Citation: Yuyao Wang,  Zhitao Cao,  Zeyu Du,  Xinxin Cao,  Shuquan Liang. Research Progress of Iron-based Polyanionic Cathode Materials for Sodium-Ion Batteries[J]. Acta Physico-Chimica Sinica, ;2025, 41(4): 100035. doi: 10.3866/PKU.WHXB202406014 shu

Research Progress of Iron-based Polyanionic Cathode Materials for Sodium-Ion Batteries

  • Corresponding author: Xinxin Cao,  Shuquan Liang, 
  • Received Date: 13 June 2024
    Revised Date: 9 July 2024
    Accepted Date: 9 July 2024

    Fund Project: The project was supported by the National Natural Science Foundation of China (51932011), the Natural Science Foundation of Hunan Province (2023JJ10060), and the Science and Technology Innovation Program of Hunan Province (2022RC1078).

  • Sodium ion batteries, due to their abundant resources, low raw material costs, excellent performance in low-temperature conditions, and fast charging capabilities, offer promising prospects for power grid energy storage and low-speed transportation. They serve as a complementary alternative to lithium-ion batteries. The cathode material is crucial for overall battery performance, acting as a bottleneck for enhancing the specific energy of sodium-ion batteries and a significant factor influencing costs. Low-cost iron-based polyanionic cathode materials have garnered attention in basic research and industrialization due to their inherent advantages: excellent structural stability, high safety levels, and minimal volume strain during charge-discharge cycles. These advantages are pivotal for practical implementations in electric vehicles, large-scale energy storage systems, portable electronics, and related applications. However, challenges such as capacity decay and structural stability during prolonged cycling may limit their industrial applicability. Therefore, enhancing material cycling life and battery system stability are critical concerns. Additionally, researchers are focused on discovering new iron-based polyanion cathode materials with high specific capacity, operating voltage, and conductivity. This review comprehensively covers recent advancements in iron-based polyanionic cathode materials for sodium-ion batteries, encompassing iron-based phosphates, fluorophosphates, pyrophosphates, sulfates, and mixed polyanionic compounds. The analysis systematically explores crystal structures, preparation methods, sodium storage mechanisms, and modification strategies for various iron-based polyanionic materials, elucidating the structure-activity relationship between chemical composition, structural regulation techniques, and performance enhancement. Moreover, the article discusses challenges encountered during the transition from laboratory-scale research to large-scale industrial applications of iron-based polyanion cathode materials, along with corresponding solutions. These insights aim to offer theoretical and technical guidance for developing novel, low-cost cathode materials with high specific energy densities and advancing the industrialization of sodium-ion batteries.
  • 加载中
    1. [1]

    2. [2]

    3. [3]

      (3) Song, Z.; Liu, R.; Liu, W.-D.; Chen, Y.; Hu, W. Adv. Energ. Sust. Res. 2023, 4, 2300102. doi: 10.1002/aesr.202300102

    4. [4]

    5. [5]

      (5) Li, H.; Xu, M.; Zhang, Z.; Lai, Y.; Ma, J. Adv. Funct. Mater. 2020,30, 2000473. doi: 10.1002/adfm.202000473

    6. [6]

      (6) Oh, S.-M.; Myung, S.-T.; Hassoun, J.; Scrosati, B.; Sun, Y.-K. Electrochem. Commun. 2012, 22, 149. doi: 10.1016/j.elecom.2012.06.014

    7. [7]

      (7) Zhu, L.; Li, L.; Wen, J.; Zeng, Y.-R. J. Power Sources 2019,438, 227016. doi: 10.1016/j.jpowsour.2019.227016

    8. [8]

      (8) Kim, J.; Seo, D.-H.; Kim, H.; Park, I.; Yoo, J.-K.; Jung, S.-K.; Park, Y.-U.; Goddard Iii, W. A.; Kang, K. Energy Environ. Sci. 2015,8, 540. doi: 10.1039/c4ee03215b

    9. [9]

      (9) Savithiri, G.; Priyanka, V.; Subadevi, R.; Sivakumar, M. J. Nanopart. Res. 2020, 22, 29. doi: 10.1007/s11051-019-4733-9

    10. [10]

      (10) Jian, Z.; Zhao, L.; Pan, H.; Hu, Y.-S.; Li, H.; Chen, W.; Chen, L.Electrochem. Commun. 2012, 14, 86. doi: 10.1016/j.elecom.2011.11.009

    11. [11]

      (11) Ben Yahia, H.; Essehli, R.; Amin, R.; Boulahya, K.; Okumura, T.; Belharouak, I. J. Power Sources 2018, 382, 144. doi: 10.1016/j.jpowsour.2018.02.021

    12. [12]

      (12) Masquelier, C, W. C.; Rodríguez-Carvajal, J.; Gaubicher, J.; Nazar, L. Chem. Mater. 2000,12, 525. doi: 10.1021/cm991138n

    13. [13]

      (13) Chen, M.; Hua, W.; Xiao, J.; Cortie, D.; Chen, W.; Wang, E.; Hu, Z.; Gu, Q.; Wang, X.; Indris, S.; et al. Nat. Commun. 2019,10, 1480. doi: 10.1038/s41467-019-09170-5

    14. [14]

      (14) Zhou, W.; Xue, L.; Lu, X.; Gao, H.; Li, Y.; Xin, S.; Fu, G.; Cui, Z.; Zhu, Y.; Goodenough, J. B. Nano Lett. 2016, 16, 7836. doi: 10.1021/acs.nanolett.6b04044

