Citation: Qiqi Li,  Su Zhang,  Yuting Jiang,  Linna Zhu,  Nannan Guo,  Jing Zhang,  Yutong Li,  Tong Wei,  Zhuangjun Fan. 前驱体机械压实制备高密度活性炭及其致密电容储能性能[J]. Acta Physico-Chimica Sinica, ;2025, 41(3): 240600. doi: 10.3866/PKU.WHXB202406009 shu

前驱体机械压实制备高密度活性炭及其致密电容储能性能

  • Received Date: 11 June 2024
    Revised Date: 29 July 2024
    Accepted Date: 30 July 2024

    Fund Project: The project was supported by the National Natural Science Foundation of China (52062046, 52302336), the Taishan Scholar Project of Shandong Province (tsqn202306131, tsqn202312123), and the Key Basic Research Projects of Natural Science Foundation of Shandong Province (ZR2019ZD51).

  • 大比表面积活性炭的密度普遍较低、体积储能性能不佳,难以满足超级电容器的小型化发展需求。针对此,本工作提出在活化前对炭前驱体进行机械压实以提高活性炭密度的普适性方法,并研究了机械压实对由外而内活化(炭粉/KOH混合物)和均匀离子活化(热解含钾盐类)所制备活性炭的比表面积、孔结构和电容储能性能的影响规律。结果表明,对前驱体进行机械压实能够提高活化反应效率、活性炭密度和体积电容储能性能。随着机械压力升高,由外而内活化所得活性炭的比表面积和孔隙率先升高后降低,原因在于机械压实能够消除颗粒间的空隙以增加前驱体与活化剂之间的接触,进而显著提高了活化效率。对于均匀离子活化,活性炭的比表面积和孔隙率呈现先降低后升高的趋势,这可能是由于致密前驱体抑制了热解过程中产生的活性气体分子(H2O、CO2等)快速散逸,使之继续参与活化反应,提高了活化刻蚀效率。本工作为大比表面积和高密度活性炭的设计制备提供了简单思路。
  • 加载中
    1. [1]

      (1) Simon, P., Gogotsi, Y. Nat. Mater. 2008, 7, 845. doi:10.1038/nmat2297

    2. [2]

      (2) Wang, Y.; Song, Y.; Xia, Y. Chem. Soc. Rev. 2016, 45, 5925. doi:10.1039/c5cs00580a

    3. [3]

      (3) Wang, G.; Zhang, L.; Zhang, J. Chem. Soc. Rev. 2012, 41, 797. doi:10.1039/c1cs15060j

    4. [4]

      (4) Sevilla, M.; Mokaya, R. Energy Environ. Sci. 2014, 7, 1250. doi:10.1039/c3ee43525c

    5. [5]

      (5) Shao, H.; Wu, Y.; Lin, Z.; Taberna, P. L.; Simon, P. Chem. Soc. Rev. 2020, 49, 3005. doi:10.1039/d0cs00059k

    6. [6]

    7. [7]

    8. [8]

    9. [9]

      (9) Guo, W.; Yu, C.; Li, S.; Qiu, J. Energy Environ. Sci. 2021, 14, 576. doi:10.1039/d0ee02649b

    10. [10]

      (10) Wu, J.; Zhang, X.; Ju, Z.; Wang, L.; Hui, Z.; Mayilvahanan, K.; Takeuchi, K. J.; Marschilok, A. C.; West, A. C.; Takeuchi, E. S.; et al. Adv. Mater. 2021, 33, 2101275. doi:10.1002/adma.202101275

    11. [11]

      (11) Zhang, C.; Lv, W.; Tao, Y.; Yang, Q. Energy Environ. Sci. 2015, 8, 1390. doi:10.1039/c5ee00389j

    12. [12]

      (12) Li, H.; Tao, Y.; Zheng, X.; Luo, J.; Kang, F.; Cheng, H.; Yang, Q. Energy Environ. Sci. 2016, 9, 3135. doi:10.1039/c6ee00941g

    13. [13]

