Citation: Wei Zhong, Dan Zheng, Yuanxin Ou, Aiyun Meng, Yaorong Su. Simultaneously Improving Inter-Plane Crystallization and Incorporating K Atoms in g-C3N4 Photocatalyst for Highly-Efficient H2O2 Photosynthesis[J]. Acta Physico-Chimica Sinica, ;2024, 40(11): 240600. doi: 10.3866/PKU.WHXB202406005 shu

Simultaneously Improving Inter-Plane Crystallization and Incorporating K Atoms in g-C3N4 Photocatalyst for Highly-Efficient H2O2 Photosynthesis

  • Corresponding author: Aiyun Meng, mengaiyun@sztu.edu.cn Yaorong Su, suyaorong@sztu.edu.cn
  • Received Date: 5 June 2024
    Revised Date: 16 July 2024
    Accepted Date: 17 July 2024
    Available Online: 2 August 2024

    Fund Project: the National Natural Science Foundation of China 22178224the National Natural Science Foundation of China 22272110Guangdong Basic and Applied Basic Research Foundation 2023A1515110535Guangdong Basic and Applied Basic Research Foundation 2020A1515110873Shenzhen Science and Technology Program RCBS20231211090522041the Fundamental Research Funds for Shenzhen Technology University 20211063010047Shenzhen Key Laboratory of Applied Technologies of Super-Diamond and Functional Crystals ZDSYS20230626091303007Shenzhen Science and Technology Program 20231127203830001

  • Graphitic carbon nitride (g-C3N4) has gained growing attention in hydrogen peroxide (H2O2) photosynthesis, but the low activity of two-electron oxygen reduction reaction (2e--ORR) still restricts its photocatalytic H2O2-generation performance. Herein, traditional g-C3N4 photocatalysts are recrystallized on KI crystal surfaces by a secondary calcination route to synthesize K incorporated highly-crystalline g-C3N4 photocatalysts. The synthesized CN-K photocatalyst exhibits improved inter-plane crystallization, narrowed bandgap structure, and smaller particle size from 20 to 50 nm. Moreover, the incorporated K atoms, as excellent catalytic sites, can enhance O2 adsorption and stabilize the *OOH intermediates, thus improving the 2e--ORR activity of the K incorporated high-crystallization g-C3N4 photocatalysts. Consequently, the optimized CN-K(1:6) photocatalyst exhibits a remarkably improved H2O2-generation rate of 7.8 mmol·L-1·h-1 with an AQE value of 5.17% at 420 nm, outperforming the traditional g-C3N4 sample by a factor of 220. This work uncovers the roles of heteroatoms in promoting the 2e--ORR selectivity of the g-C3N4 photocatalyst, and offers novel insights to construct highly-active g-C3N4-based materials for H2O2 photosynthesis.
  • 加载中
    1. [1]

      Zhang, X.; Gao, D.; Zhu, B.; Cheng, B.; Yu, J.; Yu, H. Nat. Commun. 2024, 15, 3212. doi: 10.1038/s41467-024-47624-7  doi: 10.1038/s41467-024-47624-7

    2. [2]

      He, Q.; Viengkeo, B.; Zhao, X.; Qin, Z.; Zhang, J.; Yu, X.; Hu, Y.; Huang, W.; Li, Y. Nano Res. 2023, 16, 4524. doi: 10.1007/s12274-021-3882-1  doi: 10.1007/s12274-021-3882-1

    3. [3]

      Zhang, K.; Li, Y.; Yuan, S.; Zhang, L.; Wang, Q. Acta Phys. -Chim. Sin. 2023, 39, 2212010. doi: 10.3866/PKU.WHXB202212010  doi: 10.3866/PKU.WHXB202212010

    4. [4]

      Wang, L.; Sun, J.; Cheng, B.; He, R.; Yu, J. J. Phys. Chem. Lett. 2023, 14, 4803. doi: 10.1021/acs.jpclett.3c00811  doi: 10.1021/acs.jpclett.3c00811