    15. [15]

      (15) Li, H.; Wang, T.; Wang, S.; Wang, X.; Xie, Y.; Hu, J.; Lai, Y.; Zhang, Z. ACS Sustain. Chem. Eng. 2021, 9, 11798. doi: 10.1021/acssuschemeng.1c03355

    16. [16]

      (16) Barpanda, P.; Oyama, G.; Nishimura, S.; Chung, S. C.; Yamada, A. Nat. Commun. 2014, 5, 4358. doi: 10.1038/ncomms5358

    17. [17]

      (17) Zheng, M. Y.; Bai, Z. Y.; He, Y. W.; Wu, S.; Yang, Y.; Zhu, Z. Z. ACS Omega 2020, 5, 5192. doi: 10.1021/acsomega.9b04213

    18. [18]

    19. [19]

      (19) Senthilkumar, B.; Murugesan, C.; Sharma, L.; Lochab, S.; Barpanda, P. Small Methods 2018, 3, 1800253. doi: 10.1002/smtd.201800253

    20. [20]

    21. [21]

      (21) Avdeev, M.; Mohamed, Z.; Ling, C. D.; Lu, J.; Tamaru, M.; Yamada, A.; Barpanda, P. Inorg. Chem. 2013, 52, 8685. doi: 10.1021/ic400870x

    22. [22]

      (22) Saurel, D.; Galceran, M.; Reynaud, M.; Anne, H.; Casas-Cabanas, M.Int. J. Energy Res. 2018, 42, 3258. doi: 10.1002/er.4078

    23. [23]

      (23) Wazeer, W.; Nabil, M. M.; Feteha, M.; Soliman, M. B.; Kashyout, A. E. B. Sci. Rep. 2022, 12, 16307. doi: 10.1038/s41598-022-20329-x

    24. [24]

      (24) Zhu, Y.; Xu, Y.; Liu, Y.; Luo, C.; Wang, C. Nanoscale 2013,5, 780. doi: 10.1039/c2nr32758a

    25. [25]

      (25) Tang, W.; Song, X.; Du, Y.; Peng, C.; Lin, M.; Xi, S.; Tian, B.; Zheng, J.; Wu, Y.; Pan, F.; et al. J. Mater. Chem. A 2016,4, 4882. doi: 10.1039/c6ta01111j

    26. [26]

      (26) Ma, X.; Pan, Z.; Wu, X.; Shen, P. K. Chem. Eng. J. 2019,365, 132. doi: 10.1016/j.cej.2019.01.173

    27. [27]

      (27) Liu, Y.; Zhang, N.; Wang, F.; Liu, X.; Jiao, L.; Fan, L. Z. Adv. Funct. Mater. 2018, 28, 1801917. doi: 10.1002/adfm.201801917

    28. [28]

      (28) Liu-Théato, X.; Indris, S.; Hua, W.; Li, H.; Knapp, M.; Melinte, G.; Ehrenberg, H. Energy & Fuels2021, 35, 18768. doi: 10.1021/acs.energyfuels.1c02779

    29. [29]

      (29) Ali, G.; Lee, J. H.; Susanto, D.; Choi, S. W.; Cho, B. W.; Nam, K. W.; Chung, K. Y. ACS Appl. Mater. Interfaces 2016, 8, 15422. doi: 10.1021/acsami.6b04014

    30. [30]

      (30) Wongittharom, N.; Wang, C. H.; Wang, Y. C.; Yang, C. H.; Chang, J. K. ACS Appl. Mater. Interfaces 2014, 6, 17564. doi: 10.1021/am5033605

    31. [31]

      (31) Govindaraj, L. V. a. G. NASICON Materials: Structure and Electrical Properties, Polycrystalline Materials-Theoretical and Practical Aspects: Shanghai, 2012; 4, 78–106.

    32. [32]

      (32) Cao, Y.; Liu, Y.; Zhao, D.; Xia, X.; Zhang, L.; Zhang, J.; Yang, H.; Xia, Y. ACS Sustain. Chem. Eng. 2019, 8, 1380. doi: 10.1021/acssuschemeng.9b05098

    33. [33]

      (33) Feng, Z.; Ma, Q.; Lu, J.; Feng, H.; Elam, J. W.; Stair, P. C.; Bedzyk, M. J. RSC Advances 2015, 5, 103834. doi: 10.1039/c5ra18404e

    34. [34]

      (34) Zhou, Y.; Xu, G.; Lin, J.; Zhang, Y.; Fang, G.; Zhou, J.; Cao, X.; Liang, S. Adv. Mater. 2023, 35, e2304428. doi: 10.1002/adma.202304428

    35. [35]

      (35) Qiu, S.; Wu, X.; Wang, M.; Lucero, M.; Wang, Y.; Wang, J.; Yang, Z.; Xu, W.; Wang, Q.; Gu, M.; et al. Nano Energy 2019, 64, 103941. doi: 10.1016/j.nanoen.2019.103941

    36. [36]

      (36) Liu, Y.; Zhou, Y.; Zhang, J.; Xia, Y.; Chen, T.; Zhang, S. ACS Sustain. Chem. Eng. 2016, 5, 1306. doi: 10.1021/acssuschemeng.6b01536

    37. [37]

      (37) Kuganathan, N.; Chroneos, A. Materials 2019, 12, 1348. doi: 10.3390/ma12081348

    38. [38]

