Citation:
Yuyao Wang, Zhitao Cao, Zeyu Du, Xinxin Cao, Shuquan Liang. Research Progress of Iron-based Polyanionic Cathode Materials for Sodium-Ion Batteries[J]. Acta Physico-Chimica Sinica,
;2025, 41(4): 100035.
doi:
10.3866/PKU.WHXB202406014
-
Sodium ion batteries, due to their abundant resources, low raw material costs, excellent performance in low-temperature conditions, and fast charging capabilities, offer promising prospects for power grid energy storage and low-speed transportation. They serve as a complementary alternative to lithium-ion batteries. The cathode material is crucial for overall battery performance, acting as a bottleneck for enhancing the specific energy of sodium-ion batteries and a significant factor influencing costs. Low-cost iron-based polyanionic cathode materials have garnered attention in basic research and industrialization due to their inherent advantages: excellent structural stability, high safety levels, and minimal volume strain during charge-discharge cycles. These advantages are pivotal for practical implementations in electric vehicles, large-scale energy storage systems, portable electronics, and related applications. However, challenges such as capacity decay and structural stability during prolonged cycling may limit their industrial applicability. Therefore, enhancing material cycling life and battery system stability are critical concerns. Additionally, researchers are focused on discovering new iron-based polyanion cathode materials with high specific capacity, operating voltage, and conductivity. This review comprehensively covers recent advancements in iron-based polyanionic cathode materials for sodium-ion batteries, encompassing iron-based phosphates, fluorophosphates, pyrophosphates, sulfates, and mixed polyanionic compounds. The analysis systematically explores crystal structures, preparation methods, sodium storage mechanisms, and modification strategies for various iron-based polyanionic materials, elucidating the structure-activity relationship between chemical composition, structural regulation techniques, and performance enhancement. Moreover, the article discusses challenges encountered during the transition from laboratory-scale research to large-scale industrial applications of iron-based polyanion cathode materials, along with corresponding solutions. These insights aim to offer theoretical and technical guidance for developing novel, low-cost cathode materials with high specific energy densities and advancing the industrialization of sodium-ion batteries.
-
-
-
[1]
-
[2]
-
[3]
(3) Song, Z.; Liu, R.; Liu, W.-D.; Chen, Y.; Hu, W. Adv. Energ. Sust. Res. 2023, 4, 2300102. doi: 10.1002/aesr.202300102
-
[4]
-
[5]
(5) Li, H.; Xu, M.; Zhang, Z.; Lai, Y.; Ma, J. Adv. Funct. Mater. 2020,30, 2000473. doi: 10.1002/adfm.202000473
-
[6]
(6) Oh, S.-M.; Myung, S.-T.; Hassoun, J.; Scrosati, B.; Sun, Y.-K. Electrochem. Commun. 2012, 22, 149. doi: 10.1016/j.elecom.2012.06.014
-
[7]
(7) Zhu, L.; Li, L.; Wen, J.; Zeng, Y.-R. J. Power Sources 2019,438, 227016. doi: 10.1016/j.jpowsour.2019.227016
-
[8]
(8) Kim, J.; Seo, D.-H.; Kim, H.; Park, I.; Yoo, J.-K.; Jung, S.-K.; Park, Y.-U.; Goddard Iii, W. A.; Kang, K. Energy Environ. Sci. 2015,8, 540. doi: 10.1039/c4ee03215b
-
[9]
(9) Savithiri, G.; Priyanka, V.; Subadevi, R.; Sivakumar, M. J. Nanopart. Res. 2020, 22, 29. doi: 10.1007/s11051-019-4733-9
-
[10]
(10) Jian, Z.; Zhao, L.; Pan, H.; Hu, Y.-S.; Li, H.; Chen, W.; Chen, L.Electrochem. Commun. 2012, 14, 86. doi: 10.1016/j.elecom.2011.11.009
