, S.; Zhang, X.; Tian, J. Chem. Eng. J. 2023, 457, 141146. doi: 10.1016/j.cej.2022.141146  doi: 10.1016/j.cej.2022.141146

    68. [68]

      Lu, K.; Wei, Q.; Bao, X.; Xiao, Z.; Cheng, X.; Liu, X.; Wang, Z.; Li, H.; Huang, B. Appl. Surf. Sci. 2023, 609, 155242. doi: 10.1016/j.apsusc.2022.155242  doi: 10.1016/j.apsusc.2022.155242

    69. [69]

      Feng, S.; Zhang, Y.; Xu, H.; Gong, X.; Hua, J. J. Alloy. Compd. 2023, 938, 168500. doi: 10.1016/j.jallcom.2022.168500  doi: 10.1016/j.jallcom.2022.168500

    70. [70]

      Ni, L.; Xiao, Y.; Zhou, X.; Jiang, Y.; Liu, Y.; Zhang, W.; Zhang, J.; Liu, Z. Inorg. Chem. 2022, 61, 19552. doi: 10.1021/acs.inorgchem.2c03491  doi: 10.1021/acs.inorgchem.2c03491

    71. [71]

      Meng, Z.; Zhang, J.; Jiang, C.; Trapalis, C.; Zhang, L.; Yu, J. Small 2023, 20, 2308952. doi: 10.1002/smll.202308952  doi: 10.1002/smll.202308952

    72. [72]

      Qiu, J.; Meng, K.; Zhang, Y.; Cheng, B.; Zhang, J.; Wang, L.; Yu, J. Adv. Mater. 2024, 36, 2400288. doi: 10.1002/adma.202400288  doi: 10.1002/adma.202400288

    73. [73]

      Cheng, C.; Yu, J.; Xu, D.; Wang, L.; Liang, G.; Zhang, L.; Jaroniec, M. Nat. Commun. 2024, 15, 1313. doi: 10.1038/s41467-024-45604-5  doi: 10.1038/s41467-024-45604-5

    74. [74]

      Zhang, X.; Gao, D.; Zhu, B.; Cheng, B.; Yu, J.; Yu, H. Nat. Commun. 2024, 15, 3212. doi: 10.1038/s41467-024-47624-7  doi: 10.1038/s41467-024-47624-7

    75. [75]

      Yang, Y.; Zeng, G.; Huang, D.; Zhang, C.; He, D.; Zhou, C.; Wang, W.; Xiong, W.; Li, X.; Li, B.; et al. Appl. Catal. B 2020, 272, 118970. doi: 10.1016/j.apcatb.2020.118970  doi: 10.1016/j.apcatb.2020.118970

  • 加载中
    1. [1]

      Guoqiang ChenZixuan ZhengWei ZhongGuohong WangXinhe Wu . Molten Intermediate Transportation-Oriented Synthesis of Amino-Rich g-C3N4 Nanosheets for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-0. doi: 10.3866/PKU.WHXB202406021

    2. [2]

      Xuejiao WangSuiying DongKezhen QiVadim PopkovXianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-0. doi: 10.3866/PKU.WHXB202408005

    3. [3]

      Tong ZhouXue LiuLiang ZhaoMingtao QiaoWanying Lei . Efficient Photocatalytic H2O2 Production and Cr(Ⅵ) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-0. doi: 10.3866/PKU.WHXB202309020

    4. [4]

      Xinyu YinHaiyang ShiYu WangXuefei WangPing WangHuogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-0. doi: 10.3866/PKU.WHXB202312007

    5. [5]

      Yang XiaKangyan ZhangHeng YangLijuan ShiQun Yi . Improving Photocatalytic H2O2 Production over iCOF/Bi2O3 S-Scheme Heterojunction in Pure Water via Dual Channel Pathways. Acta Physico-Chimica Sinica, 2024, 40(11): 2407012-0. doi: 10.3866/PKU.WHXB202407012