      (38) Cao, Y.; Liu, Y.; Zhao, D.; Zhang, J.; Xia, X.; Chen, T.; Zhang, L.-C.; Qin, P.; Xia, Y. J. Alloy. Compd. 2019, 784, 939. doi: 10.1016/j.jallcom.2019.01.125

    39. [39]

      (39) Wang, S.; Gao, N.; Wang, G.; He, C.; Lv, S.; Qiu, J. Desalination2021, 520, 115341. doi: 10.1016/j.desal.2021.115341

    40. [40]

      (40) Sharma, L.; Nakamoto, K.; Sakamoto, R.; Okada, S.; Barpanda, P. Chem. Electro. Chem. 2018, 6, 444. doi: 10.1002/celc.201801314

    41. [41]

    42. [42]

      (42) Ellis, B. L.; Makahnouk, W. R. M.; Rowan-Weetaluktuk, W. N.; Ryan, D. H.; Nazar, L. F. Chem. Mater. 2009, 22, 1059. doi: 10.1021/cm902023h

    43. [43]

      (43) Kirsanova, M. A.; Akmaev, A. S.; Aksyonov, D. A.; Ryazantsev, S. V.; Nikitina, V. A.; Filimonov, D. S.; Avdeev, M.; Abakumov, A. M. Inorg. Chem.2020, 59, 16225. doi: 10.1021/acs.inorgchem.0c01961

    44. [44]

      (44) Li, Q.; Liu, Z.; Zheng, F.; Liu, R.; Lee, J.; Xu, G. L.; Zhong, G.; Hou, X.; Fu, R.; Chen, Z.; et al. Angew. Chem. Int. Ed. 2018,57, 11918. doi: 10.1002/anie.201805555

    45. [45]

      (45) Ko, J. S.; Doan-Nguyen, Vicky V. T.; Kim, H.-S.; Petrissans, X.; DeBlock, R. H.; Choi, C. S.; Long, J. W.; Dunn, B. S. J. Mater. Chem. A2017, 5, 18707. doi: 10.1039/c7ta05680j

    46. [46]

      (46) Song, W.; Ji, X.; Wu, Z.; Zhu, Y.; Yao, Y.; Huangfu, K.; Chen, Q.; Banks, C. E. J. Mater. Chem. A 2014, 2, 2571. doi: 10.1039/c3ta14472k

    47. [47]

      (47) Huang, H.; Xia, Y.; Hao, Y.; Li, H.; Wang, C.; Shi, T.; Lu, X.; Shahzad, M. W.; Xu, B. B.; Jiang, Y. Adv. Funct. Mater. 2023, 33, 2305109. doi: 10.1002/adfm.202305109

    48. [48]

      (48) Cui, D.; Chen, S.; Han, C.; Ai, C.; Yuan, L. J. Power Sources2016, 301, 87. doi: 10.1016/j.jpowsour.2015.09.123

    49. [49]

      (49) Deng, X.; Shi, W.; Sunarso, J.; Liu, M.; Shao, Z. ACS Appl. Mater. Interfaces 2017, 9, 16280. doi: 10.1021/acsami.7b03933

    50. [50]

      (50) Sharma, L.; Bhatia, A.; Assaud, L.; Franger, S.; Barpanda, P. Ionics2017, 24, 2187. doi: 10.1007/s11581-017-2376-3

    51. [51]

      (51) Zhou, J.; Zhou, J.; Tang, Y.; Bi, Y.; Wang, C.; Wang, D.; Shi, S. Ceram. Int. 2013, 39, 5379. doi: 10.1016/j.ceramint.2012.12.044

    52. [52]

      (52) Xun, J.; Zhang, Y.; Zhang, B.; Xu, H.; Xu, L. ACS Appl. Energy Mater. 2020, 3, 6232. doi: 10.1021/acsaem.0c00323

    53. [53]

      (53) Wang, F.; Zhang, N.; Zhao, X.; Wang, L.; Zhang, J.; Wang, T.; Liu, F.; Liu, Y.; Fan, L. Z. Adv. Sci. 2019, 6, 1900649. doi: 10.1002/advs.201900649

    54. [54]

      (54) Hu, H.; Bai, Y.; Miao, C.; Luo, Z.; Wang, X. J. Electroanal. Chem. 2020, 867, 114187. doi: 10.1016/j.jelechem.2020.114187

    55. [55]

      (55) Ling, R.; Cai, S.; Xie, D.; Shen, W.; Hu, X.; Li, Y.; Hua, S.; Jiang, Y.; Sun, X. J. Mater. Sci. 2017, 53, 2735. doi: 10.1007/s10853-017-1738-6

    56. [56]

      (56) Hua, S.; Cai, S.; Ling, R.; Li, Y.; Jiang, Y.; Xie, D.; Jiang, S.; Lin, Y.; Shen, K. Inorg. Chem. Commun. 2018, 95, 90. doi: 10.1016/j.inoche.2018.07.011

    57. [57]

      (57) Ko, W.; Yoo, J.-K.; Park, H.; Lee, Y.; Kim, H.; Oh, Y.; Myung, S.-T.; Kim, J. J. Power Sources 2019, 432, 1. doi: 10.1016/j.jpowsour.2019.05.066

    58. [58]

      (58) Hu, H.; Wang, Y.; Huang, Y.; Shu, H.-b.; Wang, X.-y. J. Cent. South Univ. 2019, 26, 1521. doi: 10.1007/s11771-019-4108-5

    59. [59]