      (13) Li, Z.; Gadipelli, S.; Li, H.; Howard, C. A.; Brett, D. J. L.; Shearing, P. R.; Guo, Z.; Parkin, I. P.; Li, F. Nat. Energy 2020, 5, 160. doi:10.1038/s41560-020-0560-6

    14. [14]

      (14) Xu, Y.; Lin, Z.; Zhong, X.; Huang, X.; Weiss, N. O.; Huang, Y.; Duan, X. Nat. Commun. 2014, 5, 4554. doi:10.1038/ncomms5554

    15. [15]

      (15) Li, H.; Tao, Y.; Zheng, X.; Li, Z.; Liu, D.; Xu, Z.; Luo, C.; Luo, J.; Kang, F.; Yang, Q. Nanoscale 2015, 7, 18459. doi:10.1039/c5nr06113j

    16. [16]

      (16) Murali, S.; Quarles, N.; Zhang, L. L.; Potts, J. R.; Tan, Z.; Lu, Y.; Zhu, Y.; Ruoff, R. S. Nano Energy 2013, 2, 764. doi:10.1016/j.nanoen.2013.01.007

    17. [17]

      (17) Li, P.; Li, H.; Han, D.; Shang, T.; Deng, Y.; Tao, Y.; Lv, W.; Yang, Q. H. Adv. Sci. 2019, 6, 1802355. doi:10.1002/advs.201802355

    18. [18]

      (18) Zhang, S.; Zhu, J.; Qing, Y.; Wang, L.; Zhao, J.; Li, J.; Tian, W.; Jia, D.; Fan, Z. Adv. Funct. Mater. 2018, 28, 1805898. doi:10.1002/adfm.201805898

    19. [19]

      (19) Jiang, Y.; Jiang, Z.; Shi, M.; Liu, Z.; Liang, S.; Feng, J.; Sheng, R.; Zhang, S.; Wei, T.; Fan, Z. Carbon 2021, 182, 559. doi:10.1016/j.carbon.2021.06.039

    20. [20]

      (20) Tian, W.; Zhu, J.; Dong, Y.; Zhao, J.; Li, J.; Guo, N.; Lin, H.; Zhang, S.; Jia, D. Carbon 2020, 161, 89. doi:10.1016/j.carbon.2020.01.044

    21. [21]

      (21) Guo, H.; Ding, B.; Dong, X.; Dong, S.; Zhang, Y.; Zhu, J.; Dou, H.; Zhang, X. Energy Technol.-Ger. 2019, 7, 1900209. doi:10.1002/ente.201900209

    22. [22]

      (22) Adeniran, B.; Mokaya, R. Nano Energy 2015, 16, 173. doi:10.1016/j.nanoen.2015.06.022

    23. [23]

      (23) Balahmar, N.; Mitchell, A. C.; Mokaya, R. Adv. Energy Mater. 2015, 5, 1500867. doi:10.1002/aenm.201500867

    24. [24]

      (24) Wu, X.; Ding, B.; Zhang, C.; Li, B.; Fan, Z. Carbon 2019, 153, 225. doi:10.1016/j.carbon.2019.07.020

    25. [25]

      (25) Sevilla, M.; Fuertes, A. B. ACS Nano 2014, 8, 5069. doi:10.1021/nn501124h

    26. [26]

      (26) Li, J.; Kossmann, J.; Zeng, K.; Zhang, K.; Wang, B.; Weinberger, C.; Antonietti, M.; Odziomek, M.; López-Salas, N. Angew. Chem. Int. Ed. 2023, 62, e202217808. doi:10.1002/anie.202217808

    27. [27]

      (27) Liu, Q.; Wu, D.; Wang, T.; Wang, C.; Jia, D. Adv. Funct. Mater. 2024, 34, 2400556. doi:10.1002/adfm.202400556

    28. [28]

      (28) Peng, Q.; Wang, K.; Gong, Y.; Zhang, X.; Xu, Y.; Ma, Y.; Zhang, X.; Sun, X.; Ma, Y. Adv. Funct. Mater. 2023, 33, 2308284. doi:10.1002/adfm.202308284

    29. [29]