    5. [5]

      Li, K.; Mei, J.; Li, J.; Liu, Y.; Wang, G.; Hu, D.; Yan, S.; Wang, K. Sci. China Mater. 2024, 67, 484492. doi: 10.1007/s40843-023-2717-0  doi: 10.1007/s40843-023-2717-0

    6. [6]

      He, R.; Xu, D.; Li, X. J. Mater. Sci. Technol. 2023, 138, 256. doi: 10.1016/j.jmst.2022.09.002  doi: 10.1016/j.jmst.2022.09.002

    7. [7]

      Jian, L.; Dong, Y.; Zhao, H.; Pan, C.; Wang, G.; Zhu, Y. Appl. Catal. B-Environ. 2024, 342, 123340. doi: 10.1016/j.apcatb.2023.123340  doi: 10.1016/j.apcatb.2023.123340

    8. [8]

      Yu, W.; Bie, C. Acta Phys. -Chim. Sin. 2024, 40, 2307022. doi: 10.3866/PKU.WHXB202307022  doi: 10.3866/PKU.WHXB202307022

    9. [9]

      Wu, Q.; Cao, J.; Wang, X.; Liu, Y.; Zhao, Y.; Wang, H.; Liu, Y.; Huang, H.; Liao, F.; Shao, M.; et al. Nat. Commun. 2021, 12, 483. doi: 10.1038/s41467-020-20823-8  doi: 10.1038/s41467-020-20823-8

    10. [10]

      Zhang, X.; Yu, J.; Macyk, W.; Wageh, S.; Al-Ghamdi, A. A.; Wang, L. Adv. Sustainable Syst. 2023, 7, 2200113. doi: 10.1002/adsu.202200113  doi: 10.1002/adsu.202200113

    11. [11]

      Wang, W.; Zhang, H.; Chen, Y.; Shi, H. Acta Phys. -Chim. Sin. 2022, 38, 2201008. doi: 10.3866/PKU.WHXB202201008  doi: 10.3866/PKU.WHXB202201008

    12. [12]

      Wu, X.; Tan, L.; Chen, G.; Kang, J.; Wang, G. Sci. China Mater. 2024, 67, 444. doi: 10.1007/s40843-023-2755-2  doi: 10.1007/s40843-023-2755-2

    13. [13]

      Luo, C.; Long Q.; Cheng, B.; Zhu, B.; Wang, L. Acta Phys. -Chim. Sin. 2023, 39, 2212026. doi: 10.3866/PKU.WHXB202212026  doi: 10.3866/PKU.WHXB202212026

    14. [14]

      Wu, Y.; Yang, Y.; Gu, M.; Bie, C.; Tan, H.; Cheng, B.; Xu, J. Chin. J. Catal. 2023, 53, 123. doi: 10.1016/S1872-2067(23)64514-0  doi: 10.1016/S1872-2067(23)64514-0

    15. [15]

      Zan, Z.; Li, X.; Gao, X.; Huang, J.; Luo, Y.; Han, L. Acta Phys. -Chim. Sin. 2023, 39, 2209016. doi: 10.3866/PKU.WHXB202209016  doi: 10.3866/PKU.WHXB202209016

    16. [16]

      Jiang, Z.; Long, Q.; Cheng, B.; He, R.; Wang, L. J. Mater. Sci. Technol. 2023, 162, 1. doi: 10.1016/j.jmst.2023.03.045  doi: 10.1016/j.jmst.2023.03.045

    17. [17]

      Liu, W.; Wang, P. F.; Chen, J.; Gao, X.; Che, H. N.; Liu, B.; Ao, Y. Adv. Funct. Mater. 2022, 32, 2205119. doi: 10.1002/adfm.202205119  doi: 10.1002/adfm.202205119

    18. [18]