-
[11]
(11) Ben Yahia, H.; Essehli, R.; Amin, R.; Boulahya, K.; Okumura, T.; Belharouak, I. J. Power Sources 2018, 382, 144. doi: 10.1016/j.jpowsour.2018.02.021
-
[12]
(12) Masquelier, C, W. C.; Rodríguez-Carvajal, J.; Gaubicher, J.; Nazar, L. Chem. Mater. 2000,12, 525. doi: 10.1021/cm991138n
-
[13]
(13) Chen, M.; Hua, W.; Xiao, J.; Cortie, D.; Chen, W.; Wang, E.; Hu, Z.; Gu, Q.; Wang, X.; Indris, S.; et al. Nat. Commun. 2019,10, 1480. doi: 10.1038/s41467-019-09170-5
-
[14]
(14) Zhou, W.; Xue, L.; Lu, X.; Gao, H.; Li, Y.; Xin, S.; Fu, G.; Cui, Z.; Zhu, Y.; Goodenough, J. B. Nano Lett. 2016, 16, 7836. doi: 10.1021/acs.nanolett.6b04044
-
[15]
(15) Li, H.; Wang, T.; Wang, S.; Wang, X.; Xie, Y.; Hu, J.; Lai, Y.; Zhang, Z. ACS Sustain. Chem. Eng. 2021, 9, 11798. doi: 10.1021/acssuschemeng.1c03355
-
[16]
(16) Barpanda, P.; Oyama, G.; Nishimura, S.; Chung, S. C.; Yamada, A. Nat. Commun. 2014, 5, 4358. doi: 10.1038/ncomms5358
-
[17]
(17) Zheng, M. Y.; Bai, Z. Y.; He, Y. W.; Wu, S.; Yang, Y.; Zhu, Z. Z. ACS Omega 2020, 5, 5192. doi: 10.1021/acsomega.9b04213
-
[18]
-
[19]
(19) Senthilkumar, B.; Murugesan, C.; Sharma, L.; Lochab, S.; Barpanda, P. Small Methods 2018, 3, 1800253. doi: 10.1002/smtd.201800253
-
[20]
-
[21]
(21) Avdeev, M.; Mohamed, Z.; Ling, C. D.; Lu, J.; Tamaru, M.; Yamada, A.; Barpanda, P. Inorg. Chem. 2013, 52, 8685. doi: 10.1021/ic400870x
-
[22]
(22) Saurel, D.; Galceran, M.; Reynaud, M.; Anne, H.; Casas-Cabanas, M.Int. J. Energy Res. 2018, 42, 3258. doi: 10.1002/er.4078
-
[23]
(23) Wazeer, W.; Nabil, M. M.; Feteha, M.; Soliman, M. B.; Kashyout, A. E. B. Sci. Rep. 2022, 12, 16307. doi: 10.1038/s41598-022-20329-x
-
[24]
(24) Zhu, Y.; Xu, Y.; Liu, Y.; Luo, C.; Wang, C. Nanoscale 2013,5, 780. doi: 10.1039/c2nr32758a
-
[25]
(25) Tang, W.; Song, X.; Du, Y.; Peng, C.; Lin, M.; Xi, S.; Tian, B.; Zheng, J.; Wu, Y.; Pan, F.; et al. J. Mater. Chem. A 2016,4, 4882. doi: 10.1039/c6ta01111j
-
[26]
(26) Ma, X.; Pan, Z.; Wu, X.; Shen, P. K. Chem. Eng. J. 2019,365, 132. doi: 10.1016/j.cej.2019.01.173
-
[27]
(27) Liu, Y.; Zhang, N.; Wang, F.; Liu, X.; Jiao, L.; Fan, L. Z. Adv. Funct. Mater. 2018, 28, 1801917. doi: 10.1002/adfm.201801917
-
[28]
(28) Liu-Théato, X.; Indris, S.; Hua, W.; Li, H.; Knapp, M.; Melinte, G.; Ehrenberg, H. Energy & Fuels2021, 35, 18768. doi: 10.1021/acs.energyfuels.1c02779
-
[29]
(29) Ali, G.; Lee, J. H.; Susanto, D.; Choi, S. W.; Cho, B. W.; Nam, K. W.; Chung, K. Y. ACS Appl. Mater. Interfaces 2016, 8, 15422. doi: 10.1021/acsami.6b04014
-
[30]
(30) Wongittharom, N.; Wang, C. H.; Wang, Y. C.; Yang, C. H.; Chang, J. K. ACS Appl. Mater. Interfaces 2014, 6, 17564. doi: 10.1021/am5033605
-
[31]
(31) Govindaraj, L. V. a. G. NASICON Materials: Structure and Electrical Properties, Polycrystalline Materials-Theoretical and Practical Aspects: Shanghai, 2012; 4, 78–106.
-
[32]
(32) Cao, Y.; Liu, Y.; Zhao, D.; Xia, X.; Zhang, L.; Zhang, J.; Yang, H.; Xia, Y. ACS Sustain. Chem. Eng. 2019, 8, 1380. doi: 10.1021/acssuschemeng.9b05098
-
[33]
(33) Feng, Z.; Ma, Q.; Lu, J.; Feng, H.; Elam, J. W.; Stair, P. C.; Bedzyk, M. J. RSC Advances 2015, 5, 103834. doi: 10.1039/c5ra18404e
-
[34]
(34) Zhou, Y.; Xu, G.; Lin, J.; Zhang, Y.; Fang, G.; Zhou, J.; Cao, X.; Liang, S. Adv. Mater. 2023, 35, e2304428. doi: 10.1002/adma.202304428
-
[35]
(35) Qiu, S.; Wu, X.; Wang, M.; Lucero, M.; Wang, Y.; Wang, J.; Yang, Z.; Xu, W.; Wang, Q.; Gu, M.; et al. Nano Energy 2019, 64, 103941. doi: 10.1016/j.nanoen.2019.103941
-