      (29) Liu, X.; Lyu, D.; Merlet, C.; Leesmith, M. J. A.; Hua, X.; Xu, Z.; Grey, C. P.; Forse, A. C. Science 2024, 384, 321. doi:10.1126/science.adn6242

    30. [30]

    31. [31]

      (31) Li, Q.; Jiang, Y.; Jiang, Z.; Zhu, J.; Gan, X.; Qin, F.; Tang, T.; Luo, W.; Guo, N.; Liu, Z.; et al. Carbon 2022, 191, 19. doi:10.1016/j.carbon.2022.01.042

    32. [32]

      (32) Liu, W.; Jiang, H.; Yu, H. Chem. Rev. 2015, 115, 12251. doi:10.1021/acs.chemrev.5b00195

    33. [33]

      (33) Shi, J.; Huang, T.; Wu, R.; Wu, J.; Li, Y.; Kuang, Y.; Xing, H.; Zhang, W. Int. J. Biol. Macromol. 2024, 264, 130460. doi:10.1016/j.ijbiomac.2024.130460

    34. [34]

      (34) Choudhary, N.; Li, C.; Moore, J.; Nagaiah, N.; Zhai, L.; Jung, Y.; Thomas, J. Adv. Mater. 2017, 29, 1605336. doi:10.1002/adma.201605336

    35. [35]

      (35) Zhang, J.; Tang, T.; Gan, X.; Yuan, R.; Li, Q.; Zhu, L.; Guo, N.; Zhu, J.; Li, Y.; Zhang, S.; et al. Chem. Eng. J. 2023, 470, 144257. doi:10.1016/j.cej.2023.144257

    36. [36]

      (36) Liu, B.; Liu, Y.; Chen, H.; Yang, M.; Li, H. J. Power Sources 2017, 341, 309. doi:10.1016/j.jpowsour.2016.12.022

    37. [37]

      (37) Dong, Y.; Zhang, S.; Du, X.; Hong, S.; Zhao, S.; Chen, Y.; Chen, X.; Song, H. Adv. Funct. Mater. 2019, 29, 1901127. doi:10.1002/adfm.201901127

    38. [38]

      (38) Qin, F.; Li, Q.; Tang, T.; Zhu, J.; Gan, X.; Chen, Y.; Li, Y.; Zhang, S.; Huang, X.; Jia, D. Fuel 2022, 322, 124216. doi:10.1016/j.fuel.2022.124216

    39. [39]

      (39) Liang, Q.; Ye, L.; Huang, Z.; Xu, Q.; Bai, Y.; Kang, F.; Yang, Q. Nanoscale 2014, 6, 13831. doi:10.1039/c4nr04541f

    40. [40]

      (40) Jiang, Y.; Li, J.; Jiang, Z.; Shi, M.; Sheng, R.; Liu, Z.; Zhang, S.; Cao, Y.; Wei, T.; Fan, Z. Carbon 2021, 175, 281. doi:10.1016/j.carbon.2021.01.016

    41. [41]

      (41) Xie, Q.; Bao, R.; Zheng, A.; Zhang, Y.; Wu, S.; Xie, C.; Zhao, P. ACS Sustain. Chem. Eng. 2016, 4, 1422. doi:10.1021/acssuschemeng.5b01417

    42. [42]

      (42) Wang, R.; Wang, P.; Yan, X.; Lang, J.; Peng, C.; Xue, Q. ACS Appl. Mater. Interf. 2012, 4, 5800. doi:10.1021/am302077c

    43. [43]

      (43) Pritzl, D.; Bumberger, A. E.; Wetjen, M.; Landesfeind, J.; Solchenbach, S.; Gasteiger, H. A. J. Electrochem. Soc. 2019, 166, 582. doi:10.1149/2.0451904jes

    44. [44]

      (44) Landesfeind, J.; Pritzl, D.; Gasteiger, H. A. J. Electrochem. Soc. 2017, 164, 1773. doi:10.1149/2.0131709jes

    45. [45]