      He, H.; Wang, Z.; Zhang, J.; Shao, C.; Dai, K.; Fan, K. Adv. Funct. Mater. 2024, 34, 2315426. doi: 10.1002/adfm.202315426  doi: 10.1002/adfm.202315426

    19. [19]

      He, B.; Wang, Z.; Xiao, P.; Chen, T.; Yu, J.; Zhang, L. Adv. Mater. 2022, 34, 2203225. doi: 10.1002/adma.202203225  doi: 10.1002/adma.202203225

    20. [20]

      Zhu, B.; Liu, J.; Sun, J.; Xie, F.; Tan, Hai.; Cheng, B.; Zhang, J. J. Mater. Sci. Technol. 2023, 162, 90. doi: 10.1016/j.jmst.2023.03.054  doi: 10.1016/j.jmst.2023.03.054

    21. [21]

      Zhu, B.; Sun, J.; Zhao, Y.; Zhang, L.; Yu, J. Adv. Mater. 2024, 36, 2310600. doi: 10.1002/adma.202310600  doi: 10.1002/adma.202310600

    22. [22]

      Xie, Y.; Zhang, Q.; Sun, H.; Teng, Z.; Su, C. Acta Phys. -Chim. Sin. 2023, 39, 2301001. doi: 10.3866/PKU.WHXB202301001  doi: 10.3866/PKU.WHXB202301001

    23. [23]

      Li, Y.; Guo, Y.; Luan, D.; Gu, X.; Lou, X. Angew. Chem. Int. Ed. 2023, 62, e202310847. doi: 10.1002/anie.202310847  doi: 10.1002/anie.202310847

    24. [24]

      Zhang, H.; Liu, J.; Zhang, Y.; Cheng, B.; Zhu, B.; Wang, L. J. Mater. Sci. Technol. 2023, 166, 241. doi: 10.1016/j.jmst.2023.05.030  doi: 10.1016/j.jmst.2023.05.030

    25. [25]

      Du, R.; Xiao, K.; Li, B.; Han, X.; Zhang, C.; Wang, X.; Zuo, Y.; Guardia, P.; Li, J.; Chen, J.; Arbiol, J.; Cabot, A. Chem. Eng. J. 2022, 441, 135999. doi: 10.1016/j.cej.2022.135999  doi: 10.1016/j.cej.2022.135999

    26. [26]

      Feng, C.; Luo, J.; Chen, C.; Zuo, S.; Ren, Y.; Wu, Z.; Hu, M.; Ould-Chikh, S.; Ruiz-Martínez, J.; Han, Y.; Zhang, H. Energy Environ. Sci. 2024, 17, 1520. doi: 10.1039/D3EE03032F  doi: 10.1039/D3EE03032F

    27. [27]

      Chen, Z.; Yao, D.; Chu, C.; Mao, S. Chem. Eng. J. 2023, 451, 138489. doi: 10.1016/j.cej.2022.138489  doi: 10.1016/j.cej.2022.138489

    28. [28]

      Zhou, S.; Wen, D; Zhong, W.; Zhang, J.; Su, Y.; Meng, A. J. Mater. Sci. Technol. 2024, 199, 53. doi: 10.1016/j.jmst.2024.02.048  doi: 10.1016/j.jmst.2024.02.048

    29. [29]

      Wang, Z.; Wang, J.; Zhang, J.; Dai, K. Acta Phys. -Chim. Sin. 2023, 39, 2209037. doi: 10.3866/PKU.WHXB202209037  doi: 10.3866/PKU.WHXB202209037

    30. [30]

      Wen, D.; Su, Y.; Fang, J.; Zheng, D.; Xu, Y.; Zhou, S.; Meng, A.; Han, P.; Wong, C.-P. Nano Energy 2023, 117, 108917. doi: 10.1016/j.nanoen.2023.108917  doi: 10.1016/j.nanoen.2023.108917

    31. [31]

