Citation: Chenye An, Sikandaier Abiduweili, Xue Guo, Yukun Zhu, Hua Tang, Dongjiang Yang. Hierarchical S-scheme Heterojunction of Red Phosphorus Nanoparticles Embedded Flower-like CeO2 Triggering Efficient Photocatalytic Hydrogen Production[J]. Acta Physico-Chimica Sinica, ;2024, 40(11): 240501. doi: 10.3866/PKU.WHXB202405019 shu

Hierarchical S-scheme Heterojunction of Red Phosphorus Nanoparticles Embedded Flower-like CeO2 Triggering Efficient Photocatalytic Hydrogen Production

  • Corresponding author: Yukun Zhu, yukunzhu@qdu.edu.cn Hua Tang, tanghua@qdu.edu.cn Dongjiang Yang, d.yang@qdu.edu.cn
  • Received Date: 23 May 2024
    Revised Date: 21 June 2024
    Accepted Date: 24 June 2024
    Available Online: 28 June 2024

    Fund Project: the National Natural Science Foundation of China 52102362the National Natural Science Foundation of China 22378219the National Natural Science Foundation of China 52302097Taishan Scholar Program of Shandong Province ts201712030Taishan Scholar Program of Shandong Province tsqn201909102Taishan Scholar Program of Shandong Province tstp20230665Shandong Provincial Natural Science Foundation ZR2021QB022Shandong Provincial Natural Science Foundation ZR2021ME012Shandong Provincial Natural Science Foundation ZR2022QE036Technology Support Program for Youth Innovation Team of Shandong Universities 2023KJ225

  • Designing heterojunctions using two semiconductors with aligned band structures is a promising strategy for solar energy-driven photocatalytic hydrogen production. Particularly, S-scheme heterojunctions exhibit significant promise for accelerating spatial separation and migration of photoexcited charge carriers while maintaining strong redox capacity. Herein, a hierarchical S-scheme composite of red phosphorus (RP) nanoparticles decorated flower-like CeO2 (CeO2/RP) was synthesized via the chemical vapor deposition process. Under simulated solar light irradiation, the optimized CeO2/RP S-scheme heterojunction exhibited a highly efficient photocatalytic hydrogen production rate of 297.8 μmol·h-1·g-1, which is approximately 8.8 and 5.7 times greater than that of pure CeO2 and RP, respectively. After decoration with RP, the optical absorption of CeO2/RP is greatly expanded to the visible light region. The effective photocatalytic performance can be primarily attributed to the presence of interfacial P-O-Ce bonds providing charge transfer pathways, as well as the development of a built-in electric field between CeO2 and RP at the intimate interface. The photogenerated electrons follow an S-scheme mechanism, the electric field drives directional charge transfer from the conduction band (CB) of CeO2 to the valence band (VB) of RP upon exposure to light, thus enabling the retention of photoexcited electrons and holes with higher redox potential at the CB of RP and the VB of CeO2, respectively. This work provides a novel vision in the fabrication of S-scheme photocatalytic heterojunction systems with great photocatalytic hydrogen production performance.
  • 加载中
    1. [1]

      Bie, C.; Wang, L.; Yu, J. Chem 2022, 6, 1567. doi: 10.1016/j.chempr.2022.04.013  doi: 10.1016/j.chempr.2022.04.013

    2. [2]

      Hernandez, R.; Armstrong, A.; Burney, J.; Ryan, G.; Moore-O'Leary, K.; Diédhiou, I.; Grodsky, S. M.; Saul-Gershenz, L.; Davis, R.; Macknick, J.; et al. Nat. Sustain. 2019, 2, 560. doi: 10.1038/s41893-019-0309-z  doi: 10.1038/s41893-019-0309-z

    3. [3]

      He, R.; Ran, J. J. Mater. Sci. Technol. 2023, 157, 107. doi: 10.1016/j.jmst.2023.02.020  doi: 10.1016/j.jmst.2023.02.020

    4. [4]

      Fujishima, A.; Honda, K. Nature 1972, 238, 37. doi: 10.1038/238037a0  doi: 10.1038/238037a0

    5. [5]

