Citation: Yuyao Wang, Zhitao Cao, Zeyu Du, Xinxin Cao, Shuquan Liang. Research Progress of Iron-based Polyanionic Cathode Materials for Sodium-Ion Batteries[J]. Acta Physico-Chimica Sinica, ;2025, 41(4): 240601. doi: 10.3866/PKU.WHXB202406014 shu

Research Progress of Iron-based Polyanionic Cathode Materials for Sodium-Ion Batteries

  • Corresponding author: Xinxin Cao, caoxinxin@csu.edu.cn Shuquan Liang, lsq@csu.edu.cn
  • These authors contributed equally to this work.
  • Received Date: 13 June 2024
    Revised Date: 9 July 2024
    Accepted Date: 9 July 2024

    Fund Project: the National Natural Science Foundation of China 51932011the Natural Science Foundation of Hunan Province 2023JJ10060the Science and Technology Innovation Program of Hunan Province 2022RC1078

  • Sodium ion batteries, due to their abundant resources, low raw material costs, excellent performance in low-temperature conditions, and fast charging capabilities, offer promising prospects for power grid energy storage and low-speed transportation. They serve as a complementary alternative to lithium-ion batteries. The cathode material is crucial for overall battery performance, acting as a bottleneck for enhancing the specific energy of sodium-ion batteries and a significant factor influencing costs. Low-cost iron-based polyanionic cathode materials have garnered attention in basic research and industrialization due to their inherent advantages: excellent structural stability, high safety levels, and minimal volume strain during charge-discharge cycles. These advantages are pivotal for practical implementations in electric vehicles, large-scale energy storage systems, portable electronics, and related applications. However, challenges such as capacity decay and structural stability during prolonged cycling may limit their industrial applicability. Therefore, enhancing material cycling life and battery system stability are critical concerns. Additionally, researchers are focused on discovering new iron-based polyanion cathode materials with high specific capacity, operating voltage, and conductivity. This review comprehensively covers recent advancements in iron-based polyanionic cathode materials for sodium-ion batteries, encompassing iron-based phosphates, fluorophosphates, pyrophosphates, sulfates, and mixed polyanionic compounds. The analysis systematically explores crystal structures, preparation methods, sodium storage mechanisms, and modification strategies for various iron-based polyanionic materials, elucidating the structure-activity relationship between chemical composition, structural regulation techniques, and performance enhancement. Moreover, the article discusses challenges encountered during the transition from laboratory-scale research to large-scale industrial applications of iron-based polyanion cathode materials, along with corresponding solutions. These insights aim to offer theoretical and technical guidance for developing novel, low-cost cathode materials with high specific energy densities and advancing the industrialization of sodium-ion batteries.
  • 加载中
    1. [1]

      Chen, X.; Ruan, P.; Wu, X.; Liang, S.; Zhou, J. Acta Phys. -Chim. Sin. 2021, 38, 2111003.  doi: 10.3866/PKU.WHXB202111003

    2. [2]

      Liang, S. C. Y.; Fang, G.; Cao, X.; Shen, W.; Zhong, J.; Pan, A; Zhou, J. Chin. J. Nonferrous Met 2019, 29, 2064.

    3. [3]

      Song, Z.; Liu, R.; Liu, W. -D.; Chen, Y.; Hu, W. Adv. Energ. Sust. Res. 2023, 4, 2300102. doi: 10.1002/aesr.202300102  doi: 10.1002/aesr.202300102

    4. [4]

      Cao, X. X.; Zhou, J.; Pan, A. Q.; Liang, S. Q. Acta Phys. -Chim. Sin. 2020, 36, 1905018.  doi: 10.3866/PKU.WHXB201905018

    5. [5]

      Li, H.; Xu, M.; Zhang, Z.; Lai, Y.; Ma, J. Adv. Funct. Mater. 2020, 30, 2000473. doi: 10.1002/adfm.202000473  doi: 10.1002/adfm.202000473

    6. [6]

      Oh, S. -M.; Myung, S. -T.; Hassoun, J.; Scrosati, B.; Sun, Y. -K. Electrochem. Commun. 2012, 22, 149. doi: 10.1016/j.elecom.2012.06.014  doi: 10.1016/j.elecom.2012.06.014

    7. [7]

      Zhu, L.; Li, L.; Wen, J.; Zeng, Y. -R. J. Power Sources 2019, 438, 227016. doi: 10.1016/j.jpowsour.2019.227016  doi: 10.1016/j.jpowsour.2019.227016

    8. [8]

      Kim, J.; Seo, D. -H.; Kim, H.; Park, I.; Yoo, J. -K.; Jung, S. -K.; Park, Y. -U.; Goddard Iii, W. A.; Kang, K. Energy Environ. Sci. 2015, 8, 540. doi: 10.1039/c4ee03215b  doi: 10.1039/c4ee03215b

    9. [9]

      Savithiri, G.; Priyanka, V.; Subadevi, R.; Sivakumar, M. J. Nanopart. Res. 2020, 22, 29. doi: 10.1007/s11051-019-4733-9  doi: 10.1007/s11051-019-4733-9

    10. [10]

      Jian, Z.; Zhao, L.; Pan, H.; Hu, Y. -S.; Li, H.; Chen, W.; Chen, L. Electrochem. Commun. 2012, 14, 86. doi: 10.1016/j.elecom.2011.11.009  doi: 10.1016/j.elecom.2011.11.009

    11. [11]

      Ben Yahia, H.; Essehli, R.; Amin, R.; Boulahya, K.; Okumura, T.; Belharouak, I. J. Power Sources 2018, 382, 144. doi: 10.1016/j.jpowsour.2018.02.021  doi: 10.1016/j.jpowsour.2018.02.021

    12. [12]

      Masquelier, C, W. C.; Rodríguez-Carvajal, J.; Gaubicher, J.; Nazar, L. Chem. Mater. 2000, 12, 525. doi: 10.1021/cm991138n  doi: 10.1021/cm991138n

    13. [13]

      Chen, M.; Hua, W.; Xiao, J.; Cortie, D.; Chen, W.; Wang, E.; Hu, Z.; Gu, Q.; Wang, X.; Indris, S.; et al. Nat. Commun. 2019, 10, 1480. doi: 10.1038/s41467-019-09170-5  doi: 10.1038/s41467-019-09170-5

    14. [14]