      Chen, L.; Chen, C.; Yang, Z.; Li, S.; Chu, C.; Chen, B. Adv. Funct. Mater. 2021, 31, 2105731. doi: 10.1002/adfm.202105731  doi: 10.1002/adfm.202105731

    32. [32]

      Ma, L.; Gao, Y.; Wei, B.; Huang, L.; Zhang, N.; Weng, Q.; Zhang, L.; Liu, S.; Jiang, R. ACS Catal. 2024, 14, 2775. doi: 10.1021/acscatal.3c05360  doi: 10.1021/acscatal.3c05360

    33. [33]

      Zhou, J.; Shan, T.; Zhang, F.; Boury, B.; Huang, L.; Yang, Y.; Liao, G.; Xiao, H.; Chen, L. Adv. Fiber Mater. 2024, 6, 387. doi: 10.1007/s42765-023-00354-9  doi: 10.1007/s42765-023-00354-9

    34. [34]

      Meng, A.; Ma, X.; Wen, D.; Zhong, W.; Zhou, S.; Su, Y. Chin. J. Catal. 2024, 60, 231. doi: 10.1016/S1872‐2067(24)60008‐2  doi: 10.1016/S1872‐2067(24)60008‐2

    35. [35]

      Pan, Y.; Liu, X.; Zhang, W.; Shao, B.; Liu, Z.; Liang, Q.; Wu, T.; He, Q.; Huang, J.; Peng, Z.; et al. Chem. Eng. J. 2022, 427, 132032. doi: 10.1016/j.cej.2021.132032  doi: 10.1016/j.cej.2021.132032

    36. [36]

      Zeng, S.; Li, L.; Yang, Z.; Cui, J.; Wang, K.; Hu, C.; Zhao, Y. ACS Sustain. Chem. Eng. 2023, 11, 7094. doi: 10.1021/acssuschemeng.3c00230  doi: 10.1021/acssuschemeng.3c00230

    37. [37]

      Meng, A.; Zhou, S.; Wen, D.; Han, P.; Su, Y. Chin. J. Catal. 2022, 43, 2548. doi: 10.1016/S1872-2067(22)64111-1  doi: 10.1016/S1872-2067(22)64111-1

    38. [38]

      Yang, Y.; Zeng, G.; Huang, D.; Zhang, C.; He, D.; Zhou, C.; Wang, W.; Xiong, W.; Li, X.; Li, B.; et al. Appl. Catal. B-Environ. 2020, 272, 118970. doi: 10.1016/j.apcatb.2020.118970  doi: 10.1016/j.apcatb.2020.118970

    39. [39]

      Li, D.; Wen, C.; Huang, J.; Zhong, J.; Chen, P.; Liu, H.; Wang, Z.; Liu, Y.; Lv, W.; Liu, G. Appl. Catal. B-Environ. 2022, 307, 121099. doi: 10.1016/j.apcatb.2022.121099  doi: 10.1016/j.apcatb.2022.121099

    40. [40]

      Zhang, X.; Ma, P.; Wang, C.; Gan, L.; Chen, X.; Zhang, P.; Wang, Y.; Li, H.; Wang, L.; Zhou, X.; et al. Energy Environ. Sci. 2022, 15, 830. doi: 10.1039/d1ee02369a  doi: 10.1039/d1ee02369a

    41. [41]

      Teng, Z.; Zhang, Q.; Yang, H.; Kato, K.; Yang, W.; Lu, Y.; Liu, S.; Wang, C.; Yamakata, A.; Su, C.; et al. Nat. Catal. 2021, 4, 374. doi: 10.1038/s41929-021-00605-1  doi: 10.1038/s41929-021-00605-1

    42. [42]

      Zhao, Y.; Wang, D.; Che, H.; Liu, B.; Ao, Y. Environ. Funct. Mater. 2022, 1, 316. doi: 10.1016/j.efmat.2023.01.001  doi: 10.1016/j.efmat.2023.01.001

    43. [43]