    6. [6]

      Jianyin HeLiuyun ChenXinling XieZuzeng QinHongbing JiTongming Su . Construction of ZnCoP/CdLa2S4 Schottky Heterojunctions for Enhancing Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-0. doi: 10.3866/PKU.WHXB202404030

    7. [7]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    8. [8]

      Yadan LuoHao ZhengXin LiFengmin LiHua TangXilin She . Modulating reactive oxygen species in O, S co-doped C3N4 to enhance photocatalytic degradation of microplastics. Acta Physico-Chimica Sinica, 2025, 41(6): 100052-0. doi: 10.1016/j.actphy.2025.100052

    9. [9]

      Jiawei HuKai XiaAo YangZhihao ZhangWen XiaoChao LiuQinfang Zhang . Interfacial Engineering of Ultrathin 2D/2D NiPS3/C3N5 Heterojunctions for Boosting Photocatalytic H2 Evolution. Acta Physico-Chimica Sinica, 2024, 40(5): 2305043-0. doi: 10.3866/PKU.WHXB202305043

    10. [10]

      Linfeng XiaoWanlu RenShishi ShenMengshan ChenRunhua LiaoYingtang ZhouXibao Li . Enhancing Photocatalytic Hydrogen Evolution through Electronic Structure and Wettability Adjustment of ZnIn2S4/Bi2O3 S-Scheme Heterojunction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308036-0. doi: 10.3866/PKU.WHXB202308036

    11. [11]

      Qin LiHuihui ZhangHuajun GuYuanyuan CuiRuihua GaoWei-Lin DaiIn situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2025, 41(4): 2402016-0. doi: 10.3866/PKU.WHXB202402016

    12. [12]

      Jingzhuo TianChaohong GuanHaobin HuEnzhou LiuDongyuan Yang . Waste plastics promoted photocatalytic H2 evolution over S-scheme NiCr2O4/twinned-Cd0.5Zn0.5S homo-heterojunction. Acta Physico-Chimica Sinica, 2025, 41(6): 100068-0. doi: 10.1016/j.actphy.2025.100068

    13. [13]

      Chenye AnSikandaier AbiduweiliXue GuoYukun ZhuHua TangDongjiang Yang . Hierarchical S-scheme Heterojunction of Red Phosphorus Nanoparticles Embedded Flower-like CeO2 Triggering Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-0. doi: 10.3866/PKU.WHXB202405019

    14. [14]

      Xin Zhou Zhi Zhang Yun Yang Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008

    15. [15]

      Haitao WangLianglang YuJizhou JiangArramelJing Zou . S-Doping of the N-Sites of g-C3N4 to Enhance Photocatalytic H2 Evolution Activity. Acta Physico-Chimica Sinica, 2024, 40(5): 2305047-0. doi: 10.3866/PKU.WHXB202305047

    16. [16]

      Yingqi BAIHua ZHAOHuipeng LIXinran RENJun LI . Perovskite LaCoO3/g-C3N4 heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 480-490. doi: 10.11862/CJIC.20240259

    17. [17]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    18. [18]

      Hui WangAbdelkader LabidiMenghan RenFeroz ShaikChuanyi Wang . Recent Progress of Microstructure-Regulated g-C3N4 in Photocatalytic NO Conversion: The Pivotal Roles of Adsorption/Activation Sites. Acta Physico-Chimica Sinica, 2025, 41(5): 100039-0. doi: 10.1016/j.actphy.2024.100039

    19. [19]

      Yu WangHaiyang ShiZihan ChenFeng ChenPing WangXuefei Wang . 具有富电子Ptδ壳层的空心AgPt@Pt核壳催化剂:提升光催化H2O2生成选择性与活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100081-0. doi: 10.1016/j.actphy.2025.100081

    20. [20]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

Metrics
  • PDF Downloads(2)
  • Abstract views(430)
  • HTML views(69)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return