      Zhou, W.; Xue, L.; Lu, X.; Gao, H.; Li, Y.; Xin, S.; Fu, G.; Cui, Z.; Zhu, Y.; Goodenough, J. B. Nano Lett. 2016, 16, 7836. doi: 10.1021/acs.nanolett.6b04044  doi: 10.1021/acs.nanolett.6b04044

    15. [15]

      Li, H.; Wang, T.; Wang, S.; Wang, X.; Xie, Y.; Hu, J.; Lai, Y.; Zhang, Z. ACS Sustain. Chem. Eng. 2021, 9, 11798. doi: 10.1021/acssuschemeng.1c03355  doi: 10.1021/acssuschemeng.1c03355

    16. [16]

      Barpanda, P.; Oyama, G.; Nishimura, S.; Chung, S. C.; Yamada, A. Nat. Commun. 2014, 5, 4358. doi: 10.1038/ncomms5358  doi: 10.1038/ncomms5358

    17. [17]

      Zheng, M. Y.; Bai, Z. Y.; He, Y. W.; Wu, S.; Yang, Y.; Zhu, Z. Z. ACS Omega 2020, 5, 5192. doi: 10.1021/acsomega.9b04213  doi: 10.1021/acsomega.9b04213

    18. [18]

      Huang, J.; Zhu, Y.; Feng, Y.; Han, Y.; Gu, Z.; Liu, R.; Yang, D.; Chen, K.; Zhang, X.; Sun, W.; et al. Acta Phys. -Chim. Sin. 2022, 38, 2208008.  doi: 10.3866/PKU.WHXB202208008

    19. [19]

      Senthilkumar, B.; Murugesan, C.; Sharma, L.; Lochab, S.; Barpanda, P. Small Methods 2018, 3, 1800253. doi: 10.1002/smtd.201800253  doi: 10.1002/smtd.201800253

    20. [20]

      Hu, Z. L.; Niu, Y. S.; Rong, X. H.; Hu, Y. S. Acta Phys. -Chim. Sin. 2023, 40, 2306005.  doi: 10.3866/PKU.WHXB202306005

    21. [21]

      Avdeev, M.; Mohamed, Z.; Ling, C. D.; Lu, J.; Tamaru, M.; Yamada, A.; Barpanda, P. Inorg. Chem. 2013, 52, 8685. doi: 10.1021/ic400870x  doi: 10.1021/ic400870x

    22. [22]

      Saurel, D.; Galceran, M.; Reynaud, M.; Anne, H.; Casas-Cabanas, M. Int. J. Energy Res. 2018, 42, 3258. doi: 10.1002/er.4078  doi: 10.1002/er.4078

    23. [23]

      Wazeer, W.; Nabil, M. M.; Feteha, M.; Soliman, M. B.; Kashyout, A. E. B. Sci. Rep. 2022, 12, 16307. doi: 10.1038/s41598-022-20329-x  doi: 10.1038/s41598-022-20329-x

    24. [24]

      Zhu, Y.; Xu, Y.; Liu, Y.; Luo, C.; Wang, C. Nanoscale 2013, 5, 780. doi: 10.1039/c2nr32758a  doi: 10.1039/c2nr32758a

    25. [25]

      Tang, W.; Song, X.; Du, Y.; Peng, C.; Lin, M.; Xi, S.; Tian, B.; Zheng, J.; Wu, Y.; Pan, F.; et al. J. Mater. Chem. A 2016, 4, 4882. doi: 10.1039/c6ta01111j  doi: 10.1039/c6ta01111j

    26. [26]

      Ma, X.; Pan, Z.; Wu, X.; Shen, P. K. Chem. Eng. J. 2019, 365, 132. doi: 10.1016/j.cej.2019.01.173  doi: 10.1016/j.cej.2019.01.173

    27. [27]

      Liu, Y.; Zhang, N.; Wang, F.; Liu, X.; Jiao, L.; Fan, L. Z. Adv. Funct. Mater. 2018, 28, 1801917. doi: 10.1002/adfm.201801917  doi: 10.1002/adfm.201801917

    28. [28]

      Liu-Théato, X.; Indris, S.; Hua, W.; Li, H.; Knapp, M.; Melinte, G.; Ehrenberg, H. Energy & Fuels 2021, 35, 18768. doi: 10.1021/acs.energyfuels.1c02779  doi: 10.1021/acs.energyfuels.1c02779

    29. [29]

      Ali, G.; Lee, J. H.; Susanto, D.; Choi, S. W.; Cho, B. W.; Nam, K. W.; Chung, K. Y. ACS Appl. Mater. Interfaces 2016, 8, 15422. doi: 10.1021/acsami.6b04014  doi: 10.1021/acsami.6b04014

    30. [30]

      Wongittharom, N.; Wang, C. H.; Wang, Y. C.; Yang, C. H.; Chang, J. K. ACS Appl. Mater. Interfaces 2014, 6, 17564. doi: 10.1021/am5033605  doi: 10.1021/am5033605

    31. [31]

      Govindaraj, L. V. a. G. NASICON Materials: Structure and Electrical Properties, Polycrystalline Materials-Theoretical and Practical Aspects: Shanghai, 2012; 4, 78–106.

    32. [32]

      Cao, Y.; Liu, Y.; Zhao, D.; Xia, X.; Zhang, L.; Zhang, J.; Yang, H.; Xia, Y. ACS Sustain. Chem. Eng. 2019, 8, 1380. doi: 10.1021/acssuschemeng.9b05098  doi: 10.1021/acssuschemeng.9b05098

    33. [33]

      Feng, Z.; Ma, Q.; Lu, J.; Feng, H.; Elam, J. W.; Stair, P. C.; Bedzyk, M. J. RSC Advances 2015, 5, 103834. doi: 10.1039/c5ra18404e  doi: 10.1039/c5ra18404e

    34. [34]

      Zhou, Y.; Xu, G.; Lin, J.; Zhang, Y.; Fang, G.; Zhou, J.; Cao, X.; Liang, S. Adv. Mater. 2023, 35, e2304428. doi: 10.1002/adma.202304428  doi: 10.1002/adma.202304428

    35. [35]

      Qiu, S.; Wu, X.; Wang, M.; Lucero, M.; Wang, Y.; Wang, J.; Yang, Z.; Xu, W.; Wang, Q.; Gu, M.; et al. Nano Energy 2019, 64, 103941. doi: 10.1016/j.nanoen.2019.103941  doi: 10.1016/j.nanoen.2019.103941