[36]
(36) Liu, Y.; Zhou, Y.; Zhang, J.; Xia, Y.; Chen, T.; Zhang, S. ACS Sustain. Chem. Eng. 2016, 5, 1306. doi: 10.1021/acssuschemeng.6b01536
-
[37]
(37) Kuganathan, N.; Chroneos, A. Materials 2019, 12, 1348. doi: 10.3390/ma12081348
-
[38]
(38) Cao, Y.; Liu, Y.; Zhao, D.; Zhang, J.; Xia, X.; Chen, T.; Zhang, L.-C.; Qin, P.; Xia, Y. J. Alloy. Compd. 2019, 784, 939. doi: 10.1016/j.jallcom.2019.01.125
-
[39]
(39) Wang, S.; Gao, N.; Wang, G.; He, C.; Lv, S.; Qiu, J. Desalination2021, 520, 115341. doi: 10.1016/j.desal.2021.115341
-
[40]
(40) Sharma, L.; Nakamoto, K.; Sakamoto, R.; Okada, S.; Barpanda, P. Chem. Electro. Chem. 2018, 6, 444. doi: 10.1002/celc.201801314
-
[41]
-
[42]
(42) Ellis, B. L.; Makahnouk, W. R. M.; Rowan-Weetaluktuk, W. N.; Ryan, D. H.; Nazar, L. F. Chem. Mater. 2009, 22, 1059. doi: 10.1021/cm902023h
-
[43]
(43) Kirsanova, M. A.; Akmaev, A. S.; Aksyonov, D. A.; Ryazantsev, S. V.; Nikitina, V. A.; Filimonov, D. S.; Avdeev, M.; Abakumov, A. M. Inorg. Chem.2020, 59, 16225. doi: 10.1021/acs.inorgchem.0c01961
-
[44]
(44) Li, Q.; Liu, Z.; Zheng, F.; Liu, R.; Lee, J.; Xu, G. L.; Zhong, G.; Hou, X.; Fu, R.; Chen, Z.; et al. Angew. Chem. Int. Ed. 2018,57, 11918. doi: 10.1002/anie.201805555
-
[45]
(45) Ko, J. S.; Doan-Nguyen, Vicky V. T.; Kim, H.-S.; Petrissans, X.; DeBlock, R. H.; Choi, C. S.; Long, J. W.; Dunn, B. S. J. Mater. Chem. A2017, 5, 18707. doi: 10.1039/c7ta05680j
-
[46]
(46) Song, W.; Ji, X.; Wu, Z.; Zhu, Y.; Yao, Y.; Huangfu, K.; Chen, Q.; Banks, C. E. J. Mater. Chem. A 2014, 2, 2571. doi: 10.1039/c3ta14472k
-
[47]
(47) Huang, H.; Xia, Y.; Hao, Y.; Li, H.; Wang, C.; Shi, T.; Lu, X.; Shahzad, M. W.; Xu, B. B.; Jiang, Y. Adv. Funct. Mater. 2023, 33, 2305109. doi: 10.1002/adfm.202305109
-
[48]
(48) Cui, D.; Chen, S.; Han, C.; Ai, C.; Yuan, L. J. Power Sources2016, 301, 87. doi: 10.1016/j.jpowsour.2015.09.123
-
[49]
(49) Deng, X.; Shi, W.; Sunarso, J.; Liu, M.; Shao, Z. ACS Appl. Mater. Interfaces 2017, 9, 16280. doi: 10.1021/acsami.7b03933
-
[50]
(50) Sharma, L.; Bhatia, A.; Assaud, L.; Franger, S.; Barpanda, P. Ionics2017, 24, 2187. doi: 10.1007/s11581-017-2376-3
-
[51]
(51) Zhou, J.; Zhou, J.; Tang, Y.; Bi, Y.; Wang, C.; Wang, D.; Shi, S. Ceram. Int. 2013, 39, 5379. doi: 10.1016/j.ceramint.2012.12.044
-
[52]
(52) Xun, J.; Zhang, Y.; Zhang, B.; Xu, H.; Xu, L. ACS Appl. Energy Mater. 2020, 3, 6232. doi: 10.1021/acsaem.0c00323
-
[53]
(53) Wang, F.; Zhang, N.; Zhao, X.; Wang, L.; Zhang, J.; Wang, T.; Liu, F.; Liu, Y.; Fan, L. Z. Adv. Sci. 2019, 6, 1900649. doi: 10.1002/advs.201900649
-
[54]
(54) Hu, H.; Bai, Y.; Miao, C.; Luo, Z.; Wang, X. J. Electroanal. Chem. 2020, 867, 114187. doi: 10.1016/j.jelechem.2020.114187
-
[55]
(55) Ling, R.; Cai, S.; Xie, D.; Shen, W.; Hu, X.; Li, Y.; Hua, S.; Jiang, Y.; Sun, X. J. Mater. Sci. 2017, 53, 2735. doi: 10.1007/s10853-017-1738-6
-
[56]
(56) Hua, S.; Cai, S.; Ling, R.; Li, Y.; Jiang, Y.; Xie, D.; Jiang, S.; Lin, Y.; Shen, K. Inorg. Chem. Commun. 2018, 95, 90. doi: 10.1016/j.inoche.2018.07.011
-
[57]
(57) Ko, W.; Yoo, J.-K.; Park, H.; Lee, Y.; Kim, H.; Oh, Y.; Myung, S.-T.; Kim, J. J. Power Sources 2019, 432, 1. doi: 10.1016/j.jpowsour.2019.05.066
-
[58]
(58) Hu, H.; Wang, Y.; Huang, Y.; Shu, H.-b.; Wang, X.-y. J. Cent. South Univ. 2019, 26, 1521. doi: 10.1007/s11771-019-4108-5
-
[59]
(59) Dong, J.; Xiao, J.; Yu, Y.; Wang, J.; Chen, F.; Wang, S.; Zhang, L.; Ren, N.; Pan, B.; Chen, C. Energy Storage Mater. 2022, 45, 851. doi: 10.1016/j.ensm.2021.12.034
-
[60]