      Wang, Y.; Vogel, A.; Sachs, M.; Sprick, R. S.; Wilbraham, L.; Moniz, S. J. A.; Godin, R.; Zwijnenburg, M. A.; Durrant, J. R.; Cooper, A. I.; et al. Nat. Energy 2019, 9, 746. doi: 10.1038/s41560-019-0456-5  doi: 10.1038/s41560-019-0456-5

    6. [6]

      Huang, G.; Ye, W.; Lv, C.; Butenko, D. S.; Yang, C.; Zhang, G.; Lu, P.; Xu, Y.; Zhang, S.; Wang, H.; Zhu, Y.; et al. J. Mater. Sci. Technol. 2022, 108, 18. doi: 10.1016/j.jmst.2021.09.026  doi: 10.1016/j.jmst.2021.09.026

    7. [7]

      Sun, Y.; Pei, X.; Wang, B.; Hau Ng, Y.; Zhu, R.; Zhang, Q.; Deng, J.; Liu, Y.; Jing, L.; Dai, H. Chem. Eng. J. 2023, 463, 142488. doi: 10.1016/j.cej.2023.142488  doi: 10.1016/j.cej.2023.142488

    8. [8]

      Sikandaier, A.; Zhu, Y.; Yang, D. Chin. J. Struct. Chem. 2024, 43, 100242. doi: 10.1016/j.cjsc.2024.100242  doi: 10.1016/j.cjsc.2024.100242

    9. [9]

      Zhu, Y.; Ren, J.; Huang, G.; Dong, C.; Huang, Y.; Lu, P.; Tang, H.; Liu, Y.; Shen, S.; Yang, D. Adv. Funct. 2024, 34, 2311623. doi: 10.1002/adfm.202311623  doi: 10.1002/adfm.202311623

    10. [10]

      Wang, X.; An, C.; Zhang, S.; Wang, S.; Li, J.; Zhu, Y. Sep. Purif. Technol. 2024, 340, 126733. doi: 10.1016/j.seppur.2024.126733  doi: 10.1016/j.seppur.2024.126733

    11. [11]

      Guo, Z.; Tian, Y.; Dou, G.; Wang, Y.; He, J.; Song, H. Catal. Sci. Technol. 2023, 13, 2714. doi: 10.1039/d3cy00054k  doi: 10.1039/d3cy00054k

    12. [12]

      Zhu, B.; Cheng, B.; Fan, J.; Ho, W.; Yu, J. Small Struct. 2021, 2, 2100086. doi: 10.1002/sstr.202100086  doi: 10.1002/sstr.202100086

    13. [13]

      Wu, X.; Chen, G.; Wang, J.; Li, J.; Wang, G. Acta Phys. -Chim. Sin. 2023, 39, 2212016. doi: 10.3866/pku.Whxb202212016  doi: 10.3866/pku.Whxb202212016

    14. [14]

      Li, F.; Fang, Z.; Xu, Z.; Xiang, Q. Energy Environ. Sci. 2024, 17, 497. doi: 10.1039/d3ee03282e  doi: 10.1039/d3ee03282e

    15. [15]

      Zhu, B.; Sun, J.; Zhao, Y.; Zhang, L.; Yu, J. Adv. Mater. 2023, 36, 2310600. doi: 10.1002/adma.202310600  doi: 10.1002/adma.202310600

    16. [16]

      Xu, F.; Meng, K.; Cheng, B.; Wang, S.; Xu, J.; Yu, J. Nat. Commun. 2020, 11, 4613. doi: 10.1038/s41467-020-18350-7  doi: 10.1038/s41467-020-18350-7

    17. [17]

      Lu, J.; Gu, S.; Li, H.; Wang, Y.; Guo, M.; Zhou, G. J. Mater. Sci. Technol. 2023, 160, 214. doi: 10.1016/j.jmst.2023.03.027  doi: 10.1016/j.jmst.2023.03.027

    18. [18]

      Wu, X.; Chen, G.; Li, L.; Wang, J.; Wang, G. J. Mater. Sci. Technol. 2023, 167, 184. doi: 10.1016/j.jmst.2023.05.046  doi: 10.1016/j.jmst.2023.05.046