    36. [36]

      Liu, Y.; Zhou, Y.; Zhang, J.; Xia, Y.; Chen, T.; Zhang, S. ACS Sustain. Chem. Eng. 2016, 5, 1306. doi: 10.1021/acssuschemeng.6b01536  doi: 10.1021/acssuschemeng.6b01536

    37. [37]

      Kuganathan, N.; Chroneos, A. Materials 2019, 12, 1348. doi: 10.3390/ma12081348  doi: 10.3390/ma12081348

    38. [38]

      Cao, Y.; Liu, Y.; Zhao, D.; Zhang, J.; Xia, X.; Chen, T.; Zhang, L. -C.; Qin, P.; Xia, Y. J. Alloy. Compd. 2019, 784, 939. doi: 10.1016/j.jallcom.2019.01.125  doi: 10.1016/j.jallcom.2019.01.125

    39. [39]

      Wang, S.; Gao, N.; Wang, G.; He, C.; Lv, S.; Qiu, J. Desalination 2021, 520, 115341. doi: 10.1016/j.desal.2021.115341  doi: 10.1016/j.desal.2021.115341

    40. [40]

      Sharma, L.; Nakamoto, K.; Sakamoto, R.; Okada, S.; Barpanda, P. Chem. Electro. Chem. 2018, 6, 444. doi: 10.1002/celc.201801314  doi: 10.1002/celc.201801314

    41. [41]

      Zhou, H.; Hu, X.; Ren, W.; Cao, X. Inorg. Chem. Indus. 2024, 56, 30.  doi: 10.19964/j.issn.1006-4990.2023-0239

    42. [42]

      Ellis, B. L.; Makahnouk, W. R. M.; Rowan-Weetaluktuk, W. N.; Ryan, D. H.; Nazar, L. F. Chem. Mater. 2009, 22, 1059. doi: 10.1021/cm902023h  doi: 10.1021/cm902023h

    43. [43]

      Kirsanova, M. A.; Akmaev, A. S.; Aksyonov, D. A.; Ryazantsev, S. V.; Nikitina, V. A.; Filimonov, D. S.; Avdeev, M.; Abakumov, A. M. Inorg. Chem. 2020, 59, 16225. doi: 10.1021/acs.inorgchem.0c01961  doi: 10.1021/acs.inorgchem.0c01961

    44. [44]

      Li, Q.; Liu, Z.; Zheng, F.; Liu, R.; Lee, J.; Xu, G. L.; Zhong, G.; Hou, X.; Fu, R.; Chen, Z.; et al. Angew. Chem. Int. Ed. 2018, 57, 11918. doi: 10.1002/anie.201805555  doi: 10.1002/anie.201805555

    45. [45]

      Ko, J. S.; Doan-Nguyen, Vicky V. T.; Kim, H. -S.; Petrissans, X.; DeBlock, R. H.; Choi, C. S.; Long, J. W.; Dunn, B. S. J. Mater. Chem. A 2017, 5, 18707. doi: 10.1039/c7ta05680j  doi: 10.1039/c7ta05680j

    46. [46]

      Song, W.; Ji, X.; Wu, Z.; Zhu, Y.; Yao, Y.; Huangfu, K.; Chen, Q.; Banks, C. E. J. Mater. Chem. A 2014, 2, 2571. doi: 10.1039/c3ta14472k  doi: 10.1039/c3ta14472k

    47. [47]

      Huang, H.; Xia, Y.; Hao, Y.; Li, H.; Wang, C.; Shi, T.; Lu, X.; Shahzad, M. W.; Xu, B. B.; Jiang, Y. Adv. Funct. Mater. 2023, 33, 2305109. doi: 10.1002/adfm.202305109  doi: 10.1002/adfm.202305109

    48. [48]

      Cui, D.; Chen, S.; Han, C.; Ai, C.; Yuan, L. J. Power Sources 2016, 301, 87. doi: 10.1016/j.jpowsour.2015.09.123  doi: 10.1016/j.jpowsour.2015.09.123

    49. [49]

      Deng, X.; Shi, W.; Sunarso, J.; Liu, M.; Shao, Z. ACS Appl. Mater. Interfaces 2017, 9, 16280. doi: 10.1021/acsami.7b03933  doi: 10.1021/acsami.7b03933

    50. [50]

      Sharma, L.; Bhatia, A.; Assaud, L.; Franger, S.; Barpanda, P. Ionics 2017, 24, 2187. doi: 10.1007/s11581-017-2376-3  doi: 10.1007/s11581-017-2376-3

    51. [51]

      Zhou, J.; Zhou, J.; Tang, Y.; Bi, Y.; Wang, C.; Wang, D.; Shi, S. Ceram. Int. 2013, 39, 5379. doi: 10.1016/j.ceramint.2012.12.044  doi: 10.1016/j.ceramint.2012.12.044

    52. [52]

      Xun, J.; Zhang, Y.; Zhang, B.; Xu, H.; Xu, L. ACS Appl. Energy Mater. 2020, 3, 6232. doi: 10.1021/acsaem.0c00323  doi: 10.1021/acsaem.0c00323

    53. [53]

      Wang, F.; Zhang, N.; Zhao, X.; Wang, L.; Zhang, J.; Wang, T.; Liu, F.; Liu, Y.; Fan, L. Z. Adv. Sci. 2019, 6, 1900649. doi: 10.1002/advs.201900649  doi: 10.1002/advs.201900649

    54. [54]

      Hu, H.; Bai, Y.; Miao, C.; Luo, Z.; Wang, X. J. Electroanal. Chem. 2020, 867, 114187. doi: 10.1016/j.jelechem.2020.114187  doi: 10.1016/j.jelechem.2020.114187

    55. [55]

      Ling, R.; Cai, S.; Xie, D.; Shen, W.; Hu, X.; Li, Y.; Hua, S.; Jiang, Y.; Sun, X. J. Mater. Sci. 2017, 53, 2735. doi: 10.1007/s10853-017-1738-6  doi: 10.1007/s10853-017-1738-6

    56. [56]

      Hua, S.; Cai, S.; Ling, R.; Li, Y.; Jiang, Y.; Xie, D.; Jiang, S.; Lin, Y.; Shen, K. Inorg. Chem. Commun. 2018, 95, 90. doi: 10.1016/j.inoche.2018.07.011  doi: 10.1016/j.inoche.2018.07.011

    57. [57]