(60) Yan, J.; Liu, X.; Li, B. Electrochem. Commun. 2015, 56, 46. doi: 10.1016/j.elecom.2015.04.009
-
[61]
(61) Chen, C.-Y.; Matsumoto, K.; Nohira, T.; Hagiwara, R.; Orikasa, Y.; Uchimoto, Y. J. Power Sources 2014, 246, 783. doi: 10.1016/j.jpowsour.2013.08.027
-
[62]
(62) Clark, J. M.; Barpanda, P.; Yamada, A.; Islam, M. S. J. Mater. Chem. A 2014, 2, 11807. doi: 10.1039/c4ta02383h
-
[63]
(63) Ren, L.; Song, L.; Guo, Y.; Wu, Y.; Lian, J.; Zhou, Y.-N.; Yuan, W.; Yan, Q.; Wang, Q.; Ma, S.; et al. Appl. Surf. Sci. 2021,544, 148893. doi: 10.1016/j.apsusc.2020.148893
-
[64]
(64) Makhlooghiazad, F.; Sharma, M.; Zhang, Z.; Howlett, P. C.; Forsyth, M.; Nazar, L. F. J. Phys. Chem. Lett. 2020, 11, 2092. doi: 10.1021/acs.jpclett.0c00149
-
[65]
(65) Barpanda, P.; Ye, T.; Nishimura, S.-i.; Chung, S.-C.; Yamada, Y.; Okubo, M.; Zhou, H.; Yamada, A. Electrochem. Commun. 2012, 24, 116. doi: 10.1016/j.elecom.2012.08.028
-
[66]
(66) Barpanda, P.; Nishimura, S. i.; Yamada, A. Adv. Energy Mater.2012, 2, 841. doi: 10.1002/aenm.201100772
-
[67]
(67) Niu, Y.; Xu, M.; Cheng, C.; Bao, S.; Hou, J.; Liu, S.; Yi, F.; He, H.; Li, C. M. J. Mater. Chem. A 2015, 3, 17224. doi: 10.1039/c5ta03127c
-
[68]
(68) Longoni, G.; Wang, J. E.; Jung, Y. H.; Kim, D. K.; Mari, C. M.; Ruffo, R. J. Power Sources 2016, 302, 61. doi: 10.1016/j.jpowsour.2015.10.033
-
[69]
(69) Chen, X.; Du, K.; Lai, Y.; Shang, G.; Li, H.; Xiao, Z.; Chen, Y.; Li, J.; Zhang, Z. J. Power Sources 2017, 357, 164. doi: 10.1016/j.jpowsour.2017.04.075
-
[70]
(70) Zhang, Y.; Zhang, J.; Shao, T.; Li, X.; Chen, G.; Liu, H.; Ma, Z. F. ACS Appl. Mater. Interfaces 2022, 14, 14253. doi: 10.1021/acsami.2c00821
-
[71]
(71) Barpanda, P.; Liu, G.; Mohamed, Z.; Ling, C. D.; Yamada, A. Solid State Ionics 2014, 268, 305. doi: 10.1016/j.ssi.2014.03.011
-
[72]
(72) Shakoor, R. A.; Park, C. S.; Raja, A. A.; Shin, J.; Kahraman, R. Phys. Chem. Chem. Phys. 2016, 18, 3929. doi: 10.1039/c5cp06836c
-
[73]
(73) Chen, C.-Y.; Kiko, T.; Hosokawa, T.; Matsumoto, K.; Nohira, T.; Hagiwara, R. J. Power Sources 2016, 332, 51. doi: 10.1016/j.jpowsour.2016.09.099
-
[74]
(74) Ha, K. H.; Woo, S. H.; Mok, D.; Choi, N. S.; Park, Y.; Oh, S. M.; Kim, Y.; Kim, J.; Lee, J.; Nazar, L. F.; et al. Adv. Energy Mater.2013, 3, 770. doi: 10.1002/aenm.201200825
-
[75]
(75) Chen, M.; Chen, L.; Hu, Z.; Liu, Q.; Zhang, B.; Hu, Y.; Gu, Q.; Wang, J. L.; Wang, L. Z.; Guo, X.; et al. Adv. Mater. 2017,29, 1605535. doi: 10.1002/adma.201605535
-
[76]
(76) Liu, B.; Zou, Y.; Chen, S.; Zhang, H.; Sun, J.; She, X.; Yang, D. Chem. Eng. J. 2019, 365, 325. doi: 10.1016/j.cej.2019.01.177
-
[77]
(77) Liu, Y.; Wu, Z.; Indris, S.; Hua, W.; Casati, N. P. M.; Tayal, A.; Darma, M. S. D.; Wang, G.; Liu, Y.; Wu, C.; et al. Nano Energy 2021,79, 105417. doi: 10.1016/j.nanoen.2020.105417
-
[78]
(78) Li, S.; Chen, S.; Yu, C.; Zhao, H.; Yin, Y.; Song, X.; Bai, Y.; Gao, L. Ceram. Int. 2022, 48, 30384. doi: 10.1016/j.ceramint.2022.06.312
-
[79]
(79) Lin, B.; Zhang, S.; Deng, C. J. Mater. Chem. A 2016,4, 2550. doi: 10.1039/c5ta09403h
-
[80]
(80) Song, H. J.; Kim, K. H.; Kim, J. C.; Hong, S. H.; Kim, D. W. Chem. Commun. 2017, 53, 9316. doi: 10.1039/c7cc01812f
-
[81]
(81) Pu, X.; Yang, K.; Pan, Z.; Song, C.; Lai, Y.; Li, R.; Xu, Z. L.; Chen, Z.; Cao, Y. Carbon Energy 2023, 6, 1. doi: 10.1002/cey2.449
-
[82]
(82) Du, G.; Tao, M.; Qi, Y.; Gao, W.; Bao, S.-j.; Xu, M. Mater. Chem. Front. 2021, 5, 2783. doi: 10.1039/d0qm00847h
-
[83]
(83) Zhao, A.; Ji, F.; Liu, C.; Zhang, S.; Chen, K.; Chen, W.; Feng, X.; Zhong, F.; Ai, X.; Yang, H.; et al. Sci. Bull. 2023, 68, 1894. doi: 10.1016/j.scib.2023.07.034