      (59) Dong, J.; Xiao, J.; Yu, Y.; Wang, J.; Chen, F.; Wang, S.; Zhang, L.; Ren, N.; Pan, B.; Chen, C. Energy Storage Mater. 2022, 45, 851. doi: 10.1016/j.ensm.2021.12.034

    60. [60]

      (60) Yan, J.; Liu, X.; Li, B. Electrochem. Commun. 2015, 56, 46. doi: 10.1016/j.elecom.2015.04.009

    61. [61]

      (61) Chen, C.-Y.; Matsumoto, K.; Nohira, T.; Hagiwara, R.; Orikasa, Y.; Uchimoto, Y. J. Power Sources 2014, 246, 783. doi: 10.1016/j.jpowsour.2013.08.027

    62. [62]

      (62) Clark, J. M.; Barpanda, P.; Yamada, A.; Islam, M. S. J. Mater. Chem. A 2014, 2, 11807. doi: 10.1039/c4ta02383h

    63. [63]

      (63) Ren, L.; Song, L.; Guo, Y.; Wu, Y.; Lian, J.; Zhou, Y.-N.; Yuan, W.; Yan, Q.; Wang, Q.; Ma, S.; et al. Appl. Surf. Sci. 2021,544, 148893. doi: 10.1016/j.apsusc.2020.148893

    64. [64]

      (64) Makhlooghiazad, F.; Sharma, M.; Zhang, Z.; Howlett, P. C.; Forsyth, M.; Nazar, L. F. J. Phys. Chem. Lett. 2020, 11, 2092. doi: 10.1021/acs.jpclett.0c00149

    65. [65]

      (65) Barpanda, P.; Ye, T.; Nishimura, S.-i.; Chung, S.-C.; Yamada, Y.; Okubo, M.; Zhou, H.; Yamada, A. Electrochem. Commun. 2012, 24, 116. doi: 10.1016/j.elecom.2012.08.028

    66. [66]

      (66) Barpanda, P.; Nishimura, S. i.; Yamada, A. Adv. Energy Mater.2012, 2, 841. doi: 10.1002/aenm.201100772

    67. [67]

      (67) Niu, Y.; Xu, M.; Cheng, C.; Bao, S.; Hou, J.; Liu, S.; Yi, F.; He, H.; Li, C. M. J. Mater. Chem. A 2015, 3, 17224. doi: 10.1039/c5ta03127c

    68. [68]

      (68) Longoni, G.; Wang, J. E.; Jung, Y. H.; Kim, D. K.; Mari, C. M.; Ruffo, R. J. Power Sources 2016, 302, 61. doi: 10.1016/j.jpowsour.2015.10.033

    69. [69]

      (69) Chen, X.; Du, K.; Lai, Y.; Shang, G.; Li, H.; Xiao, Z.; Chen, Y.; Li, J.; Zhang, Z. J. Power Sources 2017, 357, 164. doi: 10.1016/j.jpowsour.2017.04.075

    70. [70]

      (70) Zhang, Y.; Zhang, J.; Shao, T.; Li, X.; Chen, G.; Liu, H.; Ma, Z. F. ACS Appl. Mater. Interfaces 2022, 14, 14253. doi: 10.1021/acsami.2c00821

    71. [71]

      (71) Barpanda, P.; Liu, G.; Mohamed, Z.; Ling, C. D.; Yamada, A. Solid State Ionics 2014, 268, 305. doi: 10.1016/j.ssi.2014.03.011

    72. [72]

      (72) Shakoor, R. A.; Park, C. S.; Raja, A. A.; Shin, J.; Kahraman, R. Phys. Chem. Chem. Phys. 2016, 18, 3929. doi: 10.1039/c5cp06836c

    73. [73]

      (73) Chen, C.-Y.; Kiko, T.; Hosokawa, T.; Matsumoto, K.; Nohira, T.; Hagiwara, R. J. Power Sources 2016, 332, 51. doi: 10.1016/j.jpowsour.2016.09.099

    74. [74]

      (74) Ha, K. H.; Woo, S. H.; Mok, D.; Choi, N. S.; Park, Y.; Oh, S. M.; Kim, Y.; Kim, J.; Lee, J.; Nazar, L. F.; et al. Adv. Energy Mater.2013, 3, 770. doi: 10.1002/aenm.201200825

    75. [75]

      (75) Chen, M.; Chen, L.; Hu, Z.; Liu, Q.; Zhang, B.; Hu, Y.; Gu, Q.; Wang, J. L.; Wang, L. Z.; Guo, X.; et al. Adv. Mater. 2017,29, 1605535. doi: 10.1002/adma.201605535

    76. [76]

      (76) Liu, B.; Zou, Y.; Chen, S.; Zhang, H.; Sun, J.; She, X.; Yang, D. Chem. Eng. J. 2019, 365, 325. doi: 10.1016/j.cej.2019.01.177

    77. [77]

      (77) Liu, Y.; Wu, Z.; Indris, S.; Hua, W.; Casati, N. P. M.; Tayal, A.; Darma, M. S. D.; Wang, G.; Liu, Y.; Wu, C.; et al. Nano Energy 2021,79, 105417. doi: 10.1016/j.nanoen.2020.105417

    78. [78]

      (78) Li, S.; Chen, S.; Yu, C.; Zhao, H.; Yin, Y.; Song, X.; Bai, Y.; Gao, L. Ceram. Int. 2022, 48, 30384. doi: 10.1016/j.ceramint.2022.06.312

    79. [79]

      (79) Lin, B.; Zhang, S.; Deng, C. J. Mater. Chem. A 2016,4, 2550. doi: 10.1039/c5ta09403h