      Ko, W.; Yoo, J. -K.; Park, H.; Lee, Y.; Kim, H.; Oh, Y.; Myung, S. -T.; Kim, J. J. Power Sources 2019, 432, 1. doi: 10.1016/j.jpowsour.2019.05.066  doi: 10.1016/j.jpowsour.2019.05.066

    58. [58]

      Hu, H.; Wang, Y.; Huang, Y.; Shu, H. -b.; Wang, X. -y. J. Cent. South Univ. 2019, 26, 1521. doi: 10.1007/s11771-019-4108-5  doi: 10.1007/s11771-019-4108-5

    59. [59]

      Dong, J.; Xiao, J.; Yu, Y.; Wang, J.; Chen, F.; Wang, S.; Zhang, L.; Ren, N.; Pan, B.; Chen, C. Energy Storage Mater. 2022, 45, 851. doi: 10.1016/j.ensm.2021.12.034  doi: 10.1016/j.ensm.2021.12.034

    60. [60]

      Yan, J.; Liu, X.; Li, B. Electrochem. Commun. 2015, 56, 46. doi: 10.1016/j.elecom.2015.04.009  doi: 10.1016/j.elecom.2015.04.009

    61. [61]

      Chen, C. -Y.; Matsumoto, K.; Nohira, T.; Hagiwara, R.; Orikasa, Y.; Uchimoto, Y. J. Power Sources 2014, 246, 783. doi: 10.1016/j.jpowsour.2013.08.027  doi: 10.1016/j.jpowsour.2013.08.027

    62. [62]

      Clark, J. M.; Barpanda, P.; Yamada, A.; Islam, M. S. J. Mater. Chem. A 2014, 2, 11807. doi: 10.1039/c4ta02383h  doi: 10.1039/c4ta02383h

    63. [63]

      Ren, L.; Song, L.; Guo, Y.; Wu, Y.; Lian, J.; Zhou, Y. -N.; Yuan, W.; Yan, Q.; Wang, Q.; Ma, S.; et al. Appl. Surf. Sci. 2021, 544, 148893. doi: 10.1016/j.apsusc.2020.148893  doi: 10.1016/j.apsusc.2020.148893

    64. [64]

      Makhlooghiazad, F.; Sharma, M.; Zhang, Z.; Howlett, P. C.; Forsyth, M.; Nazar, L. F. J. Phys. Chem. Lett. 2020, 11, 2092. doi: 10.1021/acs.jpclett.0c00149  doi: 10.1021/acs.jpclett.0c00149

    65. [65]

      Barpanda, P.; Ye, T.; Nishimura, S. -i.; Chung, S. -C.; Yamada, Y.; Okubo, M.; Zhou, H.; Yamada, A. Electrochem. Commun. 2012, 24, 116. doi: 10.1016/j.elecom.2012.08.028  doi: 10.1016/j.elecom.2012.08.028

    66. [66]

      Barpanda, P.; Nishimura, S. i.; Yamada, A. Adv. Energy Mater. 2012, 2, 841. doi: 10.1002/aenm.201100772  doi: 10.1002/aenm.201100772

    67. [67]

      Niu, Y.; Xu, M.; Cheng, C.; Bao, S.; Hou, J.; Liu, S.; Yi, F.; He, H.; Li, C. M. J. Mater. Chem. A 2015, 3, 17224. doi: 10.1039/c5ta03127c  doi: 10.1039/c5ta03127c

    68. [68]

      Longoni, G.; Wang, J. E.; Jung, Y. H.; Kim, D. K.; Mari, C. M.; Ruffo, R. J. Power Sources 2016, 302, 61. doi: 10.1016/j.jpowsour.2015.10.033  doi: 10.1016/j.jpowsour.2015.10.033

    69. [69]

      Chen, X.; Du, K.; Lai, Y.; Shang, G.; Li, H.; Xiao, Z.; Chen, Y.; Li, J.; Zhang, Z. J. Power Sources 2017, 357, 164. doi: 10.1016/j.jpowsour.2017.04.075  doi: 10.1016/j.jpowsour.2017.04.075

    70. [70]

      Zhang, Y.; Zhang, J.; Shao, T.; Li, X.; Chen, G.; Liu, H.; Ma, Z. F. ACS Appl. Mater. Interfaces 2022, 14, 14253. doi: 10.1021/acsami.2c00821  doi: 10.1021/acsami.2c00821

    71. [71]

      Barpanda, P.; Liu, G.; Mohamed, Z.; Ling, C. D.; Yamada, A. Solid State Ionics 2014, 268, 305. doi: 10.1016/j.ssi.2014.03.011  doi: 10.1016/j.ssi.2014.03.011

    72. [72]

      Shakoor, R. A.; Park, C. S.; Raja, A. A.; Shin, J.; Kahraman, R. Phys. Chem. Chem. Phys. 2016, 18, 3929. doi: 10.1039/c5cp06836c  doi: 10.1039/c5cp06836c

    73. [73]

      Chen, C. -Y.; Kiko, T.; Hosokawa, T.; Matsumoto, K.; Nohira, T.; Hagiwara, R. J. Power Sources 2016, 332, 51. doi: 10.1016/j.jpowsour.2016.09.099  doi: 10.1016/j.jpowsour.2016.09.099

    74. [74]

      Ha, K. H.; Woo, S. H.; Mok, D.; Choi, N. S.; Park, Y.; Oh, S. M.; Kim, Y.; Kim, J.; Lee, J.; Nazar, L. F.; et al. Adv. Energy Mater. 2013, 3, 770. doi: 10.1002/aenm.201200825  doi: 10.1002/aenm.201200825

    75. [75]

      Chen, M.; Chen, L.; Hu, Z.; Liu, Q.; Zhang, B.; Hu, Y.; Gu, Q.; Wang, J. L.; Wang, L. Z.; Guo, X.; et al. Adv. Mater. 2017, 29, 1605535. doi: 10.1002/adma.201605535  doi: 10.1002/adma.201605535

    76. [76]

      Liu, B.; Zou, Y.; Chen, S.; Zhang, H.; Sun, J.; She, X.; Yang, D. Chem. Eng. J. 2019, 365, 325. doi: 10.1016/j.cej.2019.01.177  doi: 10.1016/j.cej.2019.01.177

    77. [77]