    19. [19]

      Cao, S.; Zhong, B.; Bie, C.; Cheng, B.; Xu, F. Acta Phys. -Chim. Sin. 2024, 40, 2307016. doi: 10.3866/pku.Whxb202307016  doi: 10.3866/pku.Whxb202307016

    20. [20]

      Fu, J.; Xu, Q.; Low, J.; Jiang, C.; Yu, J. Appl. Catal. B 2019, 243, 556. doi: 10.1016/j.apcatb.2018.11.011  doi: 10.1016/j.apcatb.2018.11.011

    21. [21]

      Ghoreishian, S. M.; Ranjith, K. S.; Park, B.; Hwang, S.-K.; Hosseini, R.; Behjatmanesh-Ardakani, R.; Pourmortazavi, S. M.; Lee, H. U.; Son, B.; Mirsadeghi, S.; et al. Chem. Eng. J. 2021, 419, 129530. doi: 10.1016/j.cej.2021.129530  doi: 10.1016/j.cej.2021.129530

    22. [22]

      Bai, J.; Shen, R.; Jiang, Z.; Zhang, P.; Li, Y.; Li, X. Chin. J. Catal. 2022, 43, 359. doi: 10.1016/s1872-2067(21)63883-4  doi: 10.1016/s1872-2067(21)63883-4

    23. [23]

      Zhu, Y. Zhuang, Y.; Wang, L.; Tang, H.; Meng, X.; She, X. Chin. J. Catal 2022, 43, 2558. doi: 10.1016/s1872-2067(22)64099-3  doi: 10.1016/s1872-2067(22)64099-3

    24. [24]

      He, B.; Xiao, P.; Wan, S.; Zhang, J.; Chen, T; Zhang, L.; Yu, J. Angew. Chem. Int. Ed. 2023, 62, e202313172. doi: 10.1002/anie.202313172  doi: 10.1002/anie.202313172

    25. [25]

      Dharani, S.; Vadivel, S.; Gnanasekaran, L.; Rajendran, S. Fuel 2023, 349, 128688. doi: 10.1016/j.fuel.2023.128688  doi: 10.1016/j.fuel.2023.128688

    26. [26]

      Li, S.; Ng, Y. H.; Zhu, R.; Lv, S.; Wu, C.; Liu, Y.; Jing, L.; Deng, J.; Dai, H. Appl. Catal. B 2021, 297, 120412. doi: 10.1016/j.apcatb.2021.120412  doi: 10.1016/j.apcatb.2021.120412

    27. [27]

      Cai, J.; Li, D.; Jiang, L.; Yuan, J.; Li, Z.; Li, K. Energy Fuels 2023, 37, 4878. doi: 10.1021/acs.energyfuels.3c00120  doi: 10.1021/acs.energyfuels.3c00120

    28. [28]

      Yan, Y.; Wu, Y.; Wu, Y.; Weng, Z.; Liu, S.; Liu, Z.; Lu, K.; Han, B. ChemSusChem 2024, e202301778. doi: 10.1002/cssc.202301778  doi: 10.1002/cssc.202301778

    29. [29]

      Zhu, C.; He, Q.; Wang, W.; Du, F.; Yang, F.; Chen, C.; Wang, C.; Wang, S.; Duan, X. J. Colloid Interface Sci. 2022, 620, 253. doi: 10.1016/j.jcis.2022.04.024  doi: 10.1016/j.jcis.2022.04.024

    30. [30]

      Yang, D.; Xu, Y.; Pan, K.; Yu, C.; Wu, J.; Li, M.; Yang, F.; Qu, Y.; Zhou, W. Chin. Chem. Lett. 2022, 33, 378. doi: 10.1016/j.cclet.2021.06.035  doi: 10.1016/j.cclet.2021.06.035

    31. [31]

      Su, Q.; Li, J.; Wang, B.; Li, Y.; Hou, L. Appl. Catal. B 2022, 318, 121820. doi: 10.1016/j.apcatb.2022.121820  doi: 10.1016/j.apcatb.2022.121820

    32. [32]