-
[84]
(84) Yang, W.; Liu, Q.; Hou, L.; Yang, Q.; Mu, D.; Tan, G.; Li, L.; Chen, R.; Wu, F. Small. 2024, 20, 2306595. doi: 10.1002/smll.202306595
-
[85]
-
[86]
(86) Tripathi, R.; Ramesh, T. N.; Ellis, B. L.; Nazar, L. F. Angew. Chem. Int. Ed. 2010, 49, 8738. doi: 10.1002/anie.201003743
-
[87]
(87) Kim M, K. D., Lee W, et al. Chem. Mater. 2018, 30, 6346. doi: 10.1021/acs.chemmater.8b02354
-
[88]
(88) Li, S.; Song, X.; Kuai, X.; Zhu, W.; Tian, K.; Li, X.; Chen, M.; Chou, S.; Zhao, J.; Gao, L. J. Mater. Chem. A 2019, 7, 14656. doi: 10.1039/c9ta03089a
-
[89]
(89) Lu, J.; Yamada, A. ChemElectroChem 2016, 3, 902. doi: 10.1002/celc.201500535
-
[90]
(90) Mason, C. W.; Gocheva, I.; Hoster, H. E.; Yu, D. Y. Chem. Commun. 2014, 50, 2249. doi: 10.1039/c3cc47557c
-
[91]
(91) Wong, L. L.; Chen, H. M.; Adams, S. Phys. Chem. Chem. Phys.2015, 17, 9186. doi: 10.1039/c5cp00380f
-
[92]
(92) Barpanda, P.; Oyama, G.; Ling, C. D.; Yamada, A. Chem. Mater.2014, 26, 1297. doi: 10.1021/cm4033226
-
[93]
(93) Liu, C.; Chen, K.; Xiong, H.; Zhao, A.; Zhang, H.; Li, Q.; Ai, X.; Yang, H.; Fang, Y.; Cao, Y. eScience 2024, 4, 100186. doi: 10.1016/j.esci.2023.100186
-
[94]
(94) Ati, M.; Dupont, L.; Recham, N.; Chotard, J. N.; Walker, W. T.; Davoisne, C.; Barpanda, P.; Sarou-Kanian, V.; Armand, M.; Tarascon, J. M. Chem. Mater.2010, 22, 4062. doi: 10.1021/cm1010482
-
[95]
(95) Goñi, A.; Iturrondobeitia, A.; Gil de Muro, I.; Lezama, L.; Rojo, T.J. Power Sources 2017, 369, 95. doi: 10.1016/j.jpowsour.2017.09.087
-
[96]
(96) Oyama, G.; Nishimura, S. i.; Suzuki, Y.; Okubo, M.; Yamada, A. ChemElectroChem2015, 2, 1019. doi: 10.1002/celc.201500036
-
[97]
(97) Dwibedi, D.; Ling, C. D.; Araujo, R. B.; Chakraborty, S.; Duraisamy, S.; Munichandraiah, N.; Ahuja, R.; Barpanda, P. ACS Appl. Mater. Interfaces2016, 8, 6982. doi: 10.1021/acsami.5b11302
-
[98]
(98) Meng, Y.; Yu, T.; Zhang, S.; Deng, C. J. Mater. Chem. A 2016,4, 1624. doi: 10.1039/c5ta07696j
-
[99]
(99) Chen, M.; Cortie, D.; Hu, Z.; Jin, H.; Wang, S.; Gu, Q.; Hua, W.; Wang, E.; Lai, W.; Chen, L.; et al. Adv. Energy Mater. 2018,8, 1800944. doi: 10.1002/aenm.201800944
-
[100]
(100) Zhang, J.; Yan, Y.; Wang, X.; Cui, Y.; Zhang, Z.; Wang, S.; Xie, Z.; Yan, P.; Chen, W. Nat. Commun. 2023, 14, 3701. doi: 10.1038/s41467-023-39384-7
-
[101]
(101) Fang, Y.; Liu, Q.; Feng, X.; Chen, W.; Ai, X.; Wang, L.; Wang, L.; Ma, Z.; Ren, Y.; Yang, H.; et al. J. Energy Chem. 2021, 54, 564. doi: 10.1016/j.jechem.2020.06.020
-
[102]
(102) Wei, S.; Mortemard de Boisse, B.; Oyama, G.; Nishimura, S. I.; Yamada, A. ChemElectroChem2015, 3, 209. doi: 10.1002/celc.201500455
-
[103]
(103) Oyama, G.; Pecher, O.; Griffith, K. J.; Nishimura, S.-i.; Pigliapochi, R.; Grey, C. P.; Yamada, A. Chem. Mater. 2016, 28, 5321. doi: 10.1021/acs.chemmater.6b01091
-
[104]
(104) Wang, W.; Liu, X.; Xu, Q.; Liu, H.; Wang, Y.-G.; Xia, Y.; Cao, Y.; Ai, X. J. Mater. Chem. A 2018, 6, 4354. doi: 10.1039/c7ta11110j
-
[105]
(105) Guan, W. H.; Lin, Q. Y.; Lan, Z. Y.; Pan, W. L.; Wei, X.; Sun, W. P.; Zheng, R. T.; Lu, Y. H.; Shu, J.; Pan, H. G.; et al. Mater. Today Nano2020, 12, 100098. doi: 10.1016/j.mtnano.2020.100098
-
[106]
(106) Ji, L.; Lin, Z.; Alcoutlabi, M.; Zhang, X. Energy Environ. Sci.2011, 4, 2682. doi: 10.1039/c0ee00699h
-
[107]
(107) Harishpal; Sharma, Y. Solid State Ionics 2022, 388, 116084. doi: 10.1016/j.ssi.2022.116084
-
[108]
(108) Kee, Y.; Dimov, N.; Staykov, A.; Okada, S. Mater. Chem. Phys.2016, 171, 45. doi: 10.1016/j.matchemphys.2016.01.033