      Liu, Y.; Wu, Z.; Indris, S.; Hua, W.; Casati, N. P. M.; Tayal, A.; Darma, M. S. D.; Wang, G.; Liu, Y.; Wu, C.; et al. Nano Energy 2021, 79, 105417. doi: 10.1016/j.nanoen.2020.105417  doi: 10.1016/j.nanoen.2020.105417

    78. [78]

      Li, S.; Chen, S.; Yu, C.; Zhao, H.; Yin, Y.; Song, X.; Bai, Y.; Gao, L. Ceram. Int. 2022, 48, 30384. doi: 10.1016/j.ceramint.2022.06.312  doi: 10.1016/j.ceramint.2022.06.312

    79. [79]

      Lin, B.; Zhang, S.; Deng, C. J. Mater. Chem. A 2016, 4, 2550. doi: 10.1039/c5ta09403h  doi: 10.1039/c5ta09403h

    80. [80]

      Song, H. J.; Kim, K. H.; Kim, J. C.; Hong, S. H.; Kim, D. W. Chem. Commun. 2017, 53, 9316. doi: 10.1039/c7cc01812f  doi: 10.1039/c7cc01812f

    81. [81]

      Pu, X.; Yang, K.; Pan, Z.; Song, C.; Lai, Y.; Li, R.; Xu, Z. L.; Chen, Z.; Cao, Y. Carbon Energy 2023, 6, 1. doi: 10.1002/cey2.449  doi: 10.1002/cey2.449

    82. [82]

      Du, G.; Tao, M.; Qi, Y.; Gao, W.; Bao, S. -j.; Xu, M. Mater. Chem. Front. 2021, 5, 2783. doi: 10.1039/d0qm00847h  doi: 10.1039/d0qm00847h

    83. [83]

      Zhao, A.; Ji, F.; Liu, C.; Zhang, S.; Chen, K.; Chen, W.; Feng, X.; Zhong, F.; Ai, X.; Yang, H.; et al. Sci. Bull. 2023, 68, 1894. doi: 10.1016/j.scib.2023.07.034  doi: 10.1016/j.scib.2023.07.034

    84. [84]

      Yang, W.; Liu, Q.; Hou, L.; Yang, Q.; Mu, D.; Tan, G.; Li, L.; Chen, R.; Wu, F. Small. 2024, 20, 2306595. doi: 10.1002/smll.202306595  doi: 10.1002/smll.202306595

    85. [85]

      Pan, W. L. Preparation of Transition Metal Sulfate Cathode Materials and Their Sodium Storage Properties. M. S. Dissertation, Zhejiang University, Hangzhou, 2020.

    86. [86]

      Tripathi, R.; Ramesh, T. N.; Ellis, B. L.; Nazar, L. F. Angew. Chem. Int. Ed. 2010, 49, 8738. doi: 10.1002/anie.201003743  doi: 10.1002/anie.201003743

    87. [87]

      Kim M, K. D., Lee W, et al. Chem. Mater. 2018, 30, 6346. doi: 10.1021/acs.chemmater.8b02354  doi: 10.1021/acs.chemmater.8b02354

    88. [88]

      Li, S.; Song, X.; Kuai, X.; Zhu, W.; Tian, K.; Li, X.; Chen, M.; Chou, S.; Zhao, J.; Gao, L. J. Mater. Chem. A 2019, 7, 14656. doi: 10.1039/c9ta03089a  doi: 10.1039/c9ta03089a

    89. [89]

      Lu, J.; Yamada, A. ChemElectroChem 2016, 3, 902. doi: 10.1002/celc.201500535  doi: 10.1002/celc.201500535

    90. [90]

      Mason, C. W.; Gocheva, I.; Hoster, H. E.; Yu, D. Y. Chem. Commun. 2014, 50, 2249. doi: 10.1039/c3cc47557c  doi: 10.1039/c3cc47557c

    91. [91]

      Wong, L. L.; Chen, H. M.; Adams, S. Phys. Chem. Chem. Phys. 2015, 17, 9186. doi: 10.1039/c5cp00380f  doi: 10.1039/c5cp00380f

    92. [92]

      Barpanda, P.; Oyama, G.; Ling, C. D.; Yamada, A. Chem. Mater. 2014, 26, 1297. doi: 10.1021/cm4033226  doi: 10.1021/cm4033226

    93. [93]

      Liu, C.; Chen, K.; Xiong, H.; Zhao, A.; Zhang, H.; Li, Q.; Ai, X.; Yang, H.; Fang, Y.; Cao, Y. eScience 2024, 4, 100186. doi: 10.1016/j.esci.2023.100186  doi: 10.1016/j.esci.2023.100186

    94. [94]

      Ati, M.; Dupont, L.; Recham, N.; Chotard, J. N.; Walker, W. T.; Davoisne, C.; Barpanda, P.; Sarou-Kanian, V.; Armand, M.; Tarascon, J. M. Chem. Mater. 2010, 22, 4062. doi: 10.1021/cm1010482  doi: 10.1021/cm1010482

    95. [95]

      Goñi, A.; Iturrondobeitia, A.; Gil de Muro, I.; Lezama, L.; Rojo, T. J. Power Sources 2017, 369, 95. doi: 10.1016/j.jpowsour.2017.09.087  doi: 10.1016/j.jpowsour.2017.09.087

    96. [96]

      Oyama, G.; Nishimura, S. i.; Suzuki, Y.; Okubo, M.; Yamada, A. ChemElectroChem 2015, 2, 1019. doi: 10.1002/celc.201500036  doi: 10.1002/celc.201500036

    97. [97]

      Dwibedi, D.; Ling, C. D.; Araujo, R. B.; Chakraborty, S.; Duraisamy, S.; Munichandraiah, N.; Ahuja, R.; Barpanda, P. ACS Appl. Mater. Interfaces 2016, 8, 6982. doi: 10.1021/acsami.5b11302  doi: 10.1021/acsami.5b11302

    98. [98]

      Meng, Y.; Yu, T.; Zhang, S.; Deng, C. J. Mater. Chem. A 2016, 4, 1624. doi: 10.1039/c5ta07696j  doi: 10.1039/c5ta07696j

    99. [99]

      Chen, M.; Cortie, D.; Hu, Z.; Jin, H.; Wang, S.; Gu, Q.; Hua, W.; Wang, E.; Lai, W.; Chen, L.; et al. Adv. Energy Mater. 2018, 8, 1800944. doi: 10.1002/aenm.201800944  doi: 10.1002/aenm.201800944

    100. [100]