      Cai, X.; Du, J.; Zhong, G.; Zhang, Y.; Mao, L.; Lou, Z. Acta Phys. -Chim. Sin. 2023, 39, 2302017. doi: 10.3866/pku.Whxb202302017  doi: 10.3866/pku.Whxb202302017

    33. [33]

      Zhao, W.; She, T.; Zhang, J.; Wang, G.; Zhang, S.; Wei, W.; Yang, G.; Zhang, L.; Xia, D.; Cheng, Z.; et al. J. Mater. Sci. Technol. 2021, 85, 18. doi: 10.1016/j.jmst.2020.12.064  doi: 10.1016/j.jmst.2020.12.064

    34. [34]

      Wang, A.; Zheng, Z.; Wang, H.; Chen, Y.; Luo, C.; Liang, D.; Hu, B.; Qiu, R.; Yan, K. Appl. Catal. B 2020, 277, 119171. doi: 10.1016/j.apcatb.2020.119171  doi: 10.1016/j.apcatb.2020.119171

    35. [35]

      Li, Y.; Qin, T.; Ma, Y.; Xiong, J.; Zhang, P.; Lai, K.; Liu, X.; Zhao, Z.; Liu, J.; Chen, L.; et al. J. Catal. 2023, 421, 351. doi: 10.1016/j.jcat.2023.03.036  doi: 10.1016/j.jcat.2023.03.036

    36. [36]

      Zeng, J.; Qi, P.; Wang, Y.; Liu, Y.; Sui, K. J. Hazard. Mater. 2021, 410, 124633. doi: 10.1016/j.jhazmat.2020.124633  doi: 10.1016/j.jhazmat.2020.124633

    37. [37]

      Qaraah, F. A.; Mahyoub, S. A.; Hezam, A.; Qaraah, A.; Drmosh, Q. A.; Xiu, G. Chin. J. Catal. 2022, 43, 2637. doi: 10.1016/s1872-2067(21)64038-x  doi: 10.1016/s1872-2067(21)64038-x

    38. [38]

      Wen, X.-J.; Niu, C.; Zhang, L.; Liang, C.; Zeng, G. Appl. Catal. B 2018, 221, 701. doi: 10.1016/j.apcatb.2017.09.060  doi: 10.1016/j.apcatb.2017.09.060

    39. [39]

      Zhou, Q.; Ma, S.; Zhan, S. Appl. Catal. B 2018, 224, 27. doi: 10.1016/j.apcatb.2017.10.032  doi: 10.1016/j.apcatb.2017.10.032

    40. [40]

      Zhang, Q.; Wang, Z.; Song, Y.; Fan, J.; Sun, T.; Liu, E. J. Mater. Sci. Technol. 2024, 169, 148. doi: 10.1016/j.jmst.2023.05.066  doi: 10.1016/j.jmst.2023.05.066

    41. [41]

      Sun, L.; Yu, X.; Tang, L.; Wang, W.; Liu, Q. Chin. J. Catal. 2023, 52, 164. doi: 10.1016/s1872-2067(23)64507-3  doi: 10.1016/s1872-2067(23)64507-3

    42. [42]

      Zhang, J.; Liu, J.; Meng, Z.; Jana, S.; Wang, L.; Zhu, B. J. Mater. Sci. Technol. 2023, 159, 1. doi: 10.1016/j.jmst.2023.02.044  doi: 10.1016/j.jmst.2023.02.044

    43. [43]

      Zhang, L.; Wu, Y.; Tsubaki, N.; Jin, Z. Acta Phys. -Chim. Sin. 2023, 39, 2302051. doi: 10.3866/pku.Whxb202302051  doi: 10.3866/pku.Whxb202302051

    44. [44]

      Huang, K.; Feng, B.; Wen, X.; Hao, L.; Xu, D.; Liang, G.; Shen, R.; Li, X. Chin. J. Struct. Chem. 2023, 42, 100204. doi: 10.1016/j.cjsc.2023.100204  doi: 10.1016/j.cjsc.2023.100204

    45. [45]