-
[109]
(109) Li, S.; Guo, J.; Ye, Z.; Zhao, X.; Wu, S.; Mi, J. X.; Wang, C. Z.; Gong, Z.; McDonald, M. J.; Zhu, Z., et al. ACS Appl. Mater. Interfaces2016, 8, 17233. doi: 10.1021/acsami.6b03969
-
[110]
(110) Wu, P.; Wu, S. Q.; Lv, X.; Zhao, X.; Ye, Z.; Lin, Z.; Wang, C. Z.; Ho, K. M. Phys. Chem. Chem. Phys. 2016, 18, 23916. doi: 10.1039/c6cp05135a
-
[111]
(111) Bai, Y.; Zhang, X.; Tang, K.; Yang, L.; Liu, H.; Liu, L.; Zhao, Q.; Wang, Y.; Wang, X. ACS Appl. Mater. Interfaces 2019, 11, 31980. doi: 10.1021/acsami.9b10029
-
[112]
(112) Harishpal; Sharma, Y. Solid State Ionics 2021, 370, 115737. doi: 10.1016/j.ssi.2021.115737
-
[113]
(113) Shukla, A. K.; Prem Kumar, T. WIREs Energy and Environment 2012,2, 14. doi: 10.1002/wene.48
-
[114]
(114) Cui, T.; Tang, C.; Li, J.; Wang, B.; Min, Z.; Liu, J.; Ning, J.; Xiao, K.; Zong, Z.; Zhang, Y. Energy Technol. 2022, 10, 2200619. doi: 10.1002/ente.202200619
-
[115]
(115) Tang, Y.; Gao, Y.; Liu, L.; Zhang, Y.; Xie, J.; Zeng, X. Inorg. Chem. Front. 2020, 7, 4438. doi: 10.1039/d0qi00864h
-
[116]
(116) Kaliyappan, K.; Jauhar, M. A.; Yang, L.; Bai, Z.; Yu, A.; Chen, Z.Electrochim. Acta 2019, 327, 134959. doi: 10.1016/j.electacta.2019.134959
-
[117]
(117) Bai, Y.; Zhang, X.; Shu, H.; Luo, Z.; Hu, H.; Zhao, Q.; Wang, Y.; Wang, X. ACS Appl. Mater. Interfaces. 2020, 12, 34858. doi: 10.1021/acsami.0c07894
-
[118]
(118) Feng, Z.; Tang, M.; Yan, Z. Ceram. Int. 2018, 44, 22019. doi: 10.1016/j.ceramint.2018.08.186
-
[119]
(119) Kaliyappan, K.; Chen, Z. Electrochim. Acta 2018, 283, 1384. doi: 10.1016/j.electacta.2018.07.034
-
[120]
(120) Gao, J.; Zeng, J.; Jian, W.; Mei, Y.; Ni, L.; Wang, H.; Wang, K.; Hu, X.; Deng, W.; Zou, G.; et al. Sci. Bull. 2024, 69, 772. doi: 10.1016/j.scib.2024.01.026
-
[121]
(121) Kosova, N. V.; Shindrov, A A. Batteries 2019, 5, 39. doi: 10.3390/batteries5020039
-
[122]
(122) Gezović, A.; Vujković, M. J.; Milović, M.; Grudić, V.; Dominko, R.; Mentus, S. Energy Storage Mater. 2021,37, 243. doi: 10.1016/j.ensm.2021.02.011
-
[123]
(123) Kim, H.; Park, I.; Lee, S.; Kim, H.; Park, K.-Y.; Park, Y.-U.; Kim, H.; Kim, J.; Lim, H.-D.; Yoon, W.-S.; et al. Chem. Mater. 2013,25, 3614. doi: 10.1021/cm4013816
-
[124]
(124) Kim, H.; Park, I.; Seo, D. H.; Lee, S.; Kim, S. W.; Kwon, W. J.; Park, Y. U.; Kim, C. S.; Jeon, S.; Kang, K. J. Am. Chem. Soc. 2012,134, 10369. doi: 10.1021/ja3038646
-
[125]
(125) Wu, X.; Zhong, G.; Yang, Y. J. Power Sources 2016, 327, 666. doi: 10.1016/j.jpowsour.2016.07.061
-
[126]
(126) Zhao, A.; Yuan, T.; Li, P.; Liu, C.; Cong, H.; Pu, X.; Chen, Z.; Ai, X.; Yang, H.; Cao, Y. Nano Energy 2022, 91, 106680. doi: 10.1016/j.nanoen.2021.106680
-
[127]
(127) Gao, J.; Tian, Y.; Mei, Y.; Ni, L.; Wang, H.; Liu, H.; Deng, W.; Zou, G.; Hou, H.; Ji, X. Chem. Eng. J. 2023, 458, 141385. doi: 10.1016/j.cej.2023.141385
-
[128]
(128) Li, X.; Zhang, J.; Zhang, Y.; Zhang, B.; Liu, H.; Xu, Q.; Xia, Y. Chem. Eng. Sci. 2022, 260, 117951. doi: 10.1016/j.ces.2022.117951
-
[129]
(129) Li, H.; Guan, C.; Zhang, J.; Cheng, K.; Chen, Q.; He, L.; Ge, X.; Lai, Y.; Sun, H.; Zhang, Z. Adv. Mater. 2022, 34, 2202624. doi: 10.1002/adma.202202624
-
[130]
(130) Ren, W.; Qin, M.; Zhou, Y.; Zhou, H.; Zhu, J.; Pan, J.; Zhou, J.; Cao, X.; Liang, S. Energy Storage Mater. 2023, 54, 776. doi: 10.1016/j.ensm.2022.11.018
-
[131]
(131) Pu, X.; Wang, H.; Yuan, T.; Cao, S.; Liu, S.; Xu, L.; Yang, H.; Ai, X.; Chen, Z.; Cao, Y. Energy Storage Mater. 2019, 22, 330. doi: 10.1016/j.ensm.2019.02.017