      Liang, H.; Wang, A.; Cheng, R.; Tian, X.; Jing, S.; Tsiakaras, P. Small 2023, 19, 2303813. doi: 10.1002/smll.202303813  doi: 10.1002/smll.202303813

    44. [44]

      Liu, L.; Chen, F.; Wu, J.; Chen, J.; Yu, H. Proc. Natl. Acad. Sci. USA 2023, 120, e2215305120. doi: 10.1073/pnas.2215305120  doi: 10.1073/pnas.2215305120

    45. [45]

      Yuan, J.; Tian, N.; Zhu, Z.; Yu, W.; Li, M.; Zhang, Y.; Huang, H. Chem. Eng. J. 2023, 467, 143379. doi: 10.1016/j.cej.2023.143379  doi: 10.1016/j.cej.2023.143379

    46. [46]

      Cao, Q.; Wu, X.; Zhang, Y.; Yang, B.; Ma, X.; Song, J.; Zhang, J. J. Catal. 2022, 414, 64. doi: 10.1016/j.jcat.2022.08.030  doi: 10.1016/j.jcat.2022.08.030

    47. [47]

      Xu, Q.; Zheng, Y.; Wang, S.; Fu, Q.; Guo, X.; Li, Y.; Ren, J.; Cao, Z.; Li, R; Zhao, L.; et al. Alloy. Compd. 2023, 947, 169663. doi: 10.1016/j.jallcom.2023.169663  doi: 10.1016/j.jallcom.2023.169663

    48. [48]

      Wu, S.; Yu, H.; Chen, S.; Quan, X. ACS Catal. 2020, 10, 14380. doi: 10.1021/acscatal.0c03359  doi: 10.1021/acscatal.0c03359

    49. [49]

      Che, H.; Gao, X.; Chen, J.; Hou, J.; Ao, Y.; Wang, P. Angew. Chem. Int. Ed. 2021, 60, 25546. doi: 10.1002/anie.202111769  doi: 10.1002/anie.202111769

    50. [50]

      Zheng, D.; Su, Y.; Wen, D.; Zhang, Z.; Yang, P.; Ma, X.; Chen, Y.; Deng, L.; Zhou, S.; Meng, A. J. Catal. 2023, 428, 115180. doi: 10.1016/j.jcat.2023.115180  doi: 10.1016/j.jcat.2023.115180

    51. [51]

      Lei, Z.; Ma, X.; Hu, X.; Fan, J.; Liu, E. Acta Phys. -Chim. Sin. 2022, 38, 2110049. doi: 10.3866/PKU.WHXB202110049  doi: 10.3866/PKU.WHXB202110049

    52. [52]

      Cao, J.; Wu, Q.; Zhao, Y.; Wei, K.; Li, Y.; Wang, X.; Liao, F.; Huang, H.; Shao, M.; Liu, Y.; et al. Appl. Catal. B-Environ. 2021, 285, 119817. doi: 10.1016/j.apcatb.2020.119817  doi: 10.1016/j.apcatb.2020.119817

    53. [53]

      Huang, Y.; Mei, F.; Zhang, J.; Dai, K.; Dawson, G. Acta Phys. -Chim. Sin. 2022, 38, 2108028. doi: 10.3866/PKU.WHXB202108028  doi: 10.3866/PKU.WHXB202108028

    54. [54]

      Xu, J.; Zhong, W.; Zhang, X.; Wang, X.; Hong, X.; Yu, H. Small 2023, 19, 2303960. doi: 10.1002/smll.202303960  doi: 10.1002/smll.202303960

    55. [55]

      Zhong, W.; Xu, J.; Zhang, X.; Zhang, J.; Wang, X.; Yu, H. Adv. Funct. Mater. 2023, 33, 2302325. doi: 10.1002/adfm.202302325  doi: 10.1002/adfm.202302325

    56. [56]