    80. [80]

      (80) Song, H. J.; Kim, K. H.; Kim, J. C.; Hong, S. H.; Kim, D. W. Chem. Commun. 2017, 53, 9316. doi: 10.1039/c7cc01812f

    81. [81]

      (81) Pu, X.; Yang, K.; Pan, Z.; Song, C.; Lai, Y.; Li, R.; Xu, Z. L.; Chen, Z.; Cao, Y. Carbon Energy 2023, 6, 1. doi: 10.1002/cey2.449

    82. [82]

      (82) Du, G.; Tao, M.; Qi, Y.; Gao, W.; Bao, S.-j.; Xu, M. Mater. Chem. Front. 2021, 5, 2783. doi: 10.1039/d0qm00847h

    83. [83]

      (83) Zhao, A.; Ji, F.; Liu, C.; Zhang, S.; Chen, K.; Chen, W.; Feng, X.; Zhong, F.; Ai, X.; Yang, H.; et al. Sci. Bull. 2023, 68, 1894. doi: 10.1016/j.scib.2023.07.034

    84. [84]

      (84) Yang, W.; Liu, Q.; Hou, L.; Yang, Q.; Mu, D.; Tan, G.; Li, L.; Chen, R.; Wu, F. Small. 2024, 20, 2306595. doi: 10.1002/smll.202306595

    85. [85]

    86. [86]

      (86) Tripathi, R.; Ramesh, T. N.; Ellis, B. L.; Nazar, L. F. Angew. Chem. Int. Ed. 2010, 49, 8738. doi: 10.1002/anie.201003743

    87. [87]

      (87) Kim M, K. D., Lee W, et al. Chem. Mater. 2018, 30, 6346. doi: 10.1021/acs.chemmater.8b02354

    88. [88]

      (88) Li, S.; Song, X.; Kuai, X.; Zhu, W.; Tian, K.; Li, X.; Chen, M.; Chou, S.; Zhao, J.; Gao, L. J. Mater. Chem. A 2019, 7, 14656. doi: 10.1039/c9ta03089a

    89. [89]

      (89) Lu, J.; Yamada, A. ChemElectroChem 2016, 3, 902. doi: 10.1002/celc.201500535

    90. [90]

      (90) Mason, C. W.; Gocheva, I.; Hoster, H. E.; Yu, D. Y. Chem. Commun. 2014, 50, 2249. doi: 10.1039/c3cc47557c

    91. [91]

      (91) Wong, L. L.; Chen, H. M.; Adams, S. Phys. Chem. Chem. Phys.2015, 17, 9186. doi: 10.1039/c5cp00380f

    92. [92]

      (92) Barpanda, P.; Oyama, G.; Ling, C. D.; Yamada, A. Chem. Mater.2014, 26, 1297. doi: 10.1021/cm4033226

    93. [93]

      (93) Liu, C.; Chen, K.; Xiong, H.; Zhao, A.; Zhang, H.; Li, Q.; Ai, X.; Yang, H.; Fang, Y.; Cao, Y. eScience 2024, 4, 100186. doi: 10.1016/j.esci.2023.100186

    94. [94]

      (94) Ati, M.; Dupont, L.; Recham, N.; Chotard, J. N.; Walker, W. T.; Davoisne, C.; Barpanda, P.; Sarou-Kanian, V.; Armand, M.; Tarascon, J. M. Chem. Mater.2010, 22, 4062. doi: 10.1021/cm1010482

    95. [95]

      (95) Goñi, A.; Iturrondobeitia, A.; Gil de Muro, I.; Lezama, L.; Rojo, T.J. Power Sources 2017, 369, 95. doi: 10.1016/j.jpowsour.2017.09.087

    96. [96]

      (96) Oyama, G.; Nishimura, S. i.; Suzuki, Y.; Okubo, M.; Yamada, A. ChemElectroChem2015, 2, 1019. doi: 10.1002/celc.201500036

    97. [97]

      (97) Dwibedi, D.; Ling, C. D.; Araujo, R. B.; Chakraborty, S.; Duraisamy, S.; Munichandraiah, N.; Ahuja, R.; Barpanda, P. ACS Appl. Mater. Interfaces2016, 8, 6982. doi: 10.1021/acsami.5b11302

    98. [98]

      (98) Meng, Y.; Yu, T.; Zhang, S.; Deng, C. J. Mater. Chem. A 2016,4, 1624. doi: 10.1039/c5ta07696j

    99. [99]

      (99) Chen, M.; Cortie, D.; Hu, Z.; Jin, H.; Wang, S.; Gu, Q.; Hua, W.; Wang, E.; Lai, W.; Chen, L.; et al. Adv. Energy Mater. 2018,8, 1800944. doi: 10.1002/aenm.201800944

    100. [100]

      (100) Zhang, J.; Yan, Y.; Wang, X.; Cui, Y.; Zhang, Z.; Wang, S.; Xie, Z.; Yan, P.; Chen, W. Nat. Commun. 2023, 14, 3701. doi: 10.1038/s41467-023-39384-7

    101. [101]

      (101) Fang, Y.; Liu, Q.; Feng, X.; Chen, W.; Ai, X.; Wang, L.; Wang, L.; Ma, Z.; Ren, Y.; Yang, H.; et al. J. Energy Chem. 2021, 54, 564. doi: 10.1016/j.jechem.2020.06.020

    102. [102]