-
[132]
(132) Ge, X.; Li, H.; Li, J.; Guan, C.; Wang, X.; He, L.; Li, S.; Lai, Y.; Zhang, Z. Small 2023, 19, 2302609. doi: 10.1002/smll.202302609
-
[133]
(133) Boyadzhieva, T. J.; Koleva, V. G.; Kukeva, R. R.; Stoyanova, R. K.ACS Appl. Energy Mater. 2021, 4, 7182. doi: 10.1021/acsaem.1c01269
-
[134]
(134) Xiong, F.; Li, J.; Zuo, C.; Zhang, X.; Tan, S.; Jiang, Y.; An, Q.; Chu, P. K.; Mai, L. Adv. Funct. Mater. 2022, 33, 2211257. doi: 10.1002/adfm.202211257
-
[135]
(135) Li, X.; Zhang, Y.; Zhang, B.; Qin, K.; Liu, H.; Ma, Z.-F. J. Power Sources 2022, 521, 230922. doi: 10.1016/j.jpowsour.2021.230922
-
[136]
(136) Xi, Y.; Wang, X.; Wang, H.; Wang, M.; Wang, G.; Peng, J.; Hou, N.; Huang, X.; Cao, Y.; Yang, Z.; et al. Adv. Funct. Mater. 2023,34, 2309701. doi: 10.1002/adfm.202309701
-
[137]
(137) Yuan, T.; Wang, Y.; Zhang, J.; Pu, X.; Ai, X.; Chen, Z.; Yang, H.; Cao, Y. Nano Energy 2019, 56, 160. doi: 10.1016/j.nanoen.2018.11.011
-
[138]
(138) Wood, S. M.; Eames, C.; Kendrick, E.; Islam, M. S.J. Phys. Chem. 2015, 119, 15935. doi: 10.1021/acs.jpcc.5b04648
-
[139]
(139) Zhao, A.; Liu, C.; Ji, F.; Zhang, S.; Fan, H.; Ni, W.; Fang, Y.; Ai, X.; Yang, H.; Cao, Y. ACS Energy Lett. 2022, 8, 753. doi: 10.1021/acsenergylett.2c02693
-
[140]
(140) Cao, Y.; Yang, C.; Liu, Y.; Xia, X.; Zhao, D.; Cao, Y.; Yang, H.; Zhang, J.; Lu, J.; Xia, Y. ACS Energy Lett. 2020, 5, 3788. doi: 10.1021/acsenergylett.0c01902
-
[141]
(141) Wang, H.; Pan, Z.; Zhang, H.; Dong, C.; Ding, Y.; Cao, Y.; Chen, Z. Small Methods 2021, 5, 2100372. doi: 10.1002/smtd.202100372
-
[142]
(142) Guo, J. Z.; Zhang, H. X.; Gu, Z. Y.; Du, M.; Lü, H. Y.; Zhao, X. X.; Yang, J. L.; Li, W. H.; Kang, S.; Zou, W.; et al. Adv. Funct. Mater.2022, 32, 2209482. doi: 10.1002/adfm.202209482
-
[143]
(143) Wang, N.; Wang, R.; Jiang, M.; Zhang, J. J. Alloy. Compd. 2021,870, 159382. doi: 10.1016/j.jallcom.2021.159382
-
[144]
(144) Chen, H.; Hautier, G.; Ceder, G. J. Am. Chem. Soc. 2012,134, 19619. doi: 10.1021/ja3040834
-
[145]
(145) Xie, B.; Sakamoto, R.; Kitajou, A.; Nakamoto, K.; Zhao, L.; Okada, S.; Fujita, Y.; Oka, N.; Nishida, T.; Kobayashi, W. Sci. Rep. 2020,10, 3278. doi: 10.1038/s41598-020-60183-3
-
[146]
(146) Rousseau, B.; Timoshevskii, V.; Mousseau, N.; Côté, M.; Zaghib, K. Mater. Sci. Eng. B. 2016, 211, 185. doi: 10.1016/j.mseb.2016.07.007
-
[1]
-
-
-
[1]
Jianbao Mei , Bei Li , Shu Zhang , Dongdong Xiao , Pu Hu , Geng Zhang . Enhanced Performance of Ternary NASICON-Type Na3.5-xMn0.5V1.5-xZrx(PO4)3/C Cathodes for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(12): 2407023-. doi: 10.3866/PKU.WHXB202407023
-
[2]
Yu Guo , Zhiwei Huang , Yuqing Hu , Junzhe Li , Jie Xu . 钠离子电池中铁基异质结构负极材料的最新研究进展. Acta Physico-Chimica Sinica, 2025, 41(3): 2311015-. doi: 10.3866/PKU.WHXB202311015
-
[3]
Qingtang ZHANG , Xiaoyu WU , Zheng WANG , Xiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115
-
[4]
Zhuo Wang , Xue Bai , Kexin Zhang , Hongzhi Wang , Jiabao Dong , Yuan Gao , Bin Zhao . MOF模板法合成氮掺杂碳材料用于增强电化学钠离子储存和去除. Acta Physico-Chimica Sinica, 2025, 41(3): 2405002-. doi: 10.3866/PKU.WHXB202405002
-
[5]
Pengyang FAN , Shan FAN , Qinjin DAI , Xiaoying ZHENG , Wei DONG , Mengxue WANG , Xiaoxiao HUANG , Yong ZHANG . Preparation and performance of rich 1T-MoS2 nanosheets for high-performance aqueous zinc ion battery cathode materials. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 675-682. doi: 10.11862/CJIC.20240339
-
[6]
Qi Li , Pingan Li , Zetong Liu , Jiahui Zhang , Hao Zhang , Weilai Yu , Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030