      (45) Zou, K.; Cai, P.; Deng, X.; Wang, B.; Liu, C.; Li, J.; Hou, H.; Zou, G.; Ji, X. J. Energy Chem. 2021, 60, 209. doi:10.1016/j.jechem.2020.12.039

    46. [46]

      (46) Wang, Q.; Qu, Y.; Bai, J.; Chen, Z.; Luo, Q.; Li, H.; Li, J.; Yang, W. Nano Energy 2024, 120, 109147. doi:10.1016/j.nanoen.2023.109147

    47. [47]

      (47) Zhang, F.; Liu, T.; Hou, G.; Kou, T.; Yue, L.; Guan, R.; Li, Y. Nano Res. 2016, 9, 2875. doi:10.1007/s12274-016-1173-z

    48. [48]

      (48) Dang, Z.; Li, X.; Li, Y.; Dong, L. J. Colloid Interf. Sci. 2023, 644, 221. doi:10.1016/j.jcis.2023.04.074

    49. [49]

      (49) Peng, X.; Li, Y.; Kang, F.; Li, X.; Zheng, Z.; Dong, L. Small 2024, 20, 2305547. doi:10.1002/smll.202305547

    50. [50]

      (50) Irham, M. A.; Septianto, R. D.; Wulandari, R. D.; Majima, Y.; Iskandar, F.; Iwasa, Y.; Bisri, S. Z. ACS Appli. Mater. Interfaces 2024, 16, 24889. doi:10.1021/acsami.4c02517

    51. [51]

      (51) Liu, C.; Yan, X.; Hu, F.; Gao, G.; Wu, G.; Yang, X. Adv. Mater. 2018, 30, 1705713. doi:10.1002/adma.201705713

    52. [52]

      (52) Alexander, C. F.; Griffin, J. M.; Merlet, C.; Carretero-Gonzalez, J.; Raji, A.-R. O.; Trease, N. M.; Grey, C. P. Nat. Energy 2017, 2, 16216. doi:10.1038/nenergy.2016.216

    53. [53]

      (53) Béguin, F.; Presser, V.; Balducci, A.; Frackowiak, E. Adv. Mater. 2014, 26, 2219. doi:10.1002/adma.201304137

    54. [54]

      (54) Chmiola, J.; Yushin, G.; Gogotsi, Y.; Portet, C.; Simon, P.; Taberna, P. L. Science 2006, 313, 1760. doi:10.1126/science.1132195

    55. [55]

      (55) Chmiola, J.; Largeot, C.; Taberna, P. L.; Simon, P.; Gogotsi, Y. Angew. Chem. Int. Ed. 2008, 120, 3440. doi:10.1002/ange.200704894

    56. [56]

      (56) Stoller, M. D.; Park S.; Zhu, Y.; An, J.; Rodney, R. S. Nano Lett. 2008, 8, 3498. doi:10.1021/nl802558y

    57. [57]

      (57) Díez, N.; Sevilla, M.; Fuertes, A. B. Chem. Electro. Chem. 2020, 7, 3798. doi:10.1002/celc.202000960

    58. [58]

      (58) Ferrero, G. A.; Fuertes, A. B.; Sevilla, M. Electrochim. Acta 2015, 168, 320. doi:10.1016/j.electacta.2015.04.052

    59. [59]

      (59) Huang, L.; Key, J.; Shen, P. K. J. Power Sources 2019, 414, 76. doi:10.1016/j.jpowsour.2018.12.060

    60. [60]

      (60) Chen, Q.; Sun, J.; Wang, Z.; Zhao, Z.; Zhang, Y.; Liu, Y.; Hou, L.; Yuan, C. RSC Adv. 2018, 8, 9181. doi:10.1039/c8ra00858

  • 加载中
    1. [1]

      Jianjun LIMingjie RENLili ZHANGLingling ZENGHuiling WANGXiangwu MENG . UV-assisted degradation of tetracycline hydrochloride by MnFe2O4@activated carbon activated persulfate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1869-1880. doi: 10.11862/CJIC.20240187

    2. [2]

      Huayan Liu Yifei Chen Mengzhao Yang Jiajun Gu . Strategies for enhancing capacity and rate performance of two-dimensional material-based supercapacitors. Acta Physico-Chimica Sinica, 2025, 41(6): 100063-. doi: 10.1016/j.actphy.2025.100063