      Zhang, J.; Yan, Y.; Wang, X.; Cui, Y.; Zhang, Z.; Wang, S.; Xie, Z.; Yan, P.; Chen, W. Nat. Commun. 2023, 14, 3701. doi: 10.1038/s41467-023-39384-7  doi: 10.1038/s41467-023-39384-7

    101. [101]

      Fang, Y.; Liu, Q.; Feng, X.; Chen, W.; Ai, X.; Wang, L.; Wang, L.; Ma, Z.; Ren, Y.; Yang, H.; et al. J. Energy Chem. 2021, 54, 564. doi: 10.1016/j.jechem.2020.06.020  doi: 10.1016/j.jechem.2020.06.020

    102. [102]

      Wei, S.; Mortemard de Boisse, B.; Oyama, G.; Nishimura, S. I.; Yamada, A. ChemElectroChem 2015, 3, 209. doi: 10.1002/celc.201500455  doi: 10.1002/celc.201500455

    103. [103]

      Oyama, G.; Pecher, O.; Griffith, K. J.; Nishimura, S. -i.; Pigliapochi, R.; Grey, C. P.; Yamada, A. Chem. Mater. 2016, 28, 5321. doi: 10.1021/acs.chemmater.6b01091  doi: 10.1021/acs.chemmater.6b01091

    104. [104]

      Wang, W.; Liu, X.; Xu, Q.; Liu, H.; Wang, Y. -G.; Xia, Y.; Cao, Y.; Ai, X. J. Mater. Chem. A 2018, 6, 4354. doi: 10.1039/c7ta11110j  doi: 10.1039/c7ta11110j

    105. [105]

      Guan, W. H.; Lin, Q. Y.; Lan, Z. Y.; Pan, W. L.; Wei, X.; Sun, W. P.; Zheng, R. T.; Lu, Y. H.; Shu, J.; Pan, H. G.; et al. Mater. Today Nano 2020, 12, 100098. doi: 10.1016/j.mtnano.2020.100098  doi: 10.1016/j.mtnano.2020.100098

    106. [106]

      Ji, L.; Lin, Z.; Alcoutlabi, M.; Zhang, X. Energy Environ. Sci. 2011, 4, 2682. doi: 10.1039/c0ee00699h  doi: 10.1039/c0ee00699h

    107. [107]

      Harishpal; Sharma, Y. Solid State Ionics 2022, 388, 116084. doi: 10.1016/j.ssi.2022.116084  doi: 10.1016/j.ssi.2022.116084

    108. [108]

      Kee, Y.; Dimov, N.; Staykov, A.; Okada, S. Mater. Chem. Phys. 2016, 171, 45. doi: 10.1016/j.matchemphys.2016.01.033  doi: 10.1016/j.matchemphys.2016.01.033

    109. [109]

      Li, S.; Guo, J.; Ye, Z.; Zhao, X.; Wu, S.; Mi, J. X.; Wang, C. Z.; Gong, Z.; McDonald, M. J.; Zhu, Z., et al. ACS Appl. Mater. Interfaces 2016, 8, 17233. doi: 10.1021/acsami.6b03969  doi: 10.1021/acsami.6b03969

    110. [110]

      Wu, P.; Wu, S. Q.; Lv, X.; Zhao, X.; Ye, Z.; Lin, Z.; Wang, C. Z.; Ho, K. M. Phys. Chem. Chem. Phys. 2016, 18, 23916. doi: 10.1039/c6cp05135a  doi: 10.1039/c6cp05135a

    111. [111]

      Bai, Y.; Zhang, X.; Tang, K.; Yang, L.; Liu, H.; Liu, L.; Zhao, Q.; Wang, Y.; Wang, X. ACS Appl. Mater. Interfaces 2019, 11, 31980. doi: 10.1021/acsami.9b10029  doi: 10.1021/acsami.9b10029

    112. [112]

      Harishpal; Sharma, Y. Solid State Ionics 2021, 370, 115737. doi: 10.1016/j.ssi.2021.115737  doi: 10.1016/j.ssi.2021.115737

    113. [113]

      Shukla, A. K.; Prem Kumar, T. WIREs Energy and Environment 2012, 2, 14. doi: 10.1002/wene.48  doi: 10.1002/wene.48

    114. [114]

      Cui, T.; Tang, C.; Li, J.; Wang, B.; Min, Z.; Liu, J.; Ning, J.; Xiao, K.; Zong, Z.; Zhang, Y. Energy Technol. 2022, 10, 2200619. doi: 10.1002/ente.202200619  doi: 10.1002/ente.202200619

    115. [115]

      Tang, Y.; Gao, Y.; Liu, L.; Zhang, Y.; Xie, J.; Zeng, X. Inorg. Chem. Front. 2020, 7, 4438. doi: 10.1039/d0qi00864h  doi: 10.1039/d0qi00864h

    116. [116]

      Kaliyappan, K.; Jauhar, M. A.; Yang, L.; Bai, Z.; Yu, A.; Chen, Z. Electrochim. Acta 2019, 327, 134959. doi: 10.1016/j.electacta.2019.134959  doi: 10.1016/j.electacta.2019.134959

    117. [117]

      Bai, Y.; Zhang, X.; Shu, H.; Luo, Z.; Hu, H.; Zhao, Q.; Wang, Y.; Wang, X. ACS Appl. Mater. Interfaces. 2020, 12, 34858. doi: 10.1021/acsami.0c07894  doi: 10.1021/acsami.0c07894

    118. [118]

      Feng, Z.; Tang, M.; Yan, Z. Ceram. Int. 2018, 44, 22019. doi: 10.1016/j.ceramint.2018.08.186  doi: 10.1016/j.ceramint.2018.08.186

    119. [119]

      Kaliyappan, K.; Chen, Z. Electrochim. Acta 2018, 283, 1384. doi: 10.1016/j.electacta.2018.07.034  doi: 10.1016/j.electacta.2018.07.034

    120. [120]

      Gao, J.; Zeng, J.; Jian, W.; Mei, Y.; Ni, L.; Wang, H.; Wang, K.; Hu, X.; Deng, W.; Zou, G.; et al. Sci. Bull. 2024, 69, 772. doi: 10.1016/j.scib.2024.01.026  doi: 10.1016/j.scib.2024.01.026

    121. [121]

      Kosova, N. V.; Shindrov, A A. Batteries 2019, 5, 39. doi: 10.3390/batteries5020039  doi: 10.3390/batteries5020039