      (102) Wei, S.; Mortemard de Boisse, B.; Oyama, G.; Nishimura, S. I.; Yamada, A. ChemElectroChem2015, 3, 209. doi: 10.1002/celc.201500455

    103. [103]

      (103) Oyama, G.; Pecher, O.; Griffith, K. J.; Nishimura, S.-i.; Pigliapochi, R.; Grey, C. P.; Yamada, A. Chem. Mater. 2016, 28, 5321. doi: 10.1021/acs.chemmater.6b01091

    104. [104]

      (104) Wang, W.; Liu, X.; Xu, Q.; Liu, H.; Wang, Y.-G.; Xia, Y.; Cao, Y.; Ai, X. J. Mater. Chem. A 2018, 6, 4354. doi: 10.1039/c7ta11110j

    105. [105]

      (105) Guan, W. H.; Lin, Q. Y.; Lan, Z. Y.; Pan, W. L.; Wei, X.; Sun, W. P.; Zheng, R. T.; Lu, Y. H.; Shu, J.; Pan, H. G.; et al. Mater. Today Nano2020, 12, 100098. doi: 10.1016/j.mtnano.2020.100098

    106. [106]

      (106) Ji, L.; Lin, Z.; Alcoutlabi, M.; Zhang, X. Energy Environ. Sci.2011, 4, 2682. doi: 10.1039/c0ee00699h

    107. [107]

      (107) Harishpal; Sharma, Y. Solid State Ionics 2022, 388, 116084. doi: 10.1016/j.ssi.2022.116084

    108. [108]

      (108) Kee, Y.; Dimov, N.; Staykov, A.; Okada, S. Mater. Chem. Phys.2016, 171, 45. doi: 10.1016/j.matchemphys.2016.01.033

    109. [109]

      (109) Li, S.; Guo, J.; Ye, Z.; Zhao, X.; Wu, S.; Mi, J. X.; Wang, C. Z.; Gong, Z.; McDonald, M. J.; Zhu, Z., et al. ACS Appl. Mater. Interfaces2016, 8, 17233. doi: 10.1021/acsami.6b03969

    110. [110]

      (110) Wu, P.; Wu, S. Q.; Lv, X.; Zhao, X.; Ye, Z.; Lin, Z.; Wang, C. Z.; Ho, K. M. Phys. Chem. Chem. Phys. 2016, 18, 23916. doi: 10.1039/c6cp05135a

    111. [111]

      (111) Bai, Y.; Zhang, X.; Tang, K.; Yang, L.; Liu, H.; Liu, L.; Zhao, Q.; Wang, Y.; Wang, X. ACS Appl. Mater. Interfaces 2019, 11, 31980. doi: 10.1021/acsami.9b10029

    112. [112]

      (112) Harishpal; Sharma, Y. Solid State Ionics 2021, 370, 115737. doi: 10.1016/j.ssi.2021.115737

    113. [113]

      (113) Shukla, A. K.; Prem Kumar, T. WIREs Energy and Environment 2012,2, 14. doi: 10.1002/wene.48

    114. [114]

      (114) Cui, T.; Tang, C.; Li, J.; Wang, B.; Min, Z.; Liu, J.; Ning, J.; Xiao, K.; Zong, Z.; Zhang, Y. Energy Technol. 2022, 10, 2200619. doi: 10.1002/ente.202200619

    115. [115]

      (115) Tang, Y.; Gao, Y.; Liu, L.; Zhang, Y.; Xie, J.; Zeng, X. Inorg. Chem. Front. 2020, 7, 4438. doi: 10.1039/d0qi00864h

    116. [116]

      (116) Kaliyappan, K.; Jauhar, M. A.; Yang, L.; Bai, Z.; Yu, A.; Chen, Z.Electrochim. Acta 2019, 327, 134959. doi: 10.1016/j.electacta.2019.134959

    117. [117]

      (117) Bai, Y.; Zhang, X.; Shu, H.; Luo, Z.; Hu, H.; Zhao, Q.; Wang, Y.; Wang, X. ACS Appl. Mater. Interfaces. 2020, 12, 34858. doi: 10.1021/acsami.0c07894

    118. [118]

      (118) Feng, Z.; Tang, M.; Yan, Z. Ceram. Int. 2018, 44, 22019. doi: 10.1016/j.ceramint.2018.08.186

    119. [119]

      (119) Kaliyappan, K.; Chen, Z. Electrochim. Acta 2018, 283, 1384. doi: 10.1016/j.electacta.2018.07.034

    120. [120]

      (120) Gao, J.; Zeng, J.; Jian, W.; Mei, Y.; Ni, L.; Wang, H.; Wang, K.; Hu, X.; Deng, W.; Zou, G.; et al. Sci. Bull. 2024, 69, 772. doi: 10.1016/j.scib.2024.01.026

    121. [121]

      (121) Kosova, N. V.; Shindrov, A A. Batteries 2019, 5, 39. doi: 10.3390/batteries5020039

    122. [122]

      (122) Gezović, A.; Vujković, M. J.; Milović, M.; Grudić, V.; Dominko, R.; Mentus, S. Energy Storage Mater. 2021,37, 243. doi: 10.1016/j.ensm.2021.02.011

    123. [123]

      (123) Kim, H.; Park, I.; Lee, S.; Kim, H.; Park, K.-Y.; Park, Y.-U.; Kim, H.; Kim, J.; Lim, H.-D.; Yoon, W.-S.; et al. Chem. Mater. 2013,25, 3614. doi: 10.1021/cm4013816

    124. [124]