      Li, X.; Kang, B.; Dong, F.; Zhang, Z.; Luo, X.; Han, L.; Huang, J.; Feng, Z.; Chen, Z.; Xu, J.; et al. Nano Energy 2021, 81, 105671. doi: 10.1016/j.nanoen.2020.105671  doi: 10.1016/j.nanoen.2020.105671

    46. [46]

      Qiu, J.; Meng, K.; Zhang, Y.; Cheng, B.; Zhang, J.; Wang, L.; Yu, J. Adv. Mater. 2024, 36, e2400288. doi: 10.1002/adma.202400288  doi: 10.1002/adma.202400288

    47. [47]

      Li, Z.; Liu, W.; Chen, C.; Ma, T.; Zhang, J.; Wang, Z. Acta Phys. -Chim. Sin. 2023, 39, 202208030. doi: 10.3866/pku.Whxb20220803  doi: 10.3866/pku.Whxb20220803

    48. [48]

      Zhu, J. J.; Wageh, S.; Al-Ghamdi, A. A. Chin. J. Catal. 2023, 49, 5. doi: 10.1016/s1872-2067(23)64438-9  doi: 10.1016/s1872-2067(23)64438-9

    49. [49]

      Liu, B.; Cai, J.; Zhang, J.; Tan, H.; Cheng, B.; Xu, J. Chin. J. Catal. 2023, 51, 204. doi: 10.1016/s1872-2067(23)64466-3  doi: 10.1016/s1872-2067(23)64466-3

    50. [50]

      Kakavandi, B.; Moradi, M.; Hasanvandian, F.; Bahadoran, A.; Mohebolkhames, E.; Golshan, M.; Ganachari, S.; Aminabhavi, T. M. Chem. Eng. J. 2024, 487, 150399. doi: 10.1016/j.cej.2024.150399  doi: 10.1016/j.cej.2024.150399

    51. [51]

      Li, W.; Wang, X.; Lin, J.; Meng, X.; Wang, L.; Wang, M.; Jing, Q.; Song, Y. Nano Energy 2024, 122, 109289. doi: 10.1016/j.nanoen.2024.109289  doi: 10.1016/j.nanoen.2024.109289

    52. [52]

      Wang, X.; Han, Y.; Li, W.; Li, J.; Ren, S.; Wang, M.; Han, G.; Yu, J.; Zhang, Y.; Zhao, H. Adv. Opt. Mater. 2023, 12, 2301962. doi: 10.1002/adom.202301962  doi: 10.1002/adom.202301962

    53. [53]

      Shi, H.; Li, Y.; Wang, X.; Yu, H.; Yu, J. Appl. Catal. B 2021, 297, 120414. doi: 10.1016/j.apcatb.2021.120414  doi: 10.1016/j.apcatb.2021.120414

    54. [54]

      Li, J.; Wang, L.; Yuan, Z.; Li, Y.; Tang, H.; Li, D.; Wang, M.; Cui, J.; Han, W.; Li, G.; et al. Appl. Catal. B 2024, 343, 123558. doi: 10.1016/j.apcatb.2023.123558  doi: 10.1016/j.apcatb.2023.123558

    55. [55]

      Cheng, C.; He, B.; Fan, J.; Cheng, B.; Cao, S.; Yu, J. Adv. Mater. 2021, 33, 2100317. doi: 10.1002/adma.202100317  doi: 10.1002/adma.202100317

    56. [56]

      Liang, Z.; Shen, R.; Zhang, P.; Li, Y.; Li, N.; Li, X. Chin. J. Catal. 2022, 43, 2581. doi: 10.1016/s1872-2067(22)64130-5  doi: 10.1016/s1872-2067(22)64130-5

    57. [57]

      Cheng, C.; Zhang, J.; Zhu, B.; Liang, G.; Zhang, L.; Yu, J. Angew. Chem. Int. Ed. 2023, 62, e202218688. doi: 10.1002/anie.202218688  doi: 10.1002/anie.202218688

    58. [58]

      Yu, W.; Bie, C. Acta Phys. -Chim. Sin. 2024, 40, 2307022. doi: 10.3866/pku.Whxb202307022  doi: 10.3866/pku.Whxb202307022

    59. [59]