    122. [122]

      Gezović, A.; Vujković, M. J.; Milović, M.; Grudić, V.; Dominko, R.; Mentus, S. Energy Storage Mater. 2021, 37, 243. doi: 10.1016/j.ensm.2021.02.011  doi: 10.1016/j.ensm.2021.02.011

    123. [123]

      Kim, H.; Park, I.; Lee, S.; Kim, H.; Park, K. -Y.; Park, Y. -U.; Kim, H.; Kim, J.; Lim, H. -D.; Yoon, W. -S.; et al. Chem. Mater. 2013, 25, 3614. doi: 10.1021/cm4013816  doi: 10.1021/cm4013816

    124. [124]

      Kim, H.; Park, I.; Seo, D. H.; Lee, S.; Kim, S. W.; Kwon, W. J.; Park, Y. U.; Kim, C. S.; Jeon, S.; Kang, K. J. Am. Chem. Soc. 2012, 134, 10369. doi: 10.1021/ja3038646  doi: 10.1021/ja3038646

    125. [125]

      Wu, X.; Zhong, G.; Yang, Y. J. Power Sources 2016, 327, 666. doi: 10.1016/j.jpowsour.2016.07.061  doi: 10.1016/j.jpowsour.2016.07.061

    126. [126]

      Zhao, A.; Yuan, T.; Li, P.; Liu, C.; Cong, H.; Pu, X.; Chen, Z.; Ai, X.; Yang, H.; Cao, Y. Nano Energy 2022, 91, 106680. doi: 10.1016/j.nanoen.2021.106680  doi: 10.1016/j.nanoen.2021.106680

    127. [127]

      Gao, J.; Tian, Y.; Mei, Y.; Ni, L.; Wang, H.; Liu, H.; Deng, W.; Zou, G.; Hou, H.; Ji, X. Chem. Eng. J. 2023, 458, 141385. doi: 10.1016/j.cej.2023.141385  doi: 10.1016/j.cej.2023.141385

    128. [128]

      Li, X.; Zhang, J.; Zhang, Y.; Zhang, B.; Liu, H.; Xu, Q.; Xia, Y. Chem. Eng. Sci. 2022, 260, 117951. doi: 10.1016/j.ces.2022.117951  doi: 10.1016/j.ces.2022.117951

    129. [129]

      Li, H.; Guan, C.; Zhang, J.; Cheng, K.; Chen, Q.; He, L.; Ge, X.; Lai, Y.; Sun, H.; Zhang, Z. Adv. Mater. 2022, 34, 2202624. doi: 10.1002/adma.202202624  doi: 10.1002/adma.202202624

    130. [130]

      Ren, W.; Qin, M.; Zhou, Y.; Zhou, H.; Zhu, J.; Pan, J.; Zhou, J.; Cao, X.; Liang, S. Energy Storage Mater. 2023, 54, 776. doi: 10.1016/j.ensm.2022.11.018  doi: 10.1016/j.ensm.2022.11.018

    131. [131]

      Pu, X.; Wang, H.; Yuan, T.; Cao, S.; Liu, S.; Xu, L.; Yang, H.; Ai, X.; Chen, Z.; Cao, Y. Energy Storage Mater. 2019, 22, 330. doi: 10.1016/j.ensm.2019.02.017  doi: 10.1016/j.ensm.2019.02.017

    132. [132]

      Ge, X.; Li, H.; Li, J.; Guan, C.; Wang, X.; He, L.; Li, S.; Lai, Y.; Zhang, Z. Small 2023, 19, 2302609. doi: 10.1002/smll.202302609  doi: 10.1002/smll.202302609

    133. [133]

      Boyadzhieva, T. J.; Koleva, V. G.; Kukeva, R. R.; Stoyanova, R. K. ACS Appl. Energy Mater. 2021, 4, 7182. doi: 10.1021/acsaem.1c01269  doi: 10.1021/acsaem.1c01269

    134. [134]

      Xiong, F.; Li, J.; Zuo, C.; Zhang, X.; Tan, S.; Jiang, Y.; An, Q.; Chu, P. K.; Mai, L. Adv. Funct. Mater. 2022, 33, 2211257. doi: 10.1002/adfm.202211257  doi: 10.1002/adfm.202211257

    135. [135]

      Li, X.; Zhang, Y.; Zhang, B.; Qin, K.; Liu, H.; Ma, Z. -F. J. Power Sources 2022, 521, 230922. doi: 10.1016/j.jpowsour.2021.230922  doi: 10.1016/j.jpowsour.2021.230922

    136. [136]

      Xi, Y.; Wang, X.; Wang, H.; Wang, M.; Wang, G.; Peng, J.; Hou, N.; Huang, X.; Cao, Y.; Yang, Z.; et al. Adv. Funct. Mater. 2023, 34, 2309701. doi: 10.1002/adfm.202309701  doi: 10.1002/adfm.202309701

    137. [137]

      Yuan, T.; Wang, Y.; Zhang, J.; Pu, X.; Ai, X.; Chen, Z.; Yang, H.; Cao, Y. Nano Energy 2019, 56, 160. doi: 10.1016/j.nanoen.2018.11.011  doi: 10.1016/j.nanoen.2018.11.011

    138. [138]

      Wood, S. M.; Eames, C.; Kendrick, E.; Islam, M. S. J. Phys. Chem. 2015, 119, 15935. doi: 10.1021/acs.jpcc.5b04648  doi: 10.1021/acs.jpcc.5b04648

    139. [139]

      Zhao, A.; Liu, C.; Ji, F.; Zhang, S.; Fan, H.; Ni, W.; Fang, Y.; Ai, X.; Yang, H.; Cao, Y. ACS Energy Lett. 2022, 8, 753. doi: 10.1021/acsenergylett.2c02693  doi: 10.1021/acsenergylett.2c02693

    140. [140]

      Cao, Y.; Yang, C.; Liu, Y.; Xia, X.; Zhao, D.; Cao, Y.; Yang, H.; Zhang, J.; Lu, J.; Xia, Y. ACS Energy Lett. 2020, 5, 3788. doi: 10.1021/acsenergylett.0c01902  doi: 10.1021/acsenergylett.0c01902

    141. [141]

      Wang, H.; Pan, Z.; Zhang, H.; Dong, C.; Ding, Y.; Cao, Y.; Chen, Z. Small Methods 2021, 5, 2100372. doi: 10.1002/smtd.202100372  doi: 10.1002/smtd.202100372