      Zhong, W.; Zhao, B.; Wang, X.; Wang, P.; Yu, H. ACS Catal. 2023, 13, 749. doi: 10.1021/acscatal.2c04042  doi: 10.1021/acscatal.2c04042

    57. [57]

      Zhang, G.; Zhu, J.; Xu, Y.; Yang, C.; He, C.; Zhang, P.; Li, Y.; Ren, X.; Mi, H. ACS Catal. 2022, 12, 4648. doi: 10.1021/acscatal.2c00233  doi: 10.1021/acscatal.2c00233

    58. [58]

      Xu, Y.; Fan, M.; Yang, W.; Xiao, Y.; Zeng, L.; Wu, X.; Xu, Q.; Su, C.; He, Q. Adv. Mater. 2021, 33, 2101455. doi: 10.1002/adma.202101455  doi: 10.1002/adma.202101455

    59. [59]

      Gao, D.; Deng, P.; Zhang, J.; Zhang, L.; Wang, X.; Yu, H.; Yu, J. Angew. Chem. Int. Ed. 2023, 62, e202304559. doi: 10.1002/anie.202304559  doi: 10.1002/anie.202304559

    60. [60]

      Li, Z.; Chen, T.; Chen, Y.; Chen, X.; Li, L.; Kuang, S.; Gao, J.; Guo, Y.; Lo, T.; Du J. J. Mater. Chem. A 2023, 11, 5925. doi: 10.1039/D3TA00196B  doi: 10.1039/D3TA00196B

    61. [61]

      Zhao, B.; Zhong, W.; Chen, F.; Wang, P.; Bie, C.; Yu, H. Chin. J. Catal. 2023, 52, 127. doi: 10.1016/s1872-2067(23)64491-2  doi: 10.1016/s1872-2067(23)64491-2

    62. [62]

      Qiu, J.; Meng, K.; Zhang, Y.; Cheng, B.; Zhang, J.; Wang, L.; Yu, J. Adv. Mater. 2024, 36, 2400288. doi: 10.1002/adma.202400288  doi: 10.1002/adma.202400288

  • 加载中
    1. [1]

      Yadan LuoHao ZhengXin LiFengmin LiHua TangXilin She . Modulating reactive oxygen species in O, S co-doped C3N4 to enhance photocatalytic degradation of microplastics. Acta Physico-Chimica Sinica, 2025, 41(6): 100052-0. doi: 10.1016/j.actphy.2025.100052

    2. [2]

      Yi YangXin ZhouMiaoli GuBei ChengZhen WuJianjun Zhang . Femtosecond transient absorption spectroscopy investigation on ultrafast electron transfer in S-scheme ZnO/CdIn2S4 photocatalyst for H2O2 production and benzylamine oxidation. Acta Physico-Chimica Sinica, 2025, 41(6): 100064-0. doi: 10.1016/j.actphy.2025.100064

    3. [3]

      Jingzhao ChengShiyu GaoBei ChengKai YangWang WangShaowen Cao . Construction of 4-Amino-1H-imidazole-5-carbonitrile Modified Carbon Nitride-Based Donor-Acceptor Photocatalyst for Efficient Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(11): 2406026-0. doi: 10.3866/PKU.WHXB202406026

    4. [4]

      You WuChang ChengKezhen QiBei ChengJianjun ZhangJiaguo YuLiuyang Zhang . Efficient Photocatalytic Production of H2O2 over ZnO/D-A Conjugated Polymer S-scheme Heterojunction and Charge Transfer Dynamics Investigation. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-0. doi: 10.3866/PKU.WHXB202406027

    5. [5]

      Weikang WangYadong WuJianjun ZhangKai MengJinhe LiLele WangQinqin Liu . Green H2O2 synthesis via melamine-foam supported S-scheme Cd0.5Zn0.5In2S4/S-doped carbon nitride heterojunction: synergistic interfacial charge transfer and local photothermal effect. Acta Physico-Chimica Sinica, 2025, 41(8): 100093-0. doi: 10.1016/j.actphy.2025.100093