      Xu, Q.; He, R.; Li, Y. Acta Phys. -Chim. Sin. 2023, 39, 2211009. doi: 10.3866/pku.Whxb202211009  doi: 10.3866/pku.Whxb202211009

    60. [60]

      Liu, Z.; Liang, J.; Song, Q.; Li, Y.; Zhang, Z.; Zhou, M.; Wei, W.; Xu, H.; Lee, C.-S.; Li, H.; et al. Appl. Catal. B 2023, 328, 122472. doi: 10.1016/j.apcatb.2023.122472  doi: 10.1016/j.apcatb.2023.122472

    61. [61]

      Shi, Z.; Jin, W.; Sun, Y.; Li, X.; Mao, L.; Cai, X.; Lou, Z. Chin. J. Struct. Chem. 2023, 42, 100201. doi: 10.1016/j.cjsc.2023.100201  doi: 10.1016/j.cjsc.2023.100201

    62. [62]

      Yu, Z.; Guan, C.; Yue, X.; Xiang, Q. Chin. J. Catal. 2023, 50, 361. doi: 10.1016/s1872-2067(23)64448-1  doi: 10.1016/s1872-2067(23)64448-1

    63. [63]

      Xu, Q.; Zhang, L.; Cheng, B.; Fan, J.; Yu, J. Chem 2020, 6, 1543. doi: 10.1016/j.chempr.2020.06.010  doi: 10.1016/j.chempr.2020.06.010

  • 加载中
    1. [1]

      Jiajie CaiChang ChengBowen LiuJianjun ZhangChuanjia JiangBei Cheng . CdS/DBTSO-BDTO S-scheme photocatalyst for H2 production and its charge transfer dynamics. Acta Physico-Chimica Sinica, 2025, 41(8): 100084-0. doi: 10.1016/j.actphy.2025.100084

    2. [2]

      Shuang CaoBo ZhongChuanbiao BieBei ChengFeiyan Xu . Insights into Photocatalytic Mechanism of H2 Production Integrated with Organic Transformation over WO3/Zn0.5Cd0.5S S-Scheme Heterojunction. Acta Physico-Chimica Sinica, 2024, 40(5): 2307016-0. doi: 10.3866/PKU.WHXB202307016

    3. [3]

      Jiawei HuKai XiaAo YangZhihao ZhangWen XiaoChao LiuQinfang Zhang . Interfacial Engineering of Ultrathin 2D/2D NiPS3/C3N5 Heterojunctions for Boosting Photocatalytic H2 Evolution. Acta Physico-Chimica Sinica, 2024, 40(5): 2305043-0. doi: 10.3866/PKU.WHXB202305043

    4. [4]

      Kaihui HuangDejun ChenXin ZhangRongchen ShenPeng ZhangDifa XuXin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-0. doi: 10.3866/PKU.WHXB202407020

    5. [5]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    6. [6]

      Haitao WangLianglang YuJizhou JiangArramelJing Zou . S-Doping of the N-Sites of g-C3N4 to Enhance Photocatalytic H2 Evolution Activity. Acta Physico-Chimica Sinica, 2024, 40(5): 2305047-0. doi: 10.3866/PKU.WHXB202305047

    7. [7]

      Fanpeng MengFei ZhaoJingkai LinJinsheng ZhaoHuayang ZhangShaobin Wang . Optimizing interfacial electric fields in carbon nitride nanosheet/spherical conjugated polymer S-scheme heterojunction for hydrogen evolution. Acta Physico-Chimica Sinica, 2025, 41(8): 100095-0. doi: 10.1016/j.actphy.2025.100095

    8. [8]

      Xinyu MiaoHao YangJie HeJing WangZhiliang Jin . Adjusting the electronic structure of Keggin-type polyoxometalates to construct S-scheme heterojunction for photocatalytic hydrogen evolution. Acta Physico-Chimica Sinica, 2025, 41(6): 100051-0. doi: 10.1016/j.actphy.2025.100051

    9. [9]

      Shijie LiKe RongXiaoqin WangChuqi ShenFang YangQinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-0. doi: 10.3866/PKU.WHXB202403005

    10. [10]