      (124) Kim, H.; Park, I.; Seo, D. H.; Lee, S.; Kim, S. W.; Kwon, W. J.; Park, Y. U.; Kim, C. S.; Jeon, S.; Kang, K. J. Am. Chem. Soc. 2012,134, 10369. doi: 10.1021/ja3038646

    125. [125]

      (125) Wu, X.; Zhong, G.; Yang, Y. J. Power Sources 2016, 327, 666. doi: 10.1016/j.jpowsour.2016.07.061

    126. [126]

      (126) Zhao, A.; Yuan, T.; Li, P.; Liu, C.; Cong, H.; Pu, X.; Chen, Z.; Ai, X.; Yang, H.; Cao, Y. Nano Energy 2022, 91, 106680. doi: 10.1016/j.nanoen.2021.106680

    127. [127]

      (127) Gao, J.; Tian, Y.; Mei, Y.; Ni, L.; Wang, H.; Liu, H.; Deng, W.; Zou, G.; Hou, H.; Ji, X. Chem. Eng. J. 2023, 458, 141385. doi: 10.1016/j.cej.2023.141385

    128. [128]

      (128) Li, X.; Zhang, J.; Zhang, Y.; Zhang, B.; Liu, H.; Xu, Q.; Xia, Y. Chem. Eng. Sci. 2022, 260, 117951. doi: 10.1016/j.ces.2022.117951

    129. [129]

      (129) Li, H.; Guan, C.; Zhang, J.; Cheng, K.; Chen, Q.; He, L.; Ge, X.; Lai, Y.; Sun, H.; Zhang, Z. Adv. Mater. 2022, 34, 2202624. doi: 10.1002/adma.202202624

    130. [130]

      (130) Ren, W.; Qin, M.; Zhou, Y.; Zhou, H.; Zhu, J.; Pan, J.; Zhou, J.; Cao, X.; Liang, S. Energy Storage Mater. 2023, 54, 776. doi: 10.1016/j.ensm.2022.11.018

    131. [131]

      (131) Pu, X.; Wang, H.; Yuan, T.; Cao, S.; Liu, S.; Xu, L.; Yang, H.; Ai, X.; Chen, Z.; Cao, Y. Energy Storage Mater. 2019, 22, 330. doi: 10.1016/j.ensm.2019.02.017

    132. [132]

      (132) Ge, X.; Li, H.; Li, J.; Guan, C.; Wang, X.; He, L.; Li, S.; Lai, Y.; Zhang, Z. Small 2023, 19, 2302609. doi: 10.1002/smll.202302609

    133. [133]

      (133) Boyadzhieva, T. J.; Koleva, V. G.; Kukeva, R. R.; Stoyanova, R. K.ACS Appl. Energy Mater. 2021, 4, 7182. doi: 10.1021/acsaem.1c01269

    134. [134]

      (134) Xiong, F.; Li, J.; Zuo, C.; Zhang, X.; Tan, S.; Jiang, Y.; An, Q.; Chu, P. K.; Mai, L. Adv. Funct. Mater. 2022, 33, 2211257. doi: 10.1002/adfm.202211257

    135. [135]

      (135) Li, X.; Zhang, Y.; Zhang, B.; Qin, K.; Liu, H.; Ma, Z.-F. J. Power Sources 2022, 521, 230922. doi: 10.1016/j.jpowsour.2021.230922

    136. [136]

      (136) Xi, Y.; Wang, X.; Wang, H.; Wang, M.; Wang, G.; Peng, J.; Hou, N.; Huang, X.; Cao, Y.; Yang, Z.; et al. Adv. Funct. Mater. 2023,34, 2309701. doi: 10.1002/adfm.202309701

    137. [137]

      (137) Yuan, T.; Wang, Y.; Zhang, J.; Pu, X.; Ai, X.; Chen, Z.; Yang, H.; Cao, Y. Nano Energy 2019, 56, 160. doi: 10.1016/j.nanoen.2018.11.011

    138. [138]

      (138) Wood, S. M.; Eames, C.; Kendrick, E.; Islam, M. S.J. Phys. Chem. 2015, 119, 15935. doi: 10.1021/acs.jpcc.5b04648

    139. [139]

      (139) Zhao, A.; Liu, C.; Ji, F.; Zhang, S.; Fan, H.; Ni, W.; Fang, Y.; Ai, X.; Yang, H.; Cao, Y. ACS Energy Lett. 2022, 8, 753. doi: 10.1021/acsenergylett.2c02693

    140. [140]

      (140) Cao, Y.; Yang, C.; Liu, Y.; Xia, X.; Zhao, D.; Cao, Y.; Yang, H.; Zhang, J.; Lu, J.; Xia, Y. ACS Energy Lett. 2020, 5, 3788. doi: 10.1021/acsenergylett.0c01902

    141. [141]

      (141) Wang, H.; Pan, Z.; Zhang, H.; Dong, C.; Ding, Y.; Cao, Y.; Chen, Z. Small Methods 2021, 5, 2100372. doi: 10.1002/smtd.202100372

    142. [142]

      (142) Guo, J. Z.; Zhang, H. X.; Gu, Z. Y.; Du, M.; Lü, H. Y.; Zhao, X. X.; Yang, J. L.; Li, W. H.; Kang, S.; Zou, W.; et al. Adv. Funct. Mater.2022, 32, 2209482. doi: 10.1002/adfm.202209482

    143. [143]

      (143) Wang, N.; Wang, R.; Jiang, M.; Zhang, J. J. Alloy. Compd. 2021,870, 159382. doi: 10.1016/j.jallcom.2021.159382