    3. [3]

      Yanhui XUEShaofei CHAOMan XUQiong WUFufa WUSufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183

    4. [4]

      Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108

    5. [5]

      Hui Wang Abdelkader Labidi Menghan Ren Feroz Shaik Chuanyi Wang . 微观结构调控的g-C3N4在光催化NO转化中的最新进展:吸附/活化位点的关键作用. Acta Physico-Chimica Sinica, 2025, 41(5): 100039-. doi: 10.1016/j.actphy.2024.100039

    6. [6]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    7. [7]

      Guanghui SUIYanyan CHENG . Application of rice husk-based activated carbon-loaded MgO composite for symmetric supercapacitors. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 521-530. doi: 10.11862/CJIC.20240221

    8. [8]

      Jiahong ZHENGJingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170

    9. [9]

      Kuaibing Wang Honglin Zhang Wenjie Lu Weihua Zhang . Experimental Design and Practice for Recycling and Nickel Content Detection from Waste Nickel-Metal Hydride Batteries. University Chemistry, 2024, 39(11): 335-341. doi: 10.12461/PKU.DXHX202403084

    10. [10]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    11. [11]

      Wen LUOLin JINPalanisamy KannanJinle HOUPeng HUOJinzhong YAOPeng WANG . Preparation of high-performance supercapacitor based on bimetallic high nuclearity titanium-oxo-cluster based electrodes. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 782-790. doi: 10.11862/CJIC.20230418

    12. [12]

      Jun Huang Pengfei Nie Yongchao Lu Jiayang Li Yiwen Wang Jianyun Liu . Efficient adsorption of hardness ions by a mordenite-loaded, nitrogen-doped porous carbon nanofiber cathode in capacitive deionization. Acta Physico-Chimica Sinica, 2025, 41(7): 100066-. doi: 10.1016/j.actphy.2025.100066

    13. [13]

      Min LUOXiaonan WANGYaqin ZHANGTian PANGFuzhi LIPu SHI . Porous spherical MnCo2S4 as high-performance electrode material for hybrid supercapacitors. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 413-424. doi: 10.11862/CJIC.20240205

    14. [14]

      Chengpeng Liu Yinxia Fu . Design and Practice of Ideological and Political Education for the Public Elective Course “Life Chemistry Experiment” in Universities. University Chemistry, 2024, 39(10): 242-248. doi: 10.12461/PKU.DXHX202404064

    15. [15]

      CCS Chemistry | 超分子活化底物自由基促进高效选择性光催化氧化

      . CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.

    16. [16]

      Xinxin YUYongxing LIUXiaohong YIMiao CHANGFei WANGPeng WANGChongchen WANG . Photocatalytic peroxydisulfate activation for degrading organic pollutants over the zero-valent iron recovered from subway tunnels. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 864-876. doi: 10.11862/CJIC.20240438

    17. [17]

      Ziheng Zhuang Xiao Xu Kin Shing Chan . Superdrugs for Superbugs. University Chemistry, 2024, 39(9): 128-133. doi: 10.3866/PKU.DXHX202309040

    18. [18]

      Chengyi Xiao Xiaoli Sun Chen Zhang Weiwei Li . An In-Depth Analysis of the Scientific Connotations, Testing Methods, and Applications of Free Volume in Polymer Physics. University Chemistry, 2025, 40(4): 33-45. doi: 10.12461/PKU.DXHX202403069

    19. [19]

      Hongyi Zhang Zhihong Shi Zhijun Zhang . A New Strategy for “De-formulized” Calculation of Dynamic Buffer Capacity in Analytical Chemistry Education. University Chemistry, 2024, 39(3): 390-394. doi: 10.3866/PKU.DXHX202309030

    20. [20]

      Xiaosong PUHangkai WUTaohong LIHuijuan LIShouqing LIUYuanbo HUANGXuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030

Metrics
  • PDF Downloads(0)
  • Abstract views(48)
  • HTML views(0)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return