    142. [142]

      Guo, J. Z.; Zhang, H. X.; Gu, Z. Y.; Du, M.; Lü, H. Y.; Zhao, X. X.; Yang, J. L.; Li, W. H.; Kang, S.; Zou, W.; et al. Adv. Funct. Mater. 2022, 32, 2209482. doi: 10.1002/adfm.202209482  doi: 10.1002/adfm.202209482

    143. [143]

      Wang, N.; Wang, R.; Jiang, M.; Zhang, J. J. Alloy. Compd. 2021, 870, 159382. doi: 10.1016/j.jallcom.2021.159382  doi: 10.1016/j.jallcom.2021.159382

    144. [144]

      Chen, H.; Hautier, G.; Ceder, G. J. Am. Chem. Soc. 2012, 134, 19619. doi: 10.1021/ja3040834  doi: 10.1021/ja3040834

    145. [145]

      Xie, B.; Sakamoto, R.; Kitajou, A.; Nakamoto, K.; Zhao, L.; Okada, S.; Fujita, Y.; Oka, N.; Nishida, T.; Kobayashi, W. Sci. Rep. 2020, 10, 3278. doi: 10.1038/s41598-020-60183-3  doi: 10.1038/s41598-020-60183-3

    146. [146]

      Rousseau, B.; Timoshevskii, V.; Mousseau, N.; Côté, M.; Zaghib, K. Mater. Sci. Eng. B. 2016, 211, 185. doi: 10.1016/j.mseb.2016.07.007  doi: 10.1016/j.mseb.2016.07.007

  • 加载中
    1. [1]

      Jianbao MeiBei LiShu ZhangDongdong XiaoPu HuGeng Zhang . Enhanced Performance of Ternary NASICON-Type Na3.5−xMn0.5V1.5−xZrx (PO4)3/C Cathodes for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(12): 2407023-0. doi: 10.3866/PKU.WHXB202407023

    2. [2]

      Yu GuoZhiwei HuangYuqing HuJunzhe LiJie Xu . Recent Advances in Iron-based Heterostructure Anode Materials for Sodium Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(3): 2311015-0. doi: 10.3866/PKU.WHXB202311015

    3. [3]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    4. [4]

      Zhuo WangXue BaiKexin ZhangHongzhi WangJiabao DongYuan GaoBin Zhao . MOF-Templated Synthesis of Nitrogen-Doped Carbon for Enhanced Electrochemical Sodium Ion Storage and Removal. Acta Physico-Chimica Sinica, 2025, 41(3): 2405002-0. doi: 10.3866/PKU.WHXB202405002

    5. [5]

      Zilin HuYaoshen NiuXiaohui RongYongsheng Hu . Suppression of Voltage Decay through Ni3+ Barrier in Anionic-Redox Active Cathode for Na-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(6): 2306005-0. doi: 10.3866/PKU.WHXB202306005

    6. [6]

      Pengyang FANShan FANQinjin DAIXiaoying ZHENGWei DONGMengxue WANGXiaoxiao HUANGYong ZHANG . Preparation and performance of rich 1T-MoS2 nanosheets for high-performance aqueous zinc ion battery cathode materials. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 675-682. doi: 10.11862/CJIC.20240339

    7. [7]

      Qi LiPingan LiZetong LiuJiahui ZhangHao ZhangWeilai YuXianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-0. doi: 10.3866/PKU.WHXB202311030

    8. [8]

      Lingbang QiuJiangmin JiangLibo WangLang BaiFei ZhouGaoyu ZhouQuanchao ZhuangYanhua CuiIn Situ Electrochemical Impedance Spectroscopy Monitoring of the High-Temperature Double-Discharge Mechanism of Nb12WO33 Cathode Material for Long-Life Thermal Batteries. Acta Physico-Chimica Sinica, 2025, 41(5): 100040-0. doi: 10.1016/j.actphy.2024.100040

    9. [9]

      Liangliang SongHaoyan LiangShunqing LiBao QiuZhaoping Liu . Challenges and strategies on high-manganese Li-rich layered oxide cathodes for ultrahigh-energy-density batteries. Acta Physico-Chimica Sinica, 2025, 41(8): 100085-0. doi: 10.1016/j.actphy.2025.100085

    10. [10]

      Yahui HANJinjin ZHAONing RENJianjun ZHANG . Synthesis, crystal structure, thermal decomposition mechanism, and fluorescence properties of benzoic acid and 4-hydroxy-2, 2′: 6′, 2″-terpyridine lanthanide complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 969-982. doi: 10.11862/CJIC.20240395

    11. [11]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    12. [12]

      Yuting ZHANGZunyi LIUNing LIDongqiang ZHANGShiling ZHAOYu ZHAO . Nickel vanadate anode material with high specific surface area through improved co-precipitation method: Preparation and electrochemical properties. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2163-2174. doi: 10.11862/CJIC.20240204

    13. [13]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    14. [14]

      Xiangyu CAOJiaying ZHANGYun FENGLinkun SHENXiuling ZHANGJuanzhi YAN . Synthesis and electrochemical properties of bimetallic-doped porous carbon cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 509-520. doi: 10.11862/CJIC.20240270

    15. [15]

      Yan Liu Yuexiang Zhu Luhua Lai . Introduction to Blended and Small-Class Teaching in Structural Chemistry: Exploring the Structure and Properties of Crystals. University Chemistry, 2024, 39(3): 1-4. doi: 10.3866/PKU.DXHX202306084

    16. [16]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    17. [17]

      Hongjie SHENHaozhe MIAOYuhe YANGYinghua LIDeguang HUANGXiaofeng ZHANG . Synthesis, crystal structure, and fluorescence properties of two Cu(Ⅰ) complexes based on pyridyl ligand. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 855-863. doi: 10.11862/CJIC.20250009

    18. [18]

      Changqing MIAOFengjiao CHENWenyu LIShujie WEIYuqing YAOKeyi WANGNi WANGXiaoyan XINMing FANG . Crystal structures, DNA action, and antibacterial activities of three tetranuclear lanthanide-based complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2455-2465. doi: 10.11862/CJIC.20240192

    19. [19]

      Jing WUPuzhen HUIHuilin ZHENGPingchuan YUANChunfei WANGHui WANGXiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278

    20. [20]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

Metrics
  • PDF Downloads(16)
  • Abstract views(1040)
  • HTML views(175)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return