    144. [144]

      (144) Chen, H.; Hautier, G.; Ceder, G. J. Am. Chem. Soc. 2012,134, 19619. doi: 10.1021/ja3040834

    145. [145]

      (145) Xie, B.; Sakamoto, R.; Kitajou, A.; Nakamoto, K.; Zhao, L.; Okada, S.; Fujita, Y.; Oka, N.; Nishida, T.; Kobayashi, W. Sci. Rep. 2020,10, 3278. doi: 10.1038/s41598-020-60183-3

    146. [146]

      (146) Rousseau, B.; Timoshevskii, V.; Mousseau, N.; Côté, M.; Zaghib, K. Mater. Sci. Eng. B. 2016, 211, 185. doi: 10.1016/j.mseb.2016.07.007

  • 加载中
    1. [1]

      Jianbao Mei Bei Li Shu Zhang Dongdong Xiao Pu Hu Geng Zhang . Enhanced Performance of Ternary NASICON-Type Na3.5-xMn0.5V1.5-xZrx(PO4)3/C Cathodes for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(12): 2407023-. doi: 10.3866/PKU.WHXB202407023

    2. [2]

      Yu Guo Zhiwei Huang Yuqing Hu Junzhe Li Jie Xu . 钠离子电池中铁基异质结构负极材料的最新研究进展. Acta Physico-Chimica Sinica, 2025, 41(3): 2311015-. doi: 10.3866/PKU.WHXB202311015

    3. [3]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    4. [4]

      Zhuo Wang Xue Bai Kexin Zhang Hongzhi Wang Jiabao Dong Yuan Gao Bin Zhao . MOF模板法合成氮掺杂碳材料用于增强电化学钠离子储存和去除. Acta Physico-Chimica Sinica, 2025, 41(3): 2405002-. doi: 10.3866/PKU.WHXB202405002

    5. [5]

      Pengyang FANShan FANQinjin DAIXiaoying ZHENGWei DONGMengxue WANGXiaoxiao HUANGYong ZHANG . Preparation and performance of rich 1T-MoS2 nanosheets for high-performance aqueous zinc ion battery cathode materials. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 675-682. doi: 10.11862/CJIC.20240339

    6. [6]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    7. [7]

      Lingbang Qiu Jiangmin Jiang Libo Wang Lang Bai Fei Zhou Gaoyu Zhou Quanchao Zhuang Yanhua Cui . 原位电化学阻抗谱监测长寿命热电池Nb12WO33正极材料的高温双放电机制. Acta Physico-Chimica Sinica, 2025, 41(5): 100040-. doi: 10.1016/j.actphy.2024.100040

    8. [8]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    9. [9]

      Yuting ZHANGZunyi LIUNing LIDongqiang ZHANGShiling ZHAOYu ZHAO . Nickel vanadate anode material with high specific surface area through improved co-precipitation method: Preparation and electrochemical properties. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2163-2174. doi: 10.11862/CJIC.20240204

    10. [10]

      Yahui HANJinjin ZHAONing RENJianjun ZHANG . Synthesis, crystal structure, thermal decomposition mechanism, and fluorescence properties of benzoic acid and 4-hydroxy-2, 2′: 6′, 2″-terpyridine lanthanide complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 969-982. doi: 10.11862/CJIC.20240395

    11. [11]

      Xiangyu CAOJiaying ZHANGYun FENGLinkun SHENXiuling ZHANGJuanzhi YAN . Synthesis and electrochemical properties of bimetallic-doped porous carbon cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 509-520. doi: 10.11862/CJIC.20240270

    12. [12]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    13. [13]

      Yan Liu Yuexiang Zhu Luhua Lai . Introduction to Blended and Small-Class Teaching in Structural Chemistry: Exploring the Structure and Properties of Crystals. University Chemistry, 2024, 39(3): 1-4. doi: 10.3866/PKU.DXHX202306084

    14. [14]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    15. [15]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    16. [16]

      Zhicheng JUWenxuan FUBaoyan WANGAo LUOJiangmin JIANGYueli SHIYongli CUI . MOF-derived nickel-cobalt bimetallic sulfide microspheres coated by carbon: Preparation and long cycling performance for sodium storage. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 661-674. doi: 10.11862/CJIC.20240363

    17. [17]

      Hongjie SHENHaozhe MIAOYuhe YANGYinghua LIDeguang HUANGXiaofeng ZHANG . Synthesis, crystal structure, and fluorescence properties of two Cu(Ⅰ) complexes based on pyridyl ligand. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 855-863. doi: 10.11862/CJIC.20250009

    18. [18]

      Changqing MIAOFengjiao CHENWenyu LIShujie WEIYuqing YAOKeyi WANGNi WANGXiaoyan XINMing FANG . Crystal structures, DNA action, and antibacterial activities of three tetranuclear lanthanide-based complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2455-2465. doi: 10.11862/CJIC.20240192

    19. [19]

      Jing WUPuzhen HUIHuilin ZHENGPingchuan YUANChunfei WANGHui WANGXiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278

    20. [20]

      Zhaoxuan ZHULixin WANGXiaoning TANGLong LIYan SHIJiaojing SHAO . Application of poly(vinyl alcohol) conductive hydrogel electrolytes in zinc ion batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 893-902. doi: 10.11862/CJIC.20240368

Metrics
  • PDF Downloads(13)
  • Abstract views(628)
  • HTML views(134)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return