-
[7]
Lingbang Qiu , Jiangmin Jiang , Libo Wang , Lang Bai , Fei Zhou , Gaoyu Zhou , Quanchao Zhuang , Yanhua Cui . 原位电化学阻抗谱监测长寿命热电池Nb12WO33正极材料的高温双放电机制. Acta Physico-Chimica Sinica, 2025, 41(5): 100040-. doi: 10.1016/j.actphy.2024.100040
-
[8]
Xinpeng LIU , Liuyang ZHAO , Hongyi LI , Yatu CHEN , Aimin WU , Aikui LI , Hao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488
-
[9]
Yuting ZHANG , Zunyi LIU , Ning LI , Dongqiang ZHANG , Shiling ZHAO , Yu ZHAO . Nickel vanadate anode material with high specific surface area through improved co-precipitation method: Preparation and electrochemical properties. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2163-2174. doi: 10.11862/CJIC.20240204
-
[10]
Yahui HAN , Jinjin ZHAO , Ning REN , Jianjun ZHANG . Synthesis, crystal structure, thermal decomposition mechanism, and fluorescence properties of benzoic acid and 4-hydroxy-2, 2′: 6′, 2″-terpyridine lanthanide complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 969-982. doi: 10.11862/CJIC.20240395
-
[11]
Xiangyu CAO , Jiaying ZHANG , Yun FENG , Linkun SHEN , Xiuling ZHANG , Juanzhi YAN . Synthesis and electrochemical properties of bimetallic-doped porous carbon cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 509-520. doi: 10.11862/CJIC.20240270
-
[12]
Jiahong ZHENG , Jiajun SHEN , Xin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253
-
[13]
Yan Liu , Yuexiang Zhu , Luhua Lai . Introduction to Blended and Small-Class Teaching in Structural Chemistry: Exploring the Structure and Properties of Crystals. University Chemistry, 2024, 39(3): 1-4. doi: 10.3866/PKU.DXHX202306084
-
[14]
Haitang WANG , Yanni LING , Xiaqing MA , Yuxin CHEN , Rui ZHANG , Keyi WANG , Ying ZHANG , Wenmin WANG . Construction, crystal structures, and biological activities of two LnⅢ3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188
-
[15]
Yuanchao LI , Weifeng HUANG , Pengchao LIANG , Zifang ZHAO , Baoyan XING , Dongliang YAN , Li YANG , Songlin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252
-
[16]
Zhicheng JU , Wenxuan FU , Baoyan WANG , Ao LUO , Jiangmin JIANG , Yueli SHI , Yongli CUI . MOF-derived nickel-cobalt bimetallic sulfide microspheres coated by carbon: Preparation and long cycling performance for sodium storage. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 661-674. doi: 10.11862/CJIC.20240363
-
[17]
Hongjie SHEN , Haozhe MIAO , Yuhe YANG , Yinghua LI , Deguang HUANG , Xiaofeng ZHANG . Synthesis, crystal structure, and fluorescence properties of two Cu(Ⅰ) complexes based on pyridyl ligand. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 855-863. doi: 10.11862/CJIC.20250009
-
[18]
Changqing MIAO , Fengjiao CHEN , Wenyu LI , Shujie WEI , Yuqing YAO , Keyi WANG , Ni WANG , Xiaoyan XIN , Ming FANG . Crystal structures, DNA action, and antibacterial activities of three tetranuclear lanthanide-based complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2455-2465. doi: 10.11862/CJIC.20240192
-
[19]
Jing WU , Puzhen HUI , Huilin ZHENG , Pingchuan YUAN , Chunfei WANG , Hui WANG , Xiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278
-
[20]
Zhaoxuan ZHU , Lixin WANG , Xiaoning TANG , Long LI , Yan SHI , Jiaojing SHAO . Application of poly(vinyl alcohol) conductive hydrogel electrolytes in zinc ion batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 893-902. doi: 10.11862/CJIC.20240368
-
[1]
Metrics
- PDF Downloads(13)
- Abstract views(628)
- HTML views(134)