      Ke LiChuang LiuJingping LiGuohong WangKai Wang . Architecting Inorganic/Organic S-Scheme Heterojunction of Bi4Ti3O12 Coupling with g-C3N4 for Photocatalytic H2O2 Production from Pure Water. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-0. doi: 10.3866/PKU.WHXB202403009

    11. [11]

      You WuChang ChengKezhen QiBei ChengJianjun ZhangJiaguo YuLiuyang Zhang . Efficient Photocatalytic Production of H2O2 over ZnO/D-A Conjugated Polymer S-scheme Heterojunction and Charge Transfer Dynamics Investigation. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-0. doi: 10.3866/PKU.WHXB202406027

    12. [12]

      Changjun YouChunchun WangMingjie CaiYanping LiuBaikang ZhuShijie Li . Improved Photo-Carrier Transfer by an Internal Electric Field in BiOBr/N-rich C3N5 3D/2D S-Scheme Heterojunction for Efficiently Photocatalytic Micropollutant Removal. Acta Physico-Chimica Sinica, 2024, 40(11): 2407014-0. doi: 10.3866/PKU.WHXB202407014

    13. [13]

      Yang XiaKangyan ZhangHeng YangLijuan ShiQun Yi . Improving Photocatalytic H2O2 Production over iCOF/Bi2O3 S-Scheme Heterojunction in Pure Water via Dual Channel Pathways. Acta Physico-Chimica Sinica, 2024, 40(11): 2407012-0. doi: 10.3866/PKU.WHXB202407012

    14. [14]

      Menglan WeiXiaoxia OuYimeng WangMengyuan ZhangFei TengKaixuan Wang . S-scheme heterojunction g-C3N4/Bi2WO6 highly efficient degradation of levofloxacin: performance, mechanism and degradation pathway. Acta Physico-Chimica Sinica, 2025, 41(9): 100105-0. doi: 10.1016/j.actphy.2025.100105

    15. [15]

      Jianyin HeLiuyun ChenXinling XieZuzeng QinHongbing JiTongming Su . Construction of ZnCoP/CdLa2S4 Schottky Heterojunctions for Enhancing Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-0. doi: 10.3866/PKU.WHXB202404030

    16. [16]

      Jingzhuo TianChaohong GuanHaobin HuEnzhou LiuDongyuan Yang . Waste plastics promoted photocatalytic H2 evolution over S-scheme NiCr2O4/twinned-Cd0.5Zn0.5S homo-heterojunction. Acta Physico-Chimica Sinica, 2025, 41(6): 100068-0. doi: 10.1016/j.actphy.2025.100068

    17. [17]

      Jingzhao ChengShiyu GaoBei ChengKai YangWang WangShaowen Cao . Construction of 4-Amino-1H-imidazole-5-carbonitrile Modified Carbon Nitride-Based Donor-Acceptor Photocatalyst for Efficient Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(11): 2406026-0. doi: 10.3866/PKU.WHXB202406026

    18. [18]

      Yifan ZHAOQiyun MAOMeijing GUOGuoying ZHANGTongliang HU . Z-scheme bismuth-based multi-site heterojunction: Synthesis and hydrogen production from photocatalytic hydrogen production. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1318-1330. doi: 10.11862/CJIC.20250001

    19. [19]

      Linfeng XiaoWanlu RenShishi ShenMengshan ChenRunhua LiaoYingtang ZhouXibao Li . Enhancing Photocatalytic Hydrogen Evolution through Electronic Structure and Wettability Adjustment of ZnIn2S4/Bi2O3 S-Scheme Heterojunction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308036-0. doi: 10.3866/PKU.WHXB202308036

    20. [20]

      Yi YangXin ZhouMiaoli GuBei ChengZhen WuJianjun Zhang . Femtosecond transient absorption spectroscopy investigation on ultrafast electron transfer in S-scheme ZnO/CdIn2S4 photocatalyst for H2O2 production and benzylamine oxidation. Acta Physico-Chimica Sinica, 2025, 41(6): 100064-0. doi: 10.1016/j.actphy.2025.100064

Metrics
  • PDF Downloads(1)
  • Abstract views(255)
  • HTML views(74)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return