    6. [6]

      Xinyu YinHaiyang ShiYu WangXuefei WangPing WangHuogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-0. doi: 10.3866/PKU.WHXB202312007

    7. [7]

      Yu WangHaiyang ShiZihan ChenFeng ChenPing WangXuefei Wang . 具有富电子Ptδ壳层的空心AgPt@Pt核壳催化剂:提升光催化H2O2生成选择性与活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100081-0. doi: 10.1016/j.actphy.2025.100081

    8. [8]

      Heng ChenLonghui NieKai XuYiqiong YangCaihong Fang . Remarkable Photocatalytic H2O2 Production Efficiency over Ultrathin g-C3N4 Nanosheet with Large Surface Area and Enhanced Crystallinity by Two-Step Calcination. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-0. doi: 10.3866/PKU.WHXB202406019

    9. [9]

      Yan KongWei WeiLekai XuChen Chen . Electrochemical Synthesis of Organonitrogen Compounds from N-integrated CO2 Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2307049-0. doi: 10.3866/PKU.WHXB202307049

    10. [10]

      Tong ZhouXue LiuLiang ZhaoMingtao QiaoWanying Lei . Efficient Photocatalytic H2O2 Production and Cr(Ⅵ) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-0. doi: 10.3866/PKU.WHXB202309020

    11. [11]

      Ke LiChuang LiuJingping LiGuohong WangKai Wang . Architecting Inorganic/Organic S-Scheme Heterojunction of Bi4Ti3O12 Coupling with g-C3N4 for Photocatalytic H2O2 Production from Pure Water. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-0. doi: 10.3866/PKU.WHXB202403009

    12. [12]

      Mahmoud SayedHan LiChuanbiao Bie . Challenges and prospects of photocatalytic H2O2 production. Acta Physico-Chimica Sinica, 2025, 41(9): 100117-0. doi: 10.1016/j.actphy.2025.100117

    13. [13]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    14. [14]

      Jingkun YuXue YongAng CaoSiyu Lu . Bi-Layer Single Atom Catalysts Boosted Nitrate-to-Ammonia Electroreduction with High Activity and Selectivity. Acta Physico-Chimica Sinica, 2024, 40(6): 2307015-0. doi: 10.3866/PKU.WHXB202307015

    15. [15]

      Qi WuChanghua WangYingying LiXintong Zhang . Enhanced photocatalytic synthesis of H2O2 by triplet electron transfer at g-C3N4@BN van der Waals heterojunction interface. Acta Physico-Chimica Sinica, 2025, 41(9): 100107-0. doi: 10.1016/j.actphy.2025.100107

    16. [16]

      Shuhong XiangLv YangYingsheng XuGuoxin CaoHongjian Zhou . Selective electrosorption of Cs(Ⅰ) from high-salinity radioactive wastewater using CNT-interspersed potassium zinc ferrocyanide electrodes. Acta Physico-Chimica Sinica, 2025, 41(9): 100097-0. doi: 10.1016/j.actphy.2025.100097

    17. [17]

      Feifei YangWei ZhouChaoran YangTianyu ZhangYanqiang Huang . Enhanced Methanol Selectivity in CO2 Hydrogenation by Decoration of K on MoS2 Catalyst. Acta Physico-Chimica Sinica, 2024, 40(7): 2308017-0. doi: 10.3866/PKU.WHXB202308017

    18. [18]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    19. [19]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    20. [20]

      Xianghai SongXiaoying LiuZhixiang RenXiang LiuMei WangYuanfeng WuWeiqiang ZhouZhi ZhuPengwei Huo . Insights into the greatly improved catalytic performance of N-doped BiOBr for CO2 photoreduction. Acta Physico-Chimica Sinica, 2025, 41(6): 100055-0. doi: 10.1016/j.actphy.2025.100055

Metrics
  • PDF Downloads(2)
  • Abstract views(274)
  • HTML